1
|
Furkan HB, Ayman N, Uddin MJ. Hybrid neural network models for time series disease prediction confronted by spatiotemporal dependencies. MethodsX 2025; 14:103093. [PMID: 39802431 PMCID: PMC11719402 DOI: 10.1016/j.mex.2024.103093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
In infectious disease outbreak modeling, there remains a gap in addressing spatiotemporal challenges present in established models. This study addresses this gap by evaluating four established hybrid neural network models for predicting influenza outbreaks. These models were analyzed by employing time series data from eight different countries to challenge the models with imposed spatial difficulties, in a month-on-month structure. The models' predictions were compared using MAPE, and RMSE, as well as graphical representations generated by employed models. The SARIMA-LSTM model excelled in achieving the lowest average RMSE score of 66.93 as well as reporting the lowest RMSE score for three out of eight countries studied. In this case also, GA-ConvLSTM-CNN model comes in second place with an average RMSE score of 68.46. Considering these results and the ability to follow the seasonal trends of the actual values, this study suggests the SARIMA-LSTM model to be more robust to spatiotemporal challenges compared with the other models under examination. This study•Evaluated established methods with unique imposed difficulty.•Addressed spatiotemporal characteristics of the data.•Proposed the SARIMA-LSTM model based on evaluation metrics.
Collapse
Affiliation(s)
- Hamed Bin Furkan
- Department of Statistics, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Nabila Ayman
- Department of Computer Science & Engineering, University of Chittagong, Chittagong, Bangladesh
| | - Md. Jamal Uddin
- Department of Statistics, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Department of General Educational and Development, Daffodil International University, Dhaka 1216, Bangladesh
| |
Collapse
|
2
|
Luo J, Wang X, Fan X, He Y, Du X, Chen YQ, Zhao Y. A novel graph neural network based approach for influenza-like illness nowcasting: exploring the interplay of temporal, geographical, and functional spatial features. BMC Public Health 2025; 25:408. [PMID: 39893390 PMCID: PMC11786584 DOI: 10.1186/s12889-025-21618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Accurate and timely monitoring of influenza prevalence is essential for effective healthcare interventions. This study proposes a graph neural network (GNN)-based method to address the issue of cross-regional connectivity in predicting influenza outbreaks, aiming to achieve real-time and accurate influenza prediction. METHODS We proposed a GNN-based approach with dual topology processing, capturing both geographical and socio-economic associations among counties/cities. The model inputs consist of weekly matrices of influenza-like illness (ILI) rates at city level, along with geographical topology and functional topology. The model construction involves temporal feature extraction through 1-dimensional gated causal convolution, spatial feature embedding through graph convolution, and additional adjustments to enhance spatiotemporal interaction exploration. Evaluation metrics include four commonly used measures: root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), and Pearson correlation (Corr). RESULTS Our approach for predicting influenza outbreaks achieves competitive performance on real-world datasets (Corr = 0.8202; RMSE = 0.0017; MAE = 0.0013; MAPE = 0.0966), surpassing established baselines. Notably, our approach exhibits excellent capability in accurately and timely capturing short-term influenza outbreaks during the flu season, outperforming competitors across all evaluation metrics. CONCLUSION The incorporation of dual topology processing and the subsequent fusion mechanism allows the model to explore in-depth spatiotemporal feature interactions. Demonstrating superior performance, our approach shows great potential in early detection of flu trends for facilitating public health decisions and resource optimization.
Collapse
Affiliation(s)
- Jiajia Luo
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Xuan Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Xiaomao Fan
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, 518118, Guangdong, China
| | - Yuxin He
- College of Urban Transportation and Logistics, Shenzhen Technology University, Shenzhen, 518118, Guangdong, China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
3
|
Zhu H, Qi F, Wang X, Zhang Y, Chen F, Cai Z, Chen Y, Chen K, Chen H, Xie Z, Chen G, Zhang X, Han X, Wu S, Chen S, Fu Y, He F, Weng Y, Ou J. Study of the driving factors of the abnormal influenza A (H3N2) epidemic in 2022 and early predictions in Xiamen, China. BMC Infect Dis 2024; 24:1093. [PMID: 39358703 PMCID: PMC11446044 DOI: 10.1186/s12879-024-09996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Influenza outbreaks have occurred frequently these years, especially in the summer of 2022 when the number of influenza cases in southern provinces of China increased abnormally. However, the exact evidence of the driving factors involved in the prodrome period is unclear, posing great difficulties for early and accurate prediction in practical work. METHODS In order to avoid the serious interference of strict prevention and control measures on the analysis of influenza influencing factors during the COVID-19 epidemic period, only the impact of meteorological and air quality factors on influenza A (H3N2) in Xiamen during the non coronavirus disease 2019 (COVID-19) period (2013/01/01-202/01/24) was analyzed using the distribution lag non-linear model. Phylogenetic analysis of influenza A (H3N2) during 2013-2022 was also performed. Influenza A (H3N2) was predicted through a random forest and long short-term memory (RF-LSTM) model via actual and forecasted meteorological and influenza A (H3N2) values. RESULTS Twenty nine thousand four hundred thirty five influenza cases were reported in 2022, accounting for 58.54% of the total cases during 2013-2022. A (H3N2) dominated the 2022 summer epidemic season, accounting for 95.60%. The influenza cases in the summer of 2022 accounted for 83.72% of the year and 49.02% of all influenza reported from 2013 to 2022. Among them, the A (H3N2) cases in the summer of 2022 accounted for 83.90% of all A (H3N2) reported from 2013 to 2022. Daily precipitation(20-50 mm), relative humidity (70-78%), low (≤ 3 h) and high (≥ 7 h) sunshine duration, air temperature (≤ 21 °C) and O3 concentration (≤ 30 µg/m3, > 85 µg/m3) had significant cumulative effects on influenza A (H3N2) during the non-COVID-19 period. The daily values of PRE, RHU, SSD, and TEM in the prodrome period of the abnormal influenza A (H3N2) epidemic (19-22 weeks) in the summer of 2022 were significantly different from the average values of the same period from 2013 to 2019 (P < 0.05). The minimum RHU value was 70.5%, the lowest TEM value was 16.0 °C, and there was no sunlight exposure for 9 consecutive days. The highest O3 concentration reached 164 µg/m3. The range of these factors were consistent with the risk factor range of A (H3N2). The common influenza A (H3N2) variant genotype in 2022 was 3 C.2a1b.2a.1a. It was more accurate to predict influenza A (H3N2) with meteorological forecast values than with actual values only. CONCLUSION The extreme weather conditions of sustained low temperature and wet rain may have been important driving factors for the abnormal influenza A (H3N2) epidemic. A low vaccination rate, new mutated strains, and insufficient immune barriers formed by natural infections may have exacerbated this epidemic. Meteorological forecast values can aid in the early prediction of influenza outbreaks. This study can help relevant departments prepare for influenza outbreaks during extreme weather, provide a scientific basis for prevention strategies and risk warnings, better adapt to climate change, and improve public health.
Collapse
Affiliation(s)
- Hansong Zhu
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350011, China.
| | - Feifei Qi
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
| | - Xiaoying Wang
- School of Public Health, Xiamen University, Xiamen, 361100, Fujian, China
| | - Yanhua Zhang
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China
| | - Fangjingwei Chen
- School of Geographical Sciences School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Zhikun Cai
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China
| | - Yuyan Chen
- Fujian Provincial Judicial Drug Rehabilitation Hospital, Fuzhou, 350007, Fujian, China
| | - Kaizhi Chen
- Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Hongbin Chen
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China
| | - Zhonghang Xie
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350011, China
| | - Guangmin Chen
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350011, China
| | - Xiaoyuan Zhang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350108, China
| | - Xu Han
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350108, China
| | - Shenggen Wu
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350011, China.
| | - Si Chen
- Fujian Institute of Meteorological Sciences, Fuzhou, Fujian, 350028, China.
- Fujian Provincial Key Laboratory of Disaster Weather, Fuzhou, Fujian, 350007, China.
- Key Open Laboratory of Straits Disaster Weather, China Meteorological Administration, Fuzhou, Fujian, 350007, China.
| | - Yuying Fu
- Fujian Chuanzheng Communications College, Fuzhou, 350007, China.
| | - Fei He
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350011, China.
| | - Yuwei Weng
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350011, China.
| | - Jianming Ou
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350011, China.
| |
Collapse
|
4
|
Anupong S, Modchang C, Chadsuthi S. Seasonal patterns of influenza incidence and the influence of meteorological and air pollution factors in Thailand during 2009-2019. Heliyon 2024; 10:e36703. [PMID: 39263141 PMCID: PMC11388739 DOI: 10.1016/j.heliyon.2024.e36703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Influenza, an acute respiratory illness, remains a significant public health challenge, contributing substantially to morbidity and mortality worldwide. Its seasonal prevalence exhibits diversity across regions with distinct climates. This study aimed to explore the seasonal patterns of influenza and their correlation with meteorological and air pollution factors across six regions of Thailand. We conducted an analysis of monthly average temperature, relative humidity, precipitation, PM10, NO2, O3 concentrations, and influenza incidence data from 2009 to 2019 using wavelet analysis. Our findings reveal inconsistent biannual influenza prevalence patterns throughout the study period. The biannual pattern emerged during 2010-2012 across all regions but disappeared during 2013-2016. However, post-2016, the biannual cycles resurfaced, with peaks occurring during the rainy and winter seasons in most regions, except for the southern region. Wavelet coherence reveals that relative humidity can be the main influencing factor for influenza incidence over a one-year period in the northern, northeastern, central, Bangkok-metropolitan, and eastern regions, not in the southern region during 2010-2012 and 2016-2018. Similarly, precipitation can drive the influenza incidence at the same period for the northeastern, central, Bangkok-metropolitan, and eastern regions. PM10 concentration can influence influenza incidence over a half-year period in the northeastern, central, Bangkok-metropolitan, and eastern regions of Thailand during certain years. These results enhance our understanding of the temporal dynamics of influenza seasonality influenced by weather conditions and air pollution over the past 11 years. Such knowledge is invaluable for resource allocation in clinical settings and informing public health strategies, particularly in navigating Thailand's climatic complexities.
Collapse
Affiliation(s)
- Suparinthon Anupong
- Department of Chemistry, Mahidol Wittayanusorn School (MWIT), Salaya, Nakhon Pathom, 73170, Thailand
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Centre of Excellence in Mathematics, MHESI, Bangkok, 10400, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok, 10400, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
5
|
Zhu H, Chen S, Qin W, Aynur J, Chen Y, Wang X, Chen K, Xie Z, Li L, Liu Y, Chen G, Ou J, Zheng K. Study on the impact of meteorological factors on influenza in different periods and prediction based on artificial intelligence RF-Bi-LSTM algorithm: to compare the COVID-19 period with the non-COVID-19 period. BMC Infect Dis 2024; 24:878. [PMID: 39198754 PMCID: PMC11360838 DOI: 10.1186/s12879-024-09750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
OBJECTIVE At different times, public health faces various challenges and the degree of intervention measures varies. The research on the impact and prediction of meteorology factors on influenza is increasing gradually, however, there is currently no evidence on whether its research results are affected by different periods. This study aims to provide limited evidence to reveal this issue. METHODS Daily data on influencing factors and influenza in Xiamen were divided into three parts: overall period (phase AB), non-COVID-19 epidemic period (phase A), and COVID-19 epidemic period (phase B). The association between influencing factors and influenza was analysed using generalized additive models (GAMs). The excess risk (ER) was used to represent the percentage change in influenza as the interquartile interval (IQR) of meteorology factors increases. The 7-day average daily influenza cases were predicted using the combination of bi-directional long short memory (Bi-LSTM) and random forest (RF) through multi-step rolling input of the daily multifactor values of the previous 7-day. RESULTS In periods A and AB, air temperature below 22 °C was a risk factor for influenza. However, in phase B, temperature showed a U-shaped effect on it. Relative humidity had a more significant cumulative effect on influenza in phase AB than in phase A (peak: accumulate 14d, AB: ER = 281.54, 95% CI = 245.47 ~ 321.37; A: ER = 120.48, 95% CI = 100.37 ~ 142.60). Compared to other age groups, children aged 4-12 were more affected by pressure, precipitation, sunshine, and day light, while those aged ≥ 13 were more affected by the accumulation of humidity over multiple days. The accuracy of predicting influenza was highest in phase A and lowest in phase B. CONCLUSIONS The varying degrees of intervention measures adopted during different phases led to significant differences in the impact of meteorology factors on influenza and in the influenza prediction. In association studies of respiratory infectious diseases, especially influenza, and environmental factors, it is advisable to exclude periods with more external interventions to reduce interference with environmental factors and influenza related research, or to refine the model to accommodate the alterations brought about by intervention measures. In addition, the RF-Bi-LSTM model has good predictive performance for influenza.
Collapse
Affiliation(s)
- Hansong Zhu
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350011, China.
| | - Si Chen
- Fujian Institute of Meteorological Sciences, Fuzhou, Fujian, 350007, China
- Fujian Key Laboratory of Severe Weather, Fuzhou, Fujian, 350007, China
- Key Laboratory of Straits Severe Weather, China Meteorological Administration, Fuzhou, Fujian, 350007, China
| | - Weixia Qin
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Joldosh Aynur
- School of Public Health, Xiamen University, Xiamen, Fujian, 361100, China
| | - Yuyan Chen
- Fujian Provincial Judicial Drug Rehabilitation Hospital, Fuzhou, Fujian, 350007, China
| | - Xiaoying Wang
- School of Public Health, Xiamen University, Xiamen, Fujian, 361100, China
| | - Kaizhi Chen
- Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhonghang Xie
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350011, China
| | - Lingfang Li
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China
| | - Yu Liu
- Xiangnan University, Chenzhou, Hunan, 423001, China.
| | - Guangmin Chen
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350011, China.
| | - Jianming Ou
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350011, China.
| | - Kuicheng Zheng
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350011, China.
| |
Collapse
|
6
|
Ye Z, Ye B, Ming Z, Shu J, Xia C, Xu L, Wan Y, Wei Z. Forecasting rheumatoid arthritis patient arrivals by including meteorological factors and air pollutants. Sci Rep 2024; 14:17840. [PMID: 39090144 PMCID: PMC11294361 DOI: 10.1038/s41598-024-67694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
The burden of rheumatoid arthritis (RA) has gradually elevated, increasing the need for medical resource redistribution. Forecasting RA patient arrivals can be helpful in managing medical resources. However, no relevant studies have been conducted yet. This study aims to construct a long short-term memory (LSTM) model, a deep learning model recently developed for novel data processing, to forecast RA patient arrivals considering meteorological factors and air pollutants and compares this model with traditional methods. Data on RA patients, meteorological factors and air pollutants from 2015 to 2022 were collected and normalized to construct moving average (MA)- and autoregressive (AR)-based and LSTM models. After data normalization, the root mean square error (RMSE) was adopted to evaluate models' forecast ability. A total of 2422 individuals were enrolled. Not using the environmental data, the RMSEs of the MA- and AR-based models' test sets are 0.131, 0.132, and 0.117 when the training set: test set ratio is 2:1, 3:1, and 7:1, while they are 0.110, 0.130, and 0.112 for the univariate LSTM models. Considering meteorological factors and air pollutants, the RMSEs of the MA- and AR-based model test sets were 0.142, 0.303, and 0.164 when the training set: test set ratio is 2:1, 3:1, and 7:1, while they were 0.108, 0.119, and 0.109 for the multivariable LSTM models. Our study demonstrated that LSTM models can forecast RA patient arrivals more accurately than MA- and AR-based models for datasets of all three sizes. Considering the meteorological factors and air pollutants can further improve the forecasting ability of the LSTM models. This novel method provides valuable information for medical management, the optimization of medical resource redistribution, and the alleviation of resource shortages.
Collapse
Affiliation(s)
- Zhe Ye
- Department of Endocrinology, Hangzhou Linping Traditional Chinese Medicine Hospital, No. 101 Yuncheng Street, Linping District, Hangzhou City, Zhejiang Province, China
| | - Benjun Ye
- School of Clinical Medicine, Shanxi Datong University, No. 1 Xingyun Street, Datong City, Shanxi Province, China
| | - Zilin Ming
- The Fifth Clinical College, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei City, Anhui Province, China
| | - Jicheng Shu
- Department of Endocrinology, Hangzhou Linping Traditional Chinese Medicine Hospital, No. 101 Yuncheng Street, Linping District, Hangzhou City, Zhejiang Province, China
| | - Changqing Xia
- Department of Endocrinology, Hangzhou Linping Traditional Chinese Medicine Hospital, No. 101 Yuncheng Street, Linping District, Hangzhou City, Zhejiang Province, China
| | - Lijian Xu
- Medical Department, Hangzhou Linping Traditional Chinese Medicine Hospital, No. 101 Yuncheng Street, Linping District, Hangzhou City, Zhejiang Province, China
| | - Yong Wan
- Department of Endocrinology, Hangzhou Linping Traditional Chinese Medicine Hospital, No. 101 Yuncheng Street, Linping District, Hangzhou City, Zhejiang Province, China
| | - Zizhuang Wei
- Department of Algorithms and Technology, Huawei Technologies Co., Ltd., No. 2222 Xinjinqiao Road, Pudong New Area, Shanghai City, China.
| |
Collapse
|
7
|
Lee HJ, Mun SK, Chang M. Convolutional LSTM-LSTM model for predicting the daily number of influenza patients in South Korea using satellite images. Public Health 2024; 230:122-127. [PMID: 38531234 DOI: 10.1016/j.puhe.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVES Influenza affects a considerable proportion of the global population each year, and meteorological conditions may have a significant impact on its transmission. In this study, we aimed to develop a prediction model for the number of influenza patients at the national level using satellite images and provide a basis for predicting influenza through satellite image data. STUDY DESIGN We developed an influenza incidence prediction model using satellite images and influenza patient data. METHODS We collected satellite images and daily influenza patient data from July 2014 to June 2019 and developed a convolutional long short-term memory (LSTM)-LSTM neural network model. The model with the lowest average of mean absolute error (MAE) was selected. RESULTS The final model showed a high correlation between the predicted and actual number of influenza patients, with an average MAE of 5.9010 per million population. The model performed best with a 2-week time sequence. CONCLUSIONS We developed a national-level prediction model using satellite images to predict influenza incidence. The model offers the advantage of nationwide analysis. These results may reduce the burden of influenza by enabling timely public health interventions.
Collapse
Affiliation(s)
- H-J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, South Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, South Korea
| | - S-K Mun
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, South Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Hospital, Seoul, South Korea
| | - M Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, South Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Hospital, Seoul, South Korea.
| |
Collapse
|
8
|
Wei S, Lin S, Wenjing Z, Shaoxia S, Yuejie Y, Yujie H, Shu Z, Zhong L, Ti L. The prediction of influenza-like illness using national influenza surveillance data and Baidu query data. BMC Public Health 2024; 24:513. [PMID: 38369456 PMCID: PMC10875817 DOI: 10.1186/s12889-024-17978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/04/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Seasonal influenza and other respiratory tract infections are serious public health problems that need to be further addressed and investigated. Internet search data are recognized as a valuable source for forecasting influenza or other respiratory tract infection epidemics. However, the selection of internet search data and the application of forecasting methods are important for improving forecasting accuracy. The aim of the present study was to forecast influenza epidemics based on the long short-term memory neural network (LSTM) method, Baidu search index data, and the influenza-like-illness (ILI) rate. METHODS The official weekly ILI% data for northern and southern mainland China were obtained from the Chinese Influenza Center from 2018 to 2021. Based on the Baidu Index, search indices related to influenza infection over the corresponding time period were obtained. Pearson correlation analysis was performed to explore the association between influenza-related search queries and the ILI% of southern and northern mainland China. The LSTM model was used to forecast the influenza epidemic within the same week and at lags of 1-4 weeks. The model performance was assessed by evaluation metrics, including the mean square error (MSE), root mean square error (RMSE) and mean absolute error (MAE). RESULTS In total, 24 search queries in northern mainland China and 7 search queries in southern mainland China were found to be correlated and were used to construct the LSTM model, which included the same week and a lag of 1-4 weeks. The LSTM model showed that ILI% + mask with one lag week and ILI% + influenza name were good prediction modules, with reduced RMSE predictions of 16.75% and 4.20%, respectively, compared with the estimated ILI% for northern and southern mainland China. CONCLUSIONS The results illuminate the feasibility of using an internet search index as a complementary data source for influenza forecasting and the efficiency of using the LSTM model to forecast influenza epidemics.
Collapse
Affiliation(s)
- Su Wei
- School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan, Shandong, 250014, People's Republic of China.
| | - Sun Lin
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong University Institution for Prevention Medicine, Jinan, Shandong, 250014, People's Republic of China
| | - Zhao Wenjing
- Dezhou Center for Disease Control and Prevention, Dezhou, Shandong, 253000, People's Republic of China
| | - Song Shaoxia
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong University Institution for Prevention Medicine, Jinan, Shandong, 250014, People's Republic of China
| | - Yang Yuejie
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, People's Republic of China
| | - He Yujie
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong University Institution for Prevention Medicine, Jinan, Shandong, 250014, People's Republic of China
| | - Zhang Shu
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong University Institution for Prevention Medicine, Jinan, Shandong, 250014, People's Republic of China
| | - Li Zhong
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong University Institution for Prevention Medicine, Jinan, Shandong, 250014, People's Republic of China
| | - Liu Ti
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong University Institution for Prevention Medicine, Jinan, Shandong, 250014, People's Republic of China.
| |
Collapse
|
9
|
Chen Z, Liu Y, Yue H, Chen J, Hu X, Zhou L, Liang B, Lin G, Qin P, Feng W, Wang D, Wu D. The role of meteorological factors on influenza incidence among children in Guangzhou China, 2019-2022. Front Public Health 2024; 11:1268073. [PMID: 38259781 PMCID: PMC10800649 DOI: 10.3389/fpubh.2023.1268073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Objective Analyzing the epidemiological characteristics of influenza cases among children aged 0-17 years in Guangzhou from 2019 to 2022. Assessing the relationships between multiple meteorological factors and influenza, improving the early warning systems for influenza, and providing a scientific basis for influenza prevention and control measures. Methods The influenza data were obtained from the Chinese Center for Disease Control and Prevention. Meteorological data were provided by Guangdong Meteorological Service. Spearman correlation analysis was conducted to examine the relevance between meteorological factors and the number of influenza cases. Distributed lag non-linear models (DLNM) were used to explore the effects of meteorological factors on influenza incidence. Results The relationship between mean temperature, rainfall, sunshine hours, and influenza cases presented a wavy pattern. The correlation between relative humidity and influenza cases was illustrated by a U-shaped curve. When the temperature dropped below 13°C, Relative risk (RR) increased sharply with decreasing temperature, peaking at 5.7°C with an RR of 83.78 (95% CI: 25.52, 275.09). The RR was increased when the relative humidity was below 66% or above 79%, and the highest RR was 7.50 (95% CI: 22.92, 19.25) at 99%. The RR was increased exponentially when the rainfall exceeded 1,625 mm, reaching a maximum value of 2566.29 (95% CI: 21.85, 3558574.07) at the highest rainfall levels. Both low and high sunshine hours were associated with reduced incidence of influenza, and the lowest RR was 0.20 (95% CI: 20.08, 0.49) at 9.4 h. No significant difference of the meteorological factors on influenza was observed between males and females. The impacts of cumulative extreme low temperature and low relative humidity on influenza among children aged 0-3 presented protective effects and the 0-3 years group had the lowest RRs of cumulative extreme high relative humidity and rainfall. The highest RRs of cumulative extreme effect of all meteorological factors (expect sunshine hours) were observed in the 7-12 years group. Conclusion Temperature, relative humidity, rainfall, and sunshine hours can be used as important predictors of influenza in children to improve the early warning system of influenza. Extreme weather reduces the risk of influenza in the age group of 0-3 years, but significantly increases the risk for those aged 7-12 years.
Collapse
Affiliation(s)
- Zhitao Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yanhui Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Institute of Public Health, Guangzhou Medical University and Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Haiyan Yue
- Guangzhou Meteorological Observatory, Guangzhou, China
| | - Jinbin Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangzhi Hu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Lijuan Zhou
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Institute of Public Health, Guangzhou Medical University and Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Boheng Liang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Institute of Public Health, Guangzhou Medical University and Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Guozhen Lin
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Institute of Public Health, Guangzhou Medical University and Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Pengzhe Qin
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Institute of Public Health, Guangzhou Medical University and Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Wenru Feng
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Institute of Public Health, Guangzhou Medical University and Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Dedong Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Institute of Public Health, Guangzhou Medical University and Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Di Wu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Institute of Public Health, Guangzhou Medical University and Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
10
|
Liang Y, Sun Z, Hua W, Li D, Han L, Liu J, Huo L, Zhang H, Zhang S, Zhao Y, He X. Spatiotemporal effects of meteorological conditions on global influenza peaks. ENVIRONMENTAL RESEARCH 2023; 231:116171. [PMID: 37230217 DOI: 10.1016/j.envres.2023.116171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Numerous studies have suggested that meteorological conditions such as temperature and absolute humidity are highly indicative of influenza outbreaks. However, the explanatory power of meteorological factors on the seasonal influenza peaks varied widely between countries at different latitudes. OBJECTIVES We aimed to explore the modification effects of meteorological factors on the seasonal influenza peaks in multi-countries. METHODS Data on influenza positive rate (IPR) were collected across 57 countries and data on meteorological factors were collected from ECMWF Reanalysis v5 (ERA5). We used linear regression and generalized additive models to investigate the spatiotemporal associations between meteorological conditions and influenza peaks in cold and warm seasons. RESULTS Influenza peaks were significantly correlated with months with both lower and higher temperatures. In temperate countries, the average intensity of cold season peaks was stronger than that of warm season peaks. However, the average intensity of warm season peaks was stronfger than of cold season peaks in tropical countries. Temperature and specific humidity had synergistic effects on influenza peaks at different latitudes, stronger in temperate countries (cold season: R2=0.90; warm season: R2=0.84) and weaker in tropical countries (cold season: R2=0.64; warm season: R2=0.03). Furthermore, the effects could be divided into cold-dry and warm-humid modes. The temperature transition threshold between the two modes was 16.5-19.5 °C. During the transition from cold-dry mode to warm-humid mode, the average 2 m specific humidity increased by 2.15 times, illustrating that transporting a large amount of water vapor may compensate for the negative effect of rising temperatures on the spread of the influenza virus. CONCLUSION Differences in the global influenza peaks were related to the synergistic influence of temperature and specific humidity. The global influenza peaks could be divided into cold-dry and warm-humid modes, and specific thresholds of meteorological conditions were needed for the transition of the two modes.
Collapse
Affiliation(s)
- Yinglin Liang
- School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, 610225, China; State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing, 100081, China; Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
| | - Zhaobin Sun
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing, 100081, China; Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China.
| | - Wei Hua
- School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, 610225, China.
| | - Demin Li
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, 100192, China
| | - Ling Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jian Liu
- Cardiology Department, Peking University People's Hospital, Beijing, 100044, China
| | - Liming Huo
- Cardiology Department, Peking University People's Hospital, Beijing, 100044, China
| | - Hongchun Zhang
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, 100192, China
| | - Shuwen Zhang
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing, 100081, China
| | - Yuxin Zhao
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing, 100081, China
| | - Xiaonan He
- Emergency Critical Care Center, Beijing AnZhen Hospital, Capital Medical University, Beijing, 100029, China
| |
Collapse
|
11
|
Zhu H, Chen S, Lu W, Chen K, Feng Y, Xie Z, Zhang Z, Li L, Ou J, Chen G. Correction: Study on the influence of meteorological factors on influenza in different regions and predictions based on an LSTM algorithm. BMC Public Health 2023; 23:269. [PMID: 36750820 PMCID: PMC9906943 DOI: 10.1186/s12889-023-15164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Affiliation(s)
- Hansong Zhu
- Emergency Response and Epidemic Management Institute, Fujian Center for Disease Control and Prevention, Fuzhou, 350012, Fujian, China. .,Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012, Fujian, China. .,The practice base on the school of public health Fujian Medical University, Fuzhou, 350012, Fujian, China.
| | - Si Chen
- Climate Assessment Office of Fujian Climate Center, Fuzhou, 350007 Fujian China
| | - Wen Lu
- grid.415108.90000 0004 1757 9178Shengli Clinical Medical College of Fujian Medical University, Department of Health Management of Fujian Provincial Hospital, Fuzhou, 350001 Fujian China
| | - Kaizhi Chen
- grid.411604.60000 0001 0130 6528College of Computer and Data Science, Fuzhou University, Fuzhou, 350108 Fujian China
| | - Yulin Feng
- grid.256112.30000 0004 1797 9307School of Public Health, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Zhonghang Xie
- Emergency Response and Epidemic Management Institute, Fujian Center for Disease Control and Prevention, Fuzhou, 350012 Fujian China ,Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012 Fujian China ,grid.256112.30000 0004 1797 9307The practice base on the school of public health Fujian Medical University, Fuzhou, 350012 Fujian China
| | - Zhifang Zhang
- Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012 Fujian China ,Science and Technology Information and Management, Fujian Center for Disease Control and Prevention, Fuzhou, 350012 Fujian China
| | - Lingfang Li
- Emergency Response and Epidemic Management Institute, Fujian Center for Disease Control and Prevention, Fuzhou, 350012 Fujian China ,Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012 Fujian China
| | - Jianming Ou
- Emergency Response and Epidemic Management Institute, Fujian Center for Disease Control and Prevention, Fuzhou, 350012, Fujian, China. .,Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012, Fujian, China. .,The practice base on the school of public health Fujian Medical University, Fuzhou, 350012, Fujian, China.
| | - Guangmin Chen
- Emergency Response and Epidemic Management Institute, Fujian Center for Disease Control and Prevention, Fuzhou, 350012, Fujian, China. .,Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012, Fujian, China. .,The practice base on the school of public health Fujian Medical University, Fuzhou, 350012, Fujian, China.
| |
Collapse
|
12
|
Zhao Z, Zhai M, Li G, Gao X, Song W, Wang X, Ren H, Cui Y, Qiao Y, Ren J, Chen L, Qiu L. Study on the prediction effect of a combined model of SARIMA and LSTM based on SSA for influenza in Shanxi Province, China. BMC Infect Dis 2023; 23:71. [PMID: 36747126 PMCID: PMC9901390 DOI: 10.1186/s12879-023-08025-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Influenza is an acute respiratory infectious disease that is highly infectious and seriously damages human health. Reasonable prediction is of great significance to control the epidemic of influenza. METHODS Our Influenza data were extracted from Shanxi Provincial Center for Disease Control and Prevention. Seasonal-trend decomposition using Loess (STL) was adopted to analyze the season characteristics of the influenza in Shanxi Province, China, from the 1st week in 2010 to the 52nd week in 2019. To handle the insufficient prediction performance of the seasonal autoregressive integrated moving average (SARIMA) model in predicting the nonlinear parts and the poor accuracy of directly predicting the original sequence, this study established the SARIMA model, the combination model of SARIMA and Long-Short Term Memory neural network (SARIMA-LSTM) and the combination model of SARIMA-LSTM based on Singular spectrum analysis (SSA-SARIMA-LSTM) to make predictions and identify the best model. Additionally, the Mean Squared Error (MSE), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were used to evaluate the performance of the models. RESULTS The influenza time series in Shanxi Province from the 1st week in 2010 to the 52nd week in 2019 showed a year-by-year decrease with obvious seasonal characteristics. The peak period of the disease mainly concentrated from the end of the year to the beginning of the next year. The best fitting and prediction performance was the SSA-SARIMA-LSTM model. Compared with the SARIMA model, the MSE, MAE and RMSE of the SSA-SARIMA-LSTM model decreased by 38.12, 17.39 and 21.34%, respectively, in fitting performance; the MSE, MAE and RMSE decreased by 42.41, 18.69 and 24.11%, respectively, in prediction performances. Furthermore, compared with the SARIMA-LSTM model, the MSE, MAE and RMSE of the SSA-SARIMA-LSTM model decreased by 28.26, 14.61 and 15.30%, respectively, in fitting performance; the MSE, MAE and RMSE decreased by 36.99, 7.22 and 20.62%, respectively, in prediction performances. CONCLUSIONS The fitting and prediction performances of the SSA-SARIMA-LSTM model were better than those of the SARIMA and the SARIMA-LSTM models. Generally speaking, we can apply the SSA-SARIMA-LSTM model to the prediction of influenza, and offer a leg-up for public policy.
Collapse
Affiliation(s)
- Zhiyang Zhao
- grid.263452.40000 0004 1798 4018Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi China
| | - Mengmeng Zhai
- grid.263452.40000 0004 1798 4018Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi China
| | - Guohua Li
- Shanxi Centre for Disease Control and Prevention, Taiyuan, 030012 Shanxi China
| | - Xuefen Gao
- Shanxi Centre for Disease Control and Prevention, Taiyuan, 030012 Shanxi China
| | - Wenzhu Song
- grid.263452.40000 0004 1798 4018Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi China
| | - Xuchun Wang
- grid.263452.40000 0004 1798 4018Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi China
| | - Hao Ren
- grid.263452.40000 0004 1798 4018Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi China
| | - Yu Cui
- grid.263452.40000 0004 1798 4018Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi China
| | - Yuchao Qiao
- grid.263452.40000 0004 1798 4018Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi China
| | - Jiahui Ren
- grid.263452.40000 0004 1798 4018Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi China
| | - Limin Chen
- grid.464423.3Shanxi Provincial Peoples Hospital, Taiyuan, Shanxi China
| | - Lixia Qiu
- grid.263452.40000 0004 1798 4018Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi China
| |
Collapse
|