1
|
Policarpo JMP, Ramos AAGF, Dye C, Faria NR, Leal FE, Moraes OJS, Parag KV, Peixoto PS, Buss L, Sabino EC, Nascimento VH, Deppman A. Scale-free dynamics of COVID-19 in a Brazilian city. APPLIED MATHEMATICAL MODELLING 2023; 121:166-184. [PMID: 37151217 PMCID: PMC10154131 DOI: 10.1016/j.apm.2023.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023]
Abstract
A common basis to address the dynamics of directly transmitted infectious diseases, such as COVID-19, are compartmental (or SIR) models. SIR models typically assume homogenous population mixing, a simplification that is convenient but unrealistic. Here we validate an existing model of a scale-free fractal infection process using high-resolution data on COVID-19 spread in São Caetano, Brazil. We find that transmission can be described by a network in which each infectious individual has a small number of susceptible contacts, of the order of 2-5. This model parameter correlated tightly with physical distancing measured by mobile phone data, such that in periods of greater distancing the model recovered a lower average number of contacts, and vice versa. We show that the SIR model is a special case of our scale-free fractal process model in which the parameter that reflects population structure is set at unity, indicating homogeneous mixing. Our more general framework better explained the dynamics of COVID-19 in São Caetano, used fewer parameters than a standard SIR model and accounted for geographically localized clusters of disease. Our model requires further validation in other locations and with other directly transmitted infectious agents.
Collapse
Affiliation(s)
| | - A A G F Ramos
- Instituto de Física - Universidade de São Paulo, Brazil
| | - C Dye
- Department of Biology, University of Oxford, UK
| | - N R Faria
- Department of Biology, University of Oxford, UK
- Imperial Coll London, MRC Ctr Global Infect Dis Anal, Sch Publ Helth, London, England, UK
- Faculdade de Medicina - Universidade de São Paulo, Brazil
| | - F E Leal
- Universidade de São Caetano do Sul, São Caetano do Sul and Programa de Oncovirologia - Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - O J S Moraes
- Instituto de Física - Universidade de São Paulo, Brazil
| | - K V Parag
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London W2 1PG, UK
| | - P S Peixoto
- Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil
| | - L Buss
- Faculdade de Medicina - Universidade de São Paulo, Brazil
| | - E C Sabino
- Faculdade de Medicina - Universidade de São Paulo, Brazil
| | | | - A Deppman
- Instituto de Física - Universidade de São Paulo, Brazil
| |
Collapse
|
2
|
Kleynhans J, Dall'Amico L, Gauvin L, Tizzoni M, Maloma L, Walaza S, Martinson NA, von Gottberg A, Wolter N, Makhasi M, Cohen C, Cattuto C, Tempia S. Association of close-range contact patterns with SARS-CoV-2: a household transmission study. eLife 2023; 12:e84753. [PMID: 37461328 DOI: 10.7554/elife.84753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Background Households are an important location for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, especially during periods when travel and work was restricted to essential services. We aimed to assess the association of close-range contact patterns with SARS-CoV-2 transmission. Methods We deployed proximity sensors for two weeks to measure face-to-face interactions between household members after SARS-CoV-2 was identified in the household, in South Africa, 2020-2021. We calculated the duration, frequency, and average duration of close-range proximity events with SARS-CoV-2 index cases. We assessed the association of contact parameters with SARS-CoV-2 transmission using mixed effects logistic regression accounting for index and household member characteristics. Results We included 340 individuals (88 SARS-CoV-2 index cases and 252 household members). On multivariable analysis, factors associated with SARS-CoV-2 acquisition were index cases with minimum Ct value <30 (aOR 16.8 95% CI 3.1-93.1) vs >35, and female contacts (aOR 2.5 95% CI 1.3-5.0). No contact parameters were associated with acquisition (aOR 1.0-1.1) for any of the duration, frequency, cumulative time in contact, or average duration parameters. Conclusions We did not find an association between close-range proximity events and SARS-CoV-2 household transmission. Our findings may be due to study limitations, that droplet-mediated transmission during close-proximity contacts plays a smaller role than airborne transmission of SARS-CoV-2 in the household, or due to high contact rates in households. Funding Wellcome Trust (Grant number 221003/Z/20/Z) in collaboration with the Foreign, Commonwealth, and Development Office, United Kingdom.
Collapse
Affiliation(s)
- Jackie Kleynhans
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Laetitia Gauvin
- ISI Foundation, Turin, Italy
- Institute for Research on Sustainable Development, Aubervilliers, France
| | - Michele Tizzoni
- ISI Foundation, Turin, Italy
- Department of Sociology and Social Research, University of Trento, Trento, Italy
| | - Lucia Maloma
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Sibongile Walaza
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil A Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University Center for TB Research, Baltimore, United States
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicole Wolter
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mvuyo Makhasi
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ciro Cattuto
- ISI Foundation, Turin, Italy
- Department of Informatics, University of Turin, Turin, Italy
| | - Stefano Tempia
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Choi S, Kim C, Park KH, Kim JH. Direct indicators of social distancing effectiveness in COVID-19 outbreak stages: a correlational analysis of case contacts and population mobility in Korea. Epidemiol Health 2023; 45:e2023065. [PMID: 37448123 PMCID: PMC10876423 DOI: 10.4178/epih.e2023065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/25/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVES The effectiveness of social distancing during the coronavirus disease 2019 (COVID-19) pandemic has been evaluated using the magnitude of changes in population mobility. This study aimed to investigate a direct indicator-namely, the number of close contacts per patient with confirmed COVID-19. METHODS From week 7, 2020 to week 43, 2021, population movement changes were calculated from the data of two Korean telecommunication companies and Google in accordance with social distancing stringency levels. Data on confirmed cases and their close contacts among residents of Gyeonggi Province, Korea were combined at each stage. Pearson correlation analysis was conducted to compare the movement data with the change in the number of contacts for each confirmed case calculated by stratification according to age group. The reference value of the population movement data was set using the value before mid-February 2020, considering each data's characteristics. RESULTS In the age group of 18 or younger, the number of close contacts per confirmed case decreased or increased when the stringency level was strengthened or relaxed, respectively. In adults, the correlation was relatively low, with no correlation between the change in the number of close contacts per confirmed case and the change in population movement after the commencement of vaccination for adults. CONCLUSIONS The effectiveness of governmental social distancing policies against COVID-19 can be evaluated using the number of close contacts per confirmed case as a direct indicator, especially for each age group. Such an analysis can facilitate policy changes for specific groups.
Collapse
Affiliation(s)
- Sojin Choi
- Gyeonggi Infectious Disease Control Center, Health Bureau, Gyeonggi Provincial Government, Suwon, Korea
| | - Chanhee Kim
- Gyeonggi Infectious Disease Control Center, Health Bureau, Gyeonggi Provincial Government, Suwon, Korea
| | - Kun-Hee Park
- Gyeonggi Infectious Disease Control Center, Health Bureau, Gyeonggi Provincial Government, Suwon, Korea
| | - Jong-Hun Kim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
4
|
Barnes-Josiah D, Kundeti H, Cramer D. Factors Influencing the Results of COVID-19 Case Outreach-Results From a California Case Investigation/Contact Tracing Program. JOURNAL OF PUBLIC HEALTH MANAGEMENT AND PRACTICE 2022; 28:639-649. [PMID: 36070585 PMCID: PMC9555609 DOI: 10.1097/phh.0000000000001622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT Considerable research has examined impacts of case investigation and contact tracing (CI/CT) programs on the spread of infectious diseases such as COVID-19, but there are few reports on factors affecting the ability of these programs to obtain interviews and acquire key information. OBJECTIVE To investigate programmatic and case-specific factors associated with CI outcomes using data from the Public Health Institute's Tracing Health CI/CT program. Analyses were designed to detect variability in predictors of whether interviews and key information were obtained rather than quantify specific relationships. DESIGN Logistic regression models examined variability in the predictive value of interview timeliness and respondent characteristics on outreach outcomes and interview results. SETTING AND PARTICIPANTS Participants were members of a large California health care network with a positive laboratory test for COVID-19 and outreach from January 1 to July 31, 2021. MAIN OUTCOME MEASURES The primary outcome was the result of outreach attempts: completed interview, refused interview, or failure to reach the infected person. Secondary outcomes considered whether respondents provided information on symptom onset, employment, and contact information or a reason for declining to provide information, and whether resource support was requested or accepted. RESULTS Of 9391 eligible records, 65.6% were for completed interviews, 6.0% were refusals, and 28.3% were failed outreach. One-third of respondents (36.7%) provided information on contacts (mean = 0.97 contacts per respondent, 2.6 for those naming at least 1). Privacy concerns were the most common reasons for not providing contact information. Among respondent characteristics and interview timeliness, only race and number of symptoms showed statistically significant effects in all adjusted analyses. CONCLUSIONS Significant variation existed in outreach outcomes by subject characteristics and interview timeliness. CI/CT programs carefully focused to characteristics and needs of specific communities will likely have the greatest impact on the spread of COVID-19 and other communicable diseases.
Collapse
Affiliation(s)
- Debora Barnes-Josiah
- Correspondence: Debora Barnes-Josiah, PhD, MSPH, Tracing Health Program, Public Health Institute, 555 12th Street, Oakland, CA 94607 ()
| | | | | |
Collapse
|
5
|
McAloon CG, Dahly D, Walsh C, Wall P, Smyth B, More SJ, Teljeur C. Potential Application of SARS-CoV-2 Rapid Antigen Diagnostic Tests for the Detection of Infectious Individuals Attending Mass Gatherings - A Simulation Study. FRONTIERS IN EPIDEMIOLOGY 2022; 2:862826. [PMID: 38455312 PMCID: PMC10911017 DOI: 10.3389/fepid.2022.862826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 03/09/2024]
Abstract
Rapid Antigen Diagnostic Tests (RADTs) for the detection of SARS-CoV-2 offer advantages in that they are cheaper and faster than currently used PCR tests but have reduced sensitivity and specificity. One potential application of RADTs is to facilitate gatherings of individuals, through testing of attendees at the point of, or immediately prior to entry at a venue. Understanding the baseline risk in the tested population is of particular importance when evaluating the utility of applying diagnostic tests for screening purposes. We used incidence data from January and from July-August 2021, periods of relatively high and low levels of infection, to estimate the prevalence of infectious individuals in the community at particular time points and simulated mass gatherings by sampling from a series of age cohorts. Nine different illustrative scenarios were simulated, small (n = 100), medium (n = 1,000) and large (n = 10,000) gatherings each with 3 possible age constructs: mostly younger, mostly older or a gathering with equal numbers from each age cohort. For each scenario, we estimated the prevalence of infectious attendees, then simulated the likely number of positive and negative test results, the proportion of cases detected and the corresponding positive and negative predictive values, and the cost per case identified. Our findings suggest that for each reported case on a given day, there are likely to be 13.8 additional infectious individuals also present in the community. Prevalence ranged from 0.26% for "mostly older" events in July-August, to 2.6% for "mostly younger" events in January. For small events (100 attendees) the expected number of infectious attendees ranged from <1 across all age constructs of attendees in July-August, to 2.6 for "mostly younger" events in January. For large events (10,000 attendees) the expected number of infectious attendees ranged from 27 (95% confidence intervals 12 to 45) for mostly older events in July-August, to 267 (95% confidence intervals 134 to 436) infectious attendees for mostly younger attendees in January. Given rapid changes in SARS-CoV-2 incidence over time, we developed an RShiny app to allow users to run updated simulations for specific events.
Collapse
Affiliation(s)
- Conor G. McAloon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Darren Dahly
- School of Public Health, University College Cork, Cork, Ireland
| | - Cathal Walsh
- Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland
| | - Patrick Wall
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Breda Smyth
- Department of Public Health, Health Service Executive West, Galway, Ireland
| | - Simon J. More
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- Centre for Veterinary Epidemiology and Risk Analysis, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Conor Teljeur
- Health Information and Quality Authority, George's Court, Dublin, Ireland
| |
Collapse
|