1
|
Mathieu L, Rabec C, Beltramo G, Aho S, Tankere P, Schenesse D, Chorvoz J, Bonniaud P, Georges M. Real-life evaluation of NIV to CPAP switch in patients with chronic respiratory failure. A case control study. Respir Med Res 2024; 86:101114. [PMID: 38875850 DOI: 10.1016/j.resmer.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Non-invasive ventilation (NIV) is a standard of care for hypercapnic chronic respiratory failure (CRF). Obstructive sleep apnea syndrome (OSA) frequently contributes to hypoventilation in CRF patients. CPAP improves hypercapnia in selected COPD and obese patients, like NIV. We aimed to describe the profile of patients switching from NIV to CPAP in a cohort of patients on long-term ventilation and to identify the factors associated with a successful switch. METHODS In this case-control study, 88 consecutive patients who were candidates for a NIV-CPAP switch were compared with 266 controls among 394 ventilated patients treated at the Dijon University Hospital between 2015 and 2020. They followed a standardized protocol including a poly(somno)graphy recorded after NIV withdrawal for three nights. CPAP trial was performed if severe OSA was confirmed. Patients were checked for recurrent hypoventilation after 1 and 23[14-46] nights under CPAP. RESULTS Patients were 53% males, median age 65 [56-74] years, and median BMI 34 [25-38.5] kg/m2. Sixty four percent of patients were safely switched and remained on long-term CPAP. In multivariate analysis, the probability of a NIV-CPAP switch was correlated to older age (OR: 1.3 [1.01-1.06]), BMI (OR: 1.7 [1.03-1.12]), CRF etiology (OR for COPD: 20.37 [4.2-98,72], OR for obesity: 7.31 [1.58-33.74]), circumstances of NIV initiation (OR for acute exacerbation: 11.64 [2.03-66.62]), lower pressure support (OR: 0.90 [0.73-0.92]), lower baseline PaCO2 (OR: 0.85 [0.80-0.91]) and lower compliance (OR: 0.76 [0.64-0.90]). Among 72 patients who went home under CPAP, pressure support level was the only factor associated with the outcome of the NIV-CPAP switch, even after adjustment for BMI and age (p=0.01) with a non-linear correlation. Etiology of chronic respiratory failure, age, BMI, baseline PaCO2, circumstances of NIV initiation, time under home NIV or NIV compliance were not predictive of the outcome of the NIV-CPAP switch. CONCLUSIONS A NIV-CPAP switch is possible in real life conditions in stable obese and COPD patients with underlying OSA.
Collapse
Affiliation(s)
- Louise Mathieu
- Department of Respiratory Diseases and Intensive Care, Reference Center for Adult Rare Pulmonary Diseases, University Hospital of Dijon-Bourgogne, Dijon, France; University of Bourgogne Franche-Comté, Dijon, France
| | - Claudio Rabec
- Department of Respiratory Diseases and Intensive Care, Reference Center for Adult Rare Pulmonary Diseases, University Hospital of Dijon-Bourgogne, Dijon, France; University of Bourgogne Franche-Comté, Dijon, France
| | - Guillaume Beltramo
- Department of Respiratory Diseases and Intensive Care, Reference Center for Adult Rare Pulmonary Diseases, University Hospital of Dijon-Bourgogne, Dijon, France; University of Bourgogne Franche-Comté, Dijon, France; INSERM LNC-UMR 1231, Dijon, France
| | - Serge Aho
- Department of Epidemiology, Dijon University Hospital, Dijon, France
| | - Pierre Tankere
- Department of Respiratory Diseases and Intensive Care, Reference Center for Adult Rare Pulmonary Diseases, University Hospital of Dijon-Bourgogne, Dijon, France; University of Bourgogne Franche-Comté, Dijon, France
| | - Déborah Schenesse
- Department of Respiratory Diseases and Intensive Care, Reference Center for Adult Rare Pulmonary Diseases, University Hospital of Dijon-Bourgogne, Dijon, France; University of Bourgogne Franche-Comté, Dijon, France
| | - Jade Chorvoz
- Department of Respiratory Diseases and Intensive Care, Reference Center for Adult Rare Pulmonary Diseases, University Hospital of Dijon-Bourgogne, Dijon, France; University of Bourgogne Franche-Comté, Dijon, France
| | - Philippe Bonniaud
- Department of Respiratory Diseases and Intensive Care, Reference Center for Adult Rare Pulmonary Diseases, University Hospital of Dijon-Bourgogne, Dijon, France; University of Bourgogne Franche-Comté, Dijon, France; INSERM LNC-UMR 1231, Dijon, France
| | - Marjolaine Georges
- Department of Respiratory Diseases and Intensive Care, Reference Center for Adult Rare Pulmonary Diseases, University Hospital of Dijon-Bourgogne, Dijon, France; University of Bourgogne Franche-Comté, Dijon, France; Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS 1234 INRA, University of Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
3
|
Chang JL, Goldberg AN, Alt JA, Alzoubaidi M, Ashbrook L, Auckley D, Ayappa I, Bakhtiar H, Barrera JE, Bartley BL, Billings ME, Boon MS, Bosschieter P, Braverman I, Brodie K, Cabrera-Muffly C, Caesar R, Cahali MB, Cai Y, Cao M, Capasso R, Caples SM, Chahine LM, Chang CP, Chang KW, Chaudhary N, Cheong CSJ, Chowdhuri S, Cistulli PA, Claman D, Collen J, Coughlin KC, Creamer J, Davis EM, Dupuy-McCauley KL, Durr ML, Dutt M, Ali ME, Elkassabany NM, Epstein LJ, Fiala JA, Freedman N, Gill K, Boyd Gillespie M, Golisch L, Gooneratne N, Gottlieb DJ, Green KK, Gulati A, Gurubhagavatula I, Hayward N, Hoff PT, Hoffmann OM, Holfinger SJ, Hsia J, Huntley C, Huoh KC, Huyett P, Inala S, Ishman SL, Jella TK, Jobanputra AM, Johnson AP, Junna MR, Kado JT, Kaffenberger TM, Kapur VK, Kezirian EJ, Khan M, Kirsch DB, Kominsky A, Kryger M, Krystal AD, Kushida CA, Kuzniar TJ, Lam DJ, Lettieri CJ, Lim DC, Lin HC, Liu SY, MacKay SG, Magalang UJ, Malhotra A, Mansukhani MP, Maurer JT, May AM, Mitchell RB, Mokhlesi B, Mullins AE, Nada EM, Naik S, Nokes B, Olson MD, Pack AI, Pang EB, Pang KP, Patil SP, Van de Perck E, Piccirillo JF, Pien GW, Piper AJ, Plawecki A, Quigg M, Ravesloot MJ, Redline S, Rotenberg BW, Ryden A, Sarmiento KF, Sbeih F, Schell AE, Schmickl CN, Schotland HM, Schwab RJ, Seo J, Shah N, Shelgikar AV, Shochat I, Soose RJ, Steele TO, Stephens E, Stepnowsky C, Strohl KP, Sutherland K, Suurna MV, Thaler E, Thapa S, Vanderveken OM, de Vries N, Weaver EM, Weir ID, Wolfe LF, Tucker Woodson B, Won CH, Xu J, Yalamanchi P, Yaremchuk K, Yeghiazarians Y, Yu JL, Zeidler M, Rosen IM. International Consensus Statement on Obstructive Sleep Apnea. Int Forum Allergy Rhinol 2023; 13:1061-1482. [PMID: 36068685 PMCID: PMC10359192 DOI: 10.1002/alr.23079] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Evaluation and interpretation of the literature on obstructive sleep apnea (OSA) allows for consolidation and determination of the key factors important for clinical management of the adult OSA patient. Toward this goal, an international collaborative of multidisciplinary experts in sleep apnea evaluation and treatment have produced the International Consensus statement on Obstructive Sleep Apnea (ICS:OSA). METHODS Using previously defined methodology, focal topics in OSA were assigned as literature review (LR), evidence-based review (EBR), or evidence-based review with recommendations (EBR-R) formats. Each topic incorporated the available and relevant evidence which was summarized and graded on study quality. Each topic and section underwent iterative review and the ICS:OSA was created and reviewed by all authors for consensus. RESULTS The ICS:OSA addresses OSA syndrome definitions, pathophysiology, epidemiology, risk factors for disease, screening methods, diagnostic testing types, multiple treatment modalities, and effects of OSA treatment on multiple OSA-associated comorbidities. Specific focus on outcomes with positive airway pressure (PAP) and surgical treatments were evaluated. CONCLUSION This review of the literature consolidates the available knowledge and identifies the limitations of the current evidence on OSA. This effort aims to create a resource for OSA evidence-based practice and identify future research needs. Knowledge gaps and research opportunities include improving the metrics of OSA disease, determining the optimal OSA screening paradigms, developing strategies for PAP adherence and longitudinal care, enhancing selection of PAP alternatives and surgery, understanding health risk outcomes, and translating evidence into individualized approaches to therapy.
Collapse
Affiliation(s)
- Jolie L. Chang
- University of California, San Francisco, California, USA
| | | | | | | | - Liza Ashbrook
- University of California, San Francisco, California, USA
| | | | - Indu Ayappa
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | - Maurits S. Boon
- Sidney Kimmel Medical Center at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Pien Bosschieter
- Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Itzhak Braverman
- Hillel Yaffe Medical Center, Hadera Technion, Faculty of Medicine, Hadera, Israel
| | - Kara Brodie
- University of California, San Francisco, California, USA
| | | | - Ray Caesar
- Stone Oak Orthodontics, San Antonio, Texas, USA
| | | | - Yi Cai
- University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | - Susmita Chowdhuri
- Wayne State University and John D. Dingell VA Medical Center, Detroit, Michigan, USA
| | - Peter A. Cistulli
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - David Claman
- University of California, San Francisco, California, USA
| | - Jacob Collen
- Uniformed Services University, Bethesda, Maryland, USA
| | | | | | - Eric M. Davis
- University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Mohan Dutt
- University of Michigan, Ann Arbor, Michigan, USA
| | - Mazen El Ali
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | - Kirat Gill
- Stanford University, Palo Alto, California, USA
| | | | - Lea Golisch
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | | | | | - Arushi Gulati
- University of California, San Francisco, California, USA
| | | | | | - Paul T. Hoff
- University of Michigan, Ann Arbor, Michigan, USA
| | - Oliver M.G. Hoffmann
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | - Jennifer Hsia
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Colin Huntley
- Sidney Kimmel Medical Center at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | - Sanjana Inala
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | - Meena Khan
- Ohio State University, Columbus, Ohio, USA
| | | | - Alan Kominsky
- Cleveland Clinic Head and Neck Institute, Cleveland, Ohio, USA
| | - Meir Kryger
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - Derek J. Lam
- Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | | | | | - Atul Malhotra
- University of California, San Diego, California, USA
| | | | - Joachim T. Maurer
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Anna M. May
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Ron B. Mitchell
- University of Texas, Southwestern and Children’s Medical Center Dallas, Texas, USA
| | | | | | | | | | - Brandon Nokes
- University of California, San Diego, California, USA
| | | | - Allan I. Pack
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | - Mark Quigg
- University of Virginia, Charlottesville, Virginia, USA
| | | | - Susan Redline
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Armand Ryden
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | | | - Firas Sbeih
- Cleveland Clinic Head and Neck Institute, Cleveland, Ohio, USA
| | | | | | | | | | - Jiyeon Seo
- University of California, Los Angeles, California, USA
| | - Neomi Shah
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Ryan J. Soose
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Erika Stephens
- University of California, San Francisco, California, USA
| | | | | | | | | | - Erica Thaler
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sritika Thapa
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Nico de Vries
- Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | | | - Ian D. Weir
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - Josie Xu
- University of Toronto, Ontario, Canada
| | | | | | | | | | | | - Ilene M. Rosen
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Arellano-Maric MP, Hamm C, Duiverman ML, Schwarz S, Callegari J, Storre JH, Schmoor C, Spielmanns M, Galetke W, Windisch W. Obesity hypoventilation syndrome treated with non-invasive ventilation: Is a switch to CPAP therapy feasible? Respirology 2019; 25:435-442. [PMID: 31597227 DOI: 10.1111/resp.13704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Obesity hypoventilation syndrome (OHS) can be treated with either continuous positive airway pressure (CPAP) or non-invasive ventilation (NIV) therapy; the device choice has important economic and operational implications. METHODS This multicentre interventional trial investigated the safety and short-term efficacy of switching stable OHS patients who were on successful NIV therapy for ≥3 months to CPAP therapy. Patients underwent an autotitrating CPAP night under polysomnography (PSG); if the ensuing parameters were acceptable, they were sent home on a fixed CPAP for a 4-6-week period. It was hypothesized that blood gas analysis, PSG parameters and lung function tests would remain unchanged. RESULTS A total of 42 OHS patients were recruited, of whom 37 patients were switched to CPAP therapy. All patients had a history of severe obstructive sleep apnoea syndrome; chronic obstructive pulmonary disease (COPD) (Global Initiative for Obstructive Lung Disease (GOLD) I/II) was present in 52%. Regarding the primary outcome, 30 of 42 patients (71%, 95% CI: 55-84%) maintained daytime partial pressure of carbon dioxide (PaCO2 ) levels ≤45 mm Hg after the home CPAP period. There was no further impairment in quality of life, sleep parameters or lung function. Interestingly, 24 patients (65%) preferred CPAP as their long-term therapy, despite the high pressure levels used (mean: 13.8 ± 1.8 mbar). After the CPAP period, 7 of 37 patients were categorized as CPAP failure, albeit only due to mild hypercapnia (mean: 47.9 ± 2.7 mm Hg). CONCLUSION It is feasible to switch most stable OHS patients from NIV to CPAP therapy, a step that could significantly reduce health-related costs. The auto-adjusted CPAP device, used in combination with the analysis of the PSG and capnometry, is a valid titration method in OHS patients.
Collapse
Affiliation(s)
- Maria P Arellano-Maric
- Department of Pneumology, Cologne Merheim Hospital, Kliniken der Stadt Köln, Germany.,Department of Pneumology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christine Hamm
- Department of Pneumology, Cologne Merheim Hospital, Kliniken der Stadt Köln, Germany.,Faculty of Health/School of Medicine, Witten/Herdecke University, Cologne, Germany
| | - Marieke L Duiverman
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sarah Schwarz
- Department of Pneumology, Cologne Merheim Hospital, Kliniken der Stadt Köln, Germany.,Faculty of Health/School of Medicine, Witten/Herdecke University, Cologne, Germany
| | - Jens Callegari
- Department of Pneumology, Cologne Merheim Hospital, Kliniken der Stadt Köln, Germany.,Faculty of Health/School of Medicine, Witten/Herdecke University, Cologne, Germany
| | - Jan H Storre
- Department of Intensive Care, Sleep Medicine and Mechanical Ventilation, Asklepios, Fachkliniken Munich-Gauting, Gauting, Germany.,Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Claudia Schmoor
- Clinical Trials Center, University Medical Center, Freiburg, Germany
| | - Marc Spielmanns
- Faculty of Health/School of Medicine, Witten/Herdecke University, Cologne, Germany.,Department of Pneumology, St. Remigius Hospital, Opladen, Germany
| | - Wolfgang Galetke
- Department of Pneumology, Hospital der Augustinerinnen, Cologne, Germany
| | - Wolfram Windisch
- Department of Pneumology, Cologne Merheim Hospital, Kliniken der Stadt Köln, Germany.,Faculty of Health/School of Medicine, Witten/Herdecke University, Cologne, Germany
| |
Collapse
|