1
|
Li J, Long Z, Ji GJ, Han S, Chen Y, Yao G, Xu Y, Zhang K, Zhang Y, Cheng J, Wang K, Chen H, Liao W. Major depressive disorder on a neuromorphic continuum. Nat Commun 2025; 16:2405. [PMID: 40069198 PMCID: PMC11897166 DOI: 10.1038/s41467-025-57682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
The heterogeneity of major depressive disorder (MDD) has hindered clinical translation and neuromarker identification. Biotyping facilitates solving the problems of heterogeneity, by dissecting MDD patients into discrete subgroups. However, interindividual variations suggest that depression may be conceptualized as a "continuum," rather than as a "category." We use a Bayesian model to decompose structural MRI features of MDD patients from a multisite cross-sectional cohort into three latent disease factors (spatial pattern) and continuum factor compositions (individual expression). The disease factors are associated with distinct neurotransmitter receptors/transporters obtained from open PET sources. Increases cortical thickness in sensory and decreases in orbitofrontal cortices (Factor 1) associate with norepinephrine and 5-HT2A density, decreases in the cingulo-opercular network and subcortex (Factor 2) associate with norepinephrine and 5-HTT density, and increases in social and affective brain systems (Factor 3) relate to 5-HTT density. Disease factor patterns can also be used to predict depressive symptom improvement in patients from the longitudinal cohort. Moreover, individual factor expressions in MDD are stable over time in a longitudinal cohort, with differentially expressed disease controls from a transdiagnostic cohort. Collectively, our data-driven disease factors reveal that patients with MDD organize along continuous dimensions that affect distinct sets of regions.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Zhiliang Long
- School of Psychology, Southwest University, Chongqing, P.R. China
| | - Gong-Jun Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, P.R. China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Guanqun Yao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, P.R. China
| | - Yong Xu
- Department of Clinical Psychology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, P.R. China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, P.R. China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, P.R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P.R. China.
| |
Collapse
|
2
|
Prompiengchai S, Dunlop K. Breakthroughs and challenges for generating brain network-based biomarkers of treatment response in depression. Neuropsychopharmacology 2024; 50:230-245. [PMID: 38951585 PMCID: PMC11525717 DOI: 10.1038/s41386-024-01907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Treatment outcomes widely vary for individuals diagnosed with major depressive disorder, implicating a need for deeper understanding of the biological mechanisms conferring a greater likelihood of response to a particular treatment. Our improved understanding of intrinsic brain networks underlying depression psychopathology via magnetic resonance imaging and other neuroimaging modalities has helped reveal novel and potentially clinically meaningful biological markers of response. And while we have made considerable progress in identifying such biomarkers over the last decade, particularly with larger, multisite trials, there are significant methodological and practical obstacles that need to be overcome to translate these markers into the clinic. The aim of this review is to review current literature on brain network structural and functional biomarkers of treatment response or selection in depression, with a specific focus on recent large, multisite trials reporting predictive accuracy of candidate biomarkers. Regarding pharmaco- and psychotherapy, we discuss candidate biomarkers, reporting that while we have identified candidate biomarkers of response to a single intervention, we need more trials that distinguish biomarkers between first-line treatments. Further, we discuss the ways prognostic neuroimaging may help to improve treatment outcomes to neuromodulation-based therapies, such as transcranial magnetic stimulation and deep brain stimulation. Lastly, we highlight obstacles and technical developments that may help to address the knowledge gaps in this area of research. Ultimately, integrating neuroimaging-derived biomarkers into clinical practice holds promise for enhancing treatment outcomes and advancing precision psychiatry strategies for depression management. By elucidating the neural predictors of treatment response and selection, we can move towards more individualized and effective depression interventions, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
| | - Katharine Dunlop
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada.
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada.
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Zhu H, Tong X, Carlisle NB, Xie H, Keller CJ, Oathes DJ, Nemeroff CB, Fonzo GA, Zhang Y. Contrastive Functional Connectivity Defines Neurophysiology-informed Symptom Dimensions in Major Depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.616707. [PMID: 39416217 PMCID: PMC11482755 DOI: 10.1101/2024.10.04.616707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Major depressive disorder (MDD) is a prevalent psychiatric disorder characterized by substantial clinical and neurobiological heterogeneity. Conventional studies that solely focus on clinical symptoms or neuroimaging metrics often fail to capture the intricate relationship between these modalities, limiting their ability to disentangle the complexity in MDD. Moreover, patient neuroimaging data typically contains normal sources of variance shared with healthy controls, which can obscure disorder-specific variance and complicate the delineation of disease heterogeneity. Methods We employed contrastive principal component analysis to extract disorder-specific variations in fMRI-based resting-state functional connectivity (RSFC) by contrasting MDD patients (N=233) with age-matched healthy controls (N=285). We then applied sparse canonical correlation analysis to identify latent dimensions in the disorder variations by linking the extracted contrastive connectivity features to clinical symptoms in MDD patients. Results Two significant and generalizable dimensions linking distinct brain circuits and clinical profiles were discovered. The first dimension, associated with an apparent "internalizing-externalizing" symptom dimension, was characterized by self-connections within the visual network and also associated with choice reaction times of cognitive tasks. The second dimension, associated with personality facets such as extraversion and conscientiousness typically inversely associated with depression symptoms, is primarily driven by self-connections within the dorsal attention network. This "depression-protective personality" dimension is also associated with multiple cognitive task performances related to psychomotor slowing and cognitive control. Conclusions Our contrastive RSFC-based dimensional approach offers a new avenue to dissect clinical heterogeneity underlying MDD. By identifying two stable, neurophysiology-informed symptom dimensions in MDD patients, our findings may enhance disease mechanism insights and facilitate precision phenotyping, thus advancing the development of targeted therapeutics for precision mental health.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Xiaoyu Tong
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | | | - Hua Xie
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
| | - Corey J. Keller
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Desmond J. Oathes
- Center for Brain Imaging and Stimulation, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Charles B. Nemeroff
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Gregory A. Fonzo
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
4
|
Song EJ, Tozzi L, Williams LM. Brain Circuit-Derived Biotypes for Treatment Selection in Mood Disorders: A Critical Review and Illustration of a Functional Neuroimaging Tool for Clinical Translation. Biol Psychiatry 2024; 96:552-563. [PMID: 38552866 DOI: 10.1016/j.biopsych.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 05/12/2024]
Abstract
Although the lifetime burden due to major depressive disorder is increasing, we lack tools for selecting the most effective treatments for each patient. One-third to one-half of patients with major depressive disorder do not respond to treatment, and we lack strategies for selecting among available treatments or expediting access to new treatment options. This critical review concentrates on functional neuroimaging as a modality of measurement for precision psychiatry. We begin by summarizing the current landscape of how functional neuroimaging-derived circuit predictors can forecast treatment outcomes in depression. Then, we outline the opportunities and challenges in integrating circuit predictors into clinical practice. We highlight one standardized and reproducible approach for quantifying brain circuit function at an individual level, which could serve as a model for clinical translation. We conclude by evaluating the prospects and practicality of employing neuroimaging tools, such as the one that we propose, in routine clinical practice.
Collapse
Affiliation(s)
- Evelyn Jiayi Song
- Stanford Center for Precision Mental Health and Wellness, Psychiatry and Behavioral Sciences, Stanford, California; Stanford School of Engineering, Stanford, California
| | - Leonardo Tozzi
- Stanford Center for Precision Mental Health and Wellness, Psychiatry and Behavioral Sciences, Stanford, California
| | - Leanne M Williams
- Stanford Center for Precision Mental Health and Wellness, Psychiatry and Behavioral Sciences, Stanford, California; Mental Illness Research, Education and Clinical Center of Excellence (MIRECC), VA Palo Alto Health Care System, Palo Alto, California.
| |
Collapse
|
5
|
Edelstein R, Gutterman S, Newman B, Van Horn JD. Assessment of Sports Concussion in Female Athletes: A Role for Neuroinformatics? Neuroinformatics 2024; 22:607-618. [PMID: 39078562 PMCID: PMC11579174 DOI: 10.1007/s12021-024-09680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
Over the past decade, the intricacies of sports-related concussions among female athletes have become readily apparent. Traditional clinical methods for diagnosing concussions suffer limitations when applied to female athletes, often failing to capture subtle changes in brain structure and function. Advanced neuroinformatics techniques and machine learning models have become invaluable assets in this endeavor. While these technologies have been extensively employed in understanding concussion in male athletes, there remains a significant gap in our comprehension of their effectiveness for female athletes. With its remarkable data analysis capacity, machine learning offers a promising avenue to bridge this deficit. By harnessing the power of machine learning, researchers can link observed phenotypic neuroimaging data to sex-specific biological mechanisms, unraveling the mysteries of concussions in female athletes. Furthermore, embedding methods within machine learning enable examining brain architecture and its alterations beyond the conventional anatomical reference frame. In turn, allows researchers to gain deeper insights into the dynamics of concussions, treatment responses, and recovery processes. This paper endeavors to address the crucial issue of sex differences in multimodal neuroimaging experimental design and machine learning approaches within female athlete populations, ultimately ensuring that they receive the tailored care they require when facing the challenges of concussions. Through better data integration, feature identification, knowledge representation, validation, etc., neuroinformaticists, are ideally suited to bring clarity, context, and explainabilty to the study of sports-related head injuries in males and in females, and helping to define recovery.
Collapse
Affiliation(s)
- Rachel Edelstein
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA.
| | - Sterling Gutterman
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA
| | - Benjamin Newman
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA
| | - John Darrell Van Horn
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA
| |
Collapse
|
6
|
Ma Y, Li H, Zhou Z, Chen X, Ma L, Guray E, Balderston NL, Oathes DJ, Shinohara RT, Wolf DH, Nasrallah IM, Shou H, Satterthwaite TD, Davatzikos C, Fan Y. pNet: A toolbox for personalized functional networks modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591367. [PMID: 38746228 PMCID: PMC11092457 DOI: 10.1101/2024.04.26.591367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Personalized functional networks (FNs) derived from functional magnetic resonance imaging (fMRI) data are useful for characterizing individual variations in the brain functional topography associated with the brain development, aging, and disorders. To facilitate applications of the personalized FNs with enhanced reliability and reproducibility, we develop an open-source toolbox that is user-friendly, extendable, and includes rigorous quality control (QC), featuring multiple user interfaces (graphics, command line, and a step-by-step guideline) and job-scheduling for high performance computing (HPC) clusters. Particularly, the toolbox, named personalized functional network modeling (pNet), takes fMRI inputs in either volumetric or surface type, ensuring compatibility with multiple fMRI data formats, and computes personalized FNs using two distinct modeling methods: one method optimizes the functional coherence of FNs, while the other enhances their independence. Additionally, the toolbox provides HTML-based reports for QC and visualization of personalized FNs. The toolbox is developed in both MATLAB and Python platforms with a modular design to facilitate extension and modification by users familiar with either programming language. We have evaluated the toolbox on two fMRI datasets and demonstrated its effectiveness and user-friendliness with interactive and scripting examples. pNet is publicly available at https://github.com/MLDataAnalytics/pNet.
Collapse
Affiliation(s)
- Yuncong Ma
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Hongming Li
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Zhen Zhou
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Xiaoyang Chen
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Liang Ma
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Erus Guray
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Desmond J Oathes
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology and Informatics, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel H Wolf
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Psychiatry, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Ilya M Nasrallah
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Haochang Shou
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Clinical Epidemiology (CCEB), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Statistics in Big Data (CSBD), Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Psychiatry, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- 9. Penn Lifespan Informatics and Neuroimaging Center (PennLINC), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Fu CHY, Antoniades M, Erus G, Garcia JA, Fan Y, Arnone D, Arnott SR, Chen T, Choi KS, Fatt CC, Frey BN, Frokjaer VG, Ganz M, Godlewska BR, Hassel S, Ho K, McIntosh AM, Qin K, Rotzinger S, Sacchet MD, Savitz J, Shou H, Singh A, Stolicyn A, Strigo I, Strother SC, Tosun D, Victor TA, Wei D, Wise T, Zahn R, Anderson IM, Craighead WE, Deakin JFW, Dunlop BW, Elliott R, Gong Q, Gotlib IH, Harmer CJ, Kennedy SH, Knudsen GM, Mayberg HS, Paulus MP, Qiu J, Trivedi MH, Whalley HC, Yan CG, Young AH, Davatzikos C. Neuroanatomical dimensions in medication-free individuals with major depressive disorder and treatment response to SSRI antidepressant medications or placebo. NATURE. MENTAL HEALTH 2024; 2:164-176. [PMID: 38948238 PMCID: PMC11211072 DOI: 10.1038/s44220-023-00187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/17/2023] [Indexed: 07/02/2024]
Abstract
Major depressive disorder (MDD) is a heterogeneous clinical syndrome with widespread subtle neuroanatomical correlates. Our objective was to identify the neuroanatomical dimensions that characterize MDD and predict treatment response to selective serotonin reuptake inhibitor (SSRI) antidepressants or placebo. In the COORDINATE-MDD consortium, raw MRI data were shared from international samples (N = 1,384) of medication-free individuals with first-episode and recurrent MDD (N = 685) in a current depressive episode of at least moderate severity, but not treatment-resistant depression, as well as healthy controls (N = 699). Prospective longitudinal data on treatment response were available for a subset of MDD individuals (N = 359). Treatments were either SSRI antidepressant medication (escitalopram, citalopram, sertraline) or placebo. Multi-center MRI data were harmonized, and HYDRA, a semi-supervised machine-learning clustering algorithm, was utilized to identify patterns in regional brain volumes that are associated with disease. MDD was optimally characterized by two neuroanatomical dimensions that exhibited distinct treatment responses to placebo and SSRI antidepressant medications. Dimension 1 was characterized by preserved gray and white matter (N = 290 MDD), whereas Dimension 2 was characterized by widespread subtle reductions in gray and white matter (N = 395 MDD) relative to healthy controls. Although there were no significant differences in age of onset, years of illness, number of episodes, or duration of current episode between dimensions, there was a significant interaction effect between dimensions and treatment response. Dimension 1 showed a significant improvement in depressive symptoms following treatment with SSRI medication (51.1%) but limited changes following placebo (28.6%). By contrast, Dimension 2 showed comparable improvements to either SSRI (46.9%) or placebo (42.2%) (β = -18.3, 95% CI (-34.3 to -2.3), P = 0.03). Findings from this case-control study indicate that neuroimaging-based markers can help identify the disease-based dimensions that constitute MDD and predict treatment response.
Collapse
Affiliation(s)
- Cynthia H. Y. Fu
- School of Psychology, University of East London, London, UK
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Mathilde Antoniades
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Jose A. Garcia
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Danilo Arnone
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | | | - Taolin Chen
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Cherise Chin Fatt
- Department of Psychiatry, Center for Depression Research and Clinical Care, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Benicio N. Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario Canada
- Mood Disorders Treatment and Research Centre and Women’s Health Concerns Clinic, St Joseph’s Healthcare Hamilton, Hamilton, Ontario Canada
| | - Vibe G. Frokjaer
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Psychiatry, Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Melanie Ganz
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Beata R. Godlewska
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Stefanie Hassel
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta Canada
| | - Keith Ho
- Department of Psychiatry, University Health Network, Toronto, Ontario Canada
| | - Andrew M. McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Kun Qin
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Susan Rotzinger
- Department of Psychiatry, University Health Network, Toronto, Ontario Canada
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, Ontario Canada
| | - Matthew D. Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | | | - Haochang Shou
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA USA
| | - Ashish Singh
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Aleks Stolicyn
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Irina Strigo
- Department of Psychiatry, University of California San Francisco, San Francisco, USA
| | - Stephen C. Strother
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA USA
| | | | - Dongtao Wei
- School of Psychology, Southwest University, Chongqing, China
| | - Toby Wise
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Roland Zahn
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Ian M. Anderson
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - W. Edward Craighead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
- Department of Psychology, Emory University, Atlanta, GA USA
| | - J. F. William Deakin
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Rebecca Elliott
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ian H. Gotlib
- Department of Psychology, Stanford University, Stanford, CA USA
| | | | - Sidney H. Kennedy
- Department of Psychiatry, University Health Network, Toronto, Ontario Canada
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, Ontario Canada
| | - Gitte M. Knudsen
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helen S. Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing, China
| | - Madhukar H. Trivedi
- Department of Psychiatry, Center for Depression Research and Clinical Care, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Heather C. Whalley
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Chao-Gan Yan
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Allan H. Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, London, UK
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
8
|
Perna G, Spiti A, Torti T, Daccò S, Caldirola D. Biomarker-Guided Tailored Therapy in Major Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:379-400. [PMID: 39261439 DOI: 10.1007/978-981-97-4402-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
This chapter provides a comprehensive examination of a broad range of biomarkers used for the diagnosis and prediction of treatment outcomes in major depressive disorder (MDD). Genetic, epigenetic, serum, cerebrospinal fluid (CSF), and neuroimaging biomarkers are analyzed in depth, as well as the integration of new technologies such as digital phenotyping and machine learning. The intricate interplay between biological and psychological elements is emphasized as essential for tailoring MDD management strategies. In addition, the evolving link between psychotherapy and biomarkers is explored to uncover potential associations that shed light on treatment response. This analysis underscores the importance of individualized approaches in the treatment of MDD that integrate advanced biological insights into clinical practice to improve patient outcomes.
Collapse
Affiliation(s)
- Giampaolo Perna
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, Como, Italy.
- Humanitas SanpioX, Milan, Italy.
| | - Alessandro Spiti
- IRCCS Humanitas Research Hospital, Milan, Italy
- Psicocare, Humanitas Medical Care, Monza, Italy
| | - Tatiana Torti
- ASIPSE School of Cognitive-Behavioral-Therapy, Milan, Italy
| | - Silvia Daccò
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Humanitas SanpioX, Milan, Italy
- Psicocare, Humanitas Medical Care, Monza, Italy
| | - Daniela Caldirola
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, Como, Italy
- Humanitas SanpioX, Milan, Italy
| |
Collapse
|
9
|
Torfeh T, Aouadi S, Yoganathan SA, Paloor S, Hammoud R, Al-Hammadi N. Deep Learning Approaches for Automatic Quality Assurance of Magnetic Resonance Images Using ACR Phantom. BMC Med Imaging 2023; 23:197. [PMID: 38031032 PMCID: PMC10685462 DOI: 10.1186/s12880-023-01157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND In recent years, there has been a growing trend towards utilizing Artificial Intelligence (AI) and machine learning techniques in medical imaging, including for the purpose of automating quality assurance. In this research, we aimed to develop and evaluate various deep learning-based approaches for automatic quality assurance of Magnetic Resonance (MR) images using the American College of Radiology (ACR) standards. METHODS The study involved the development, optimization, and testing of custom convolutional neural network (CNN) models. Additionally, popular pre-trained models such as VGG16, VGG19, ResNet50, InceptionV3, EfficientNetB0, and EfficientNetB5 were trained and tested. The use of pre-trained models, particularly those trained on the ImageNet dataset, for transfer learning was also explored. Two-class classification models were employed for assessing spatial resolution and geometric distortion, while an approach classifying the image into 10 classes representing the number of visible spokes was used for the low contrast. RESULTS Our results showed that deep learning-based methods can be effectively used for MR image quality assurance and can improve the performance of these models. The low contrast test was one of the most challenging tests within the ACR phantom. CONCLUSIONS Overall, for geometric distortion and spatial resolution, all of the deep learning models tested produced prediction accuracy of 80% or higher. The study also revealed that training the models from scratch performed slightly better compared to transfer learning. For the low contrast, our investigation emphasized the adaptability and potential of deep learning models. The custom CNN models excelled in predicting the number of visible spokes, achieving commendable accuracy, recall, precision, and F1 scores.
Collapse
Affiliation(s)
- Tarraf Torfeh
- Department of Radiation Oncology, National Center for Cancer Care & Research (NCCCR), Hamad Medical Corporation, Doha, Qatar.
| | - Souha Aouadi
- Department of Radiation Oncology, National Center for Cancer Care & Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - S A Yoganathan
- Department of Radiation Oncology, National Center for Cancer Care & Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - Satheesh Paloor
- Department of Radiation Oncology, National Center for Cancer Care & Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - Rabih Hammoud
- Department of Radiation Oncology, National Center for Cancer Care & Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - Noora Al-Hammadi
- Department of Radiation Oncology, National Center for Cancer Care & Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|