1
|
Casas-Recasens S, Cassim R, Mendoza N, Agusti A, Lodge C, Li S, Bui D, Martino D, Dharmage SC, Faner R. Epigenome-Wide Association Studies of Chronic Obstructive Pulmonary Disease and Lung Function: A Systematic Review. Am J Respir Crit Care Med 2024; 210:766-778. [PMID: 38422471 DOI: 10.1164/rccm.202302-0231oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/29/2024] [Indexed: 03/02/2024] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) results from gene-environment interactions over the lifetime. These interactions are captured by epigenetic changes, such as DNA methylation. Objectives: To systematically review the evidence form epigenome-wide association studies related to COPD and lung function. Methods: A systematic literature search performed on PubMed, Embase, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases identified 1,947 articles that investigated epigenetic changes associated with COPD and/or lung function; 17 of them met our eligibility criteria, from which data were manually extracted. Differentially methylated positions (DMPs) and/or annotated genes were considered replicated if identified by two or more studies with a P < 1 × 10-4. Measurements and Main Results: Ten studies profiled DNA methylation changes in blood and seven in respiratory samples, including surgically resected lung tissue (n = 3), small airway epithelial brushings (n = 2), BAL (n = 1), and sputum (n = 1). Main results showed: 1) high variability in study design, covariates, and effect sizes, which prevented a formal meta-analysis; 2) in blood samples, 51 DMPs were replicated in relation to lung function and 12 related to COPD; 3) in respiratory samples, 42 DMPs were replicated in relation to COPD but none in relation to lung function; and 4) in COPD versus control studies, 123 genes (2.6% of total) were shared between one or more blood and one or more respiratory samples and associated with chronic inflammation, ion transport, and coagulation. Conclusions: There is high heterogeneity across published COPD and/or lung function epigenome-wide association studies. A few genes (n = 123; 2.6%) were replicated in blood and respiratory samples, suggesting that blood can recapitulate some changes in respiratory tissues. These findings have implications for future research. Systematic Review [protocol] registered with Open Science Framework (OSF).
Collapse
Affiliation(s)
- Sandra Casas-Recasens
- Fundació Clinic Recerca Biomedica-Institut d'Investigacions Biomediques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | - Núria Mendoza
- Fundació Clinic Recerca Biomedica-Institut d'Investigacions Biomediques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Alvar Agusti
- Fundació Clinic Recerca Biomedica-Institut d'Investigacions Biomediques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Respiratory Institute, Hospital Clinic, Barcelona, Spain
- Catedra Salud Respiratoria and
| | | | - Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Dinh Bui
- Allergy and Lung Health Unit and
| | - David Martino
- Walyun Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia; and
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Rosa Faner
- Fundació Clinic Recerca Biomedica-Institut d'Investigacions Biomediques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Catedra Salud Respiratoria and
- Biomedicine Department, University of Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Yang C, Deng L, Bao F, Jiang H, Zhang L. Sevoflurane with Low Concentration Decrease DNA Methylation on Chronic Obstructive Pulmonary Disease (COPD)-Related Gene Promoter in COPD Rat. COPD 2023; 20:348-356. [PMID: 38010369 DOI: 10.1080/15412555.2023.2278282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/28/2023] [Indexed: 11/29/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a difficult-to-cure disease that mainly affects the respiratory system. Inhaled anesthetic drug such as sevoflurane plays a controversial role in COPD by different concentration, but the underlying epigenetic mechanism remains unclear. Here, we prepared lipopolysaccharide (LPS)-induced COPD rat model, and isolated Alveolar type II (ATII) cells. We mainly focused DNA methylation on the promoter of COPD-related genes including Sftpa1, Napsa, Ca2, Sfta2, Lamp3, Wif1, Pgc, and Etv5. We observed COPD rat treated by sevoflurane with low (0.5%) and high (2%) concentrations displayed an opposite DNA methylation pattern. These six genes' promoter were all hypomethylated by 0.5% sevoflurane whereas hypermethylated by 2% sevoflurane, accompanied with the opposite transcriptional activity. We further verified that the DNMT1 binding ability contributed to DNA methylation these six genes' promoter. Moreover, we also captured DNMT1 and identified REC8 meiotic recombination protein (REC8) as the specific binding protein only existed in ATII cells treated with 0.5% sevoflurane rather than 2% and control. The binding ability of REC8 on these target genes' promoter showed highly positive correlation with DNMT1. In summary, we uncovered a potential epigenetic role of sevoflurane with low concentration in ATII cells of COPD that may help us deeply understand the pathogenesis and treatment mechanism of inhaled anesthesia drugs in COPD via a dose-dependent manner.
Collapse
Affiliation(s)
- Chuanxin Yang
- Department of Anesthesiology, Qingpu Branch of Zhongshan, Fudan University, Shanghai, China
| | - Libing Deng
- Department of Anesthesiology, Qingpu Branch of Zhongshan, Fudan University, Shanghai, China
| | - Fang Bao
- Department of Anesthesiology, Qingpu Branch of Zhongshan, Fudan University, Shanghai, China
| | - Hui Jiang
- Department of Anesthesiology, Qingpu Branch of Zhongshan, Fudan University, Shanghai, China
| | - Long Zhang
- Department of Anesthesiology, Qingpu Branch of Zhongshan, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Rathod R, Zhang H, Karmaus W, Ewart S, Mzayek F, Arshad SH, Holloway JW. Association of childhood BMI trajectory with post-adolescent and adult lung function is mediated by pre-adolescent DNA methylation. Respir Res 2022; 23:194. [PMID: 35906571 PMCID: PMC9335987 DOI: 10.1186/s12931-022-02089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Body mass index (BMI) has been shown to be associated with lung function. Recent findings showed that DNA methylation (DNAm) variation is likely to be a consequence of changes in BMI. However, whether DNAm mediates the association of BMI with lung function is unknown. We examined the mediating role of DNAm on the association of pre-adolescent BMI trajectories with post-adolescent and adulthood lung function (forced expiratory volume (FEV1), forced vital capacity (FVC), and FEV1/FVC). METHODS Analyses were undertaken in the Isle of Wight birth cohort (IOWBC). Group-based trajectory modelling was applied to infer latent BMI trajectories from age 1 to 10 years. An R package, ttscreening, was applied to identify CpGs at 10 years potentially associated with BMI trajectories for each sex. Linear regressions were implemented to further screen CpGs for their association with lung function at 18 years. Path analysis, stratified by sex, was applied to each screened CpG to assess its role of mediation. Internal validation was applied to further examine the mediation consistency of the detected CpGs based on lung function at 26 years. Mendelian randomization (MR-base) was used to test possible causal effects of the identified CpGs. RESULTS Two BMI trajectories (high vs. low) were identified. Of the 442,475 CpG sites, 18 CpGs in males and 33 in females passed screening. Eight CpGs in males and 16 CpGs in females (none overlapping) were identified as mediators. For subjects with high BMI trajectory, high DNAm at all CpGs in males were associated with decreased lung function, while 8 CpGs in females were associated with increased lung function at 18 years. At 26 years, 6 CpGs in males and 14 CpGs in females showed the same direction of indirect effects as those at 18 years. DNAm at CpGs cg19088553 (GRIK2) and cg00612625 (HPSE2) showed a potential causal effect on FEV1. CONCLUSIONS The effects of BMI trajectory in early childhood on post-adolescence lung function were likely to be mediated by pre-adolescence DNAm in both males and females, but such mediation effects were likely to diminish over time.
Collapse
Affiliation(s)
- Rutu Rathod
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA.
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Fawaz Mzayek
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA
| | - S Hasan Arshad
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - John W Holloway
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
4
|
Domingo-Relloso A, Riffo-Campos AL, Powers M, Tellez-Plaza M, Haack K, Brown RH, Umans JG, Fallin MD, Cole SA, Navas-Acien A, Sanchez TR. An epigenome-wide study of DNA methylation profiles and lung function among American Indians in the Strong Heart Study. Clin Epigenetics 2022; 14:75. [PMID: 35681244 PMCID: PMC9185990 DOI: 10.1186/s13148-022-01294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epigenetic modifications, including DNA methylation (DNAm), are often related to environmental exposures, and are increasingly recognized as key processes in the pathogenesis of chronic lung disease. American Indian communities have a high burden of lung disease compared to the national average. The objective of this study was to investigate the association of DNAm and lung function in the Strong Heart Study (SHS). We conducted a cross-sectional study of American Indian adults, 45-74 years of age who participated in the SHS. DNAm was measured using the Illumina Infinium Human MethylationEPIC platform at baseline (1989-1991). Lung function was measured via spirometry, including forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), at visit 2 (1993-1995). Airflow limitation was defined as FEV1 < 70% predicted and FEV1/FVC < 0.7, restriction was defined as FEV1/FVC > 0.7 and FVC < 80% predicted, and normal spirometry was defined as FEV1/FVC > 0.7, FEV1 > 70% predicted, FVC > 80% predicted. We used elastic-net models to select relevant CpGs for lung function and spirometry-defined lung disease. We also conducted bioinformatic analyses to evaluate the biological plausibility of the findings. RESULTS Among 1677 participants, 21.2% had spirometry-defined airflow limitation and 13.6% had spirometry-defined restrictive pattern lung function. Elastic-net models selected 1118 Differentially Methylated Positions (DMPs) as predictors of airflow limitation and 1385 for restrictive pattern lung function. A total of 12 DMPs overlapped between airflow limitation and restrictive pattern. EGFR, MAPK1 and PRPF8 genes were the most connected nodes in the protein-protein interaction network. Many of the DMPs targeted genes with biological roles related to lung function such as protein kinases. CONCLUSION We found multiple differentially methylated CpG sites associated with chronic lung disease. These signals could contribute to better understand molecular mechanisms involved in lung disease, as assessed systemically, as well as to identify patterns that could be useful for diagnostic purposes. Further experimental and longitudinal studies are needed to assess whether DNA methylation has a causal role in lung disease.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, 28029, Madrid, Spain. .,Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA. .,Department of Statistics and Operations Research, University of Valencia, Valencia, Spain.
| | - Angela L Riffo-Campos
- Millennium Nucleus on Sociomedicine (SocioMed) and Vicerrectoría Académica, Universidad de La Frontera, Temuco, Chile.,Department of Computer Science, ETSE, University of Valencia, Valencia, Spain
| | - Martha Powers
- United States Environmental Protection Agency, Washington, DC, USA
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, 28029, Madrid, Spain
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Robert H Brown
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, USA.,Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | - M Daniele Fallin
- Departments of Mental Health and Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| |
Collapse
|
5
|
Díaz-Peña R, Julià RF, Montes JF, Silva RS, Olloquequi J. [Translated article] Polymorphisms in the FRMD4A Gene Are Associated With Chronic Obstructive Pulmonary Disease Susceptibility in a Latin American Population. Arch Bronconeumol 2022. [PMID: 35513945 DOI: 10.1016/j.arbres.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica, SERGAS; Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Laboratorio de Patología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Raül F Julià
- EDP Salut Sant Joan de Reus-Baix Camp; CAP La Selva del Camp, Tarragona, Spain
| | - Juan F Montes
- Departament de Biologia Cel·lular, Fisiologia i Immunologia; Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Rafael S Silva
- Unidad Respiratorio, Centro de Diagnóstico Terapéutico, Hospital Regional de Talca, Talca, Chile
| | - Jordi Olloquequi
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Laboratorio de Patología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
6
|
Eriksson Ström J, Kebede Merid S, Pourazar J, Blomberg A, Lindberg A, Ringh MV, Hagemann-Jensen M, Ekström TJ, Behndig AF, Melén E. COPD is Associated with Epigenome-wide Differential Methylation in BAL Lung Cells. Am J Respir Cell Mol Biol 2022; 66:638-647. [PMID: 35286818 PMCID: PMC9163645 DOI: 10.1165/rcmb.2021-0403oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
DNA methylation patterns in chronic pulmonary obstructive disease (COPD) might offer new insights into disease pathogenesis. To assess methylation profiles in the main COPD target organ, we performed an epigenome-wide association study on bronchoalveolar lavage (BAL) cells. Bronchoscopies were performed in 18 COPD subjects and 15 controls (ex- and current smokers). DNA methylation was measured with Illumina MethylationEPIC BeadChip covering >850,000 CpGs. Differentially methylated positions (DMPs) were examined for 1) enrichment in pathways and functional gene relationships using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology; 2) accelerated aging using Horvath's epigenetic clock; 3) correlation with gene expression; and 4) co-localization with genetic variation. We found 1,155 Bonferroni significant (P < 6.74 × 10-8) DMPs associated with COPD, many with large effect sizes. Functional analysis identified biologically plausible pathways and gene relationships, including enrichment for transcription factor activity. Strong correlation was found between COPD and chronological age, but not with accelerated epigenetic aging. For 79 unique DMPs, DNA methylation correlated significantly with gene expression in BAL cells. Thirty-nine percent of DMPs were co-localized with COPD-associated SNPs. To the best of our knowledge, this is the first EWAS of COPD on BAL cells, and our analyses revealed many differential methylation sites. Integration with mRNA data showed a strong functional readout for relevant genes, identifying sites where DNA methylation might directly impact expression. Almost half of DMPs were co-located with SNPs identified in previous GWAS of COPD, suggesting joint genetic and epigenetic pathways related to disease.
Collapse
Affiliation(s)
- Jonas Eriksson Ström
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden;
| | - Simon Kebede Merid
- Karolinska Institutet, 27106, Institute of Environmental Medicine, Stockholm, Sweden
| | - Jamshid Pourazar
- Umeå Universitet Medicinska fakulteten, 59588, Dept. of Public Health and Clinical Medicine, Umeå, Sweden
| | - Anders Blomberg
- Umea University, 8075, Dept. of Public Health and Clinical Medicine, Umea, Sweden
| | - Anne Lindberg
- Umeå Universitet, 8075, Department of Public Health and Clinical Medicine, Section of Medicine, Umea, Sweden
| | - Mikael V Ringh
- Karolinska Institutet, 27106, Department of Clinical Neuroscience and Center for Molecular Medicine, Stockholm, Sweden
| | | | - Tomas J Ekström
- Karolinska Institutet, 27106, Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Stockholm, Sweden
| | - Annelie F Behndig
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden
| | - Erik Melén
- Karolinska Institutet Department of Clinical Science and Education Sodersjukhuset, 411435, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Li L, Zhang H, Holloway JW, Ewart S, Relton CL, Arshad SH, Karmaus W. Does DNA methylation mediate the association of age at puberty with FVC or FEV1? ERJ Open Res 2022; 8:00476-2021. [PMID: 35237685 PMCID: PMC8883177 DOI: 10.1183/23120541.00476-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/30/2021] [Indexed: 11/05/2022] Open
Abstract
Background Age of pubertal onset is associated with lung function in adulthood. However, the underlying role of epigenetics as a mediator of this association remains unknown. Methods DNA methylation (DNAm) in peripheral blood was measured at age 18 years in the Isle of Wight birth cohort (IOWBC) along with data on age of pubertal events, forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) at 26 years. Structural equation models were applied to examine mediation effects of DNAm on the association of age at pubertal events with FVC and FEV1. Findings were further tested in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Results In the IOWBC, for females, 21 cytosine-phosphate-guanine sites (CpGs) were shown to mediate the association of age at puberty with FVC or FEV1 at 26 years (p<0.05). In males, DNAm at 20 CpGs was found to mediate the association of age at puberty with FVC (p<0.05). At almost all these CpGs, indirect effects (effects of age at pubertal events on FVC or FEV1via DNAm) contributed a smaller portion to the total effects compared to direct effects (e.g. at cg08680129, ∼22% of the estimated total effect of age at menarche on FVC at age 26 was contributed by an indirect effect). Among the IOWBC-discovered CpGs available in ALSPAC, none of them was replicated in ALSPAC (p>0.05). Conclusions Our findings suggest that post-adolescence DNAm in peripheral blood is likely not to mediate the association of age at pubertal onset with young adulthood FVC or FEV1. The association between age at pubertal onset and lung function parameters FVC or FEV1 in young adulthood is not likely to be mediated by DNA methylation in peripheral bloodhttps://bit.ly/31G8hDi
Collapse
|
8
|
Díaz-Peña R, Julià RF, Montes JF, Silva RS, Olloquequi J. Polimorfismos en el gen FRMD4A se asocian a riesgo de enfermedad pulmonar obstructiva crónica en población latinoamericana. Arch Bronconeumol 2022; 58:454-456. [DOI: 10.1016/j.arbres.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
|
9
|
Avci E, Sarvari P, Savai R, Seeger W, Pullamsetti SS. Epigenetic Mechanisms in Parenchymal Lung Diseases: Bystanders or Therapeutic Targets? Int J Mol Sci 2022; 23:ijms23010546. [PMID: 35008971 PMCID: PMC8745712 DOI: 10.3390/ijms23010546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Epigenetic responses due to environmental changes alter chromatin structure, which in turn modifies the phenotype, gene expression profile, and activity of each cell type that has a role in the pathophysiology of a disease. Pulmonary diseases are one of the major causes of death in the world, including lung cancer, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung tuberculosis, pulmonary embolism, and asthma. Several lines of evidence indicate that epigenetic modifications may be one of the main factors to explain the increasing incidence and prevalence of lung diseases including IPF and COPD. Interestingly, isolated fibroblasts and smooth muscle cells from patients with pulmonary diseases such as IPF and PH that were cultured ex vivo maintained the disease phenotype. The cells often show a hyper-proliferative, apoptosis-resistant phenotype with increased expression of extracellular matrix (ECM) and activated focal adhesions suggesting the presence of an epigenetically imprinted phenotype. Moreover, many abnormalities observed in molecular processes in IPF patients are shown to be epigenetically regulated, such as innate immunity, cellular senescence, and apoptotic cell death. DNA methylation, histone modification, and microRNA regulation constitute the most common epigenetic modification mechanisms.
Collapse
MESH Headings
- Animals
- Biomarkers
- Combined Modality Therapy
- DNA Methylation
- Diagnosis, Differential
- Disease Management
- Disease Susceptibility
- Epigenesis, Genetic
- Gene Expression Regulation
- Histones/metabolism
- Humans
- Idiopathic Pulmonary Fibrosis/diagnosis
- Idiopathic Pulmonary Fibrosis/etiology
- Idiopathic Pulmonary Fibrosis/metabolism
- Idiopathic Pulmonary Fibrosis/therapy
- Lung Diseases, Interstitial/diagnosis
- Lung Diseases, Interstitial/etiology
- Lung Diseases, Interstitial/metabolism
- Lung Diseases, Interstitial/therapy
- Pulmonary Disease, Chronic Obstructive/diagnosis
- Pulmonary Disease, Chronic Obstructive/etiology
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/therapy
- Treatment Outcome
Collapse
Affiliation(s)
- Edibe Avci
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
| | - Pouya Sarvari
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Soni S. Pullamsetti
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-603-270-5380; Fax: +49-603-270-5385
| |
Collapse
|
10
|
Campisi M, Liviero F, Maestrelli P, Guarnieri G, Pavanello S. DNA Methylation-Based Age Prediction and Telomere Length Reveal an Accelerated Aging in Induced Sputum Cells Compared to Blood Leukocytes: A Pilot Study in COPD Patients. Front Med (Lausanne) 2021; 8:690312. [PMID: 34368190 PMCID: PMC8342924 DOI: 10.3389/fmed.2021.690312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Aging is the predominant risk factor for most degenerative diseases, including chronic obstructive pulmonary disease (COPD). This process is however very heterogeneous. Defining the biological aging of individual tissues may contribute to better assess this risky process. In this study, we examined the biological age of induced sputum (IS) cells, and peripheral blood leukocytes in the same subject, and compared these to assess whether biological aging of blood leukocytes mirrors that of IS cells. Biological aging was assessed in 18 COPD patients (72.4 ± 7.7 years; 50% males). We explored mitotic and non-mitotic aging pathways, using telomere length (TL) and DNA methylation-based age prediction (DNAmAge) and age acceleration (AgeAcc) (i.e., difference between DNAmAge and chronological age). Data on demographics, life style and occupational exposure, lung function, and clinical and blood parameters were collected. DNAmAge (67.4 ± 5.80 vs. 61.6 ± 5.40 years; p = 0.0003), AgeAcc (-4.5 ± 5.02 vs. -10.8 ± 3.50 years; p = 0.0003), and TL attrition (1.05 ± 0.35 vs. 1.48 ± 0.21 T/S; p = 0.0341) are higher in IS cells than in blood leukocytes in the same patients. Blood leukocytes DNAmAge (r = 0.927245; p = 0.0026) and AgeAcc (r = 0.916445; p = 0.0037), but not TL, highly correlate with that of IS cells. Multiple regression analysis shows that both blood leukocytes DNAmAge and AgeAcc decrease (i.e., younger) in patients with FEV1% enhancement (p = 0.0254 and p = 0.0296) and combined inhaled corticosteroid (ICS) therapy (p = 0.0494 and p = 0.0553). In conclusion, new findings from our work reveal a differential aging in the context of COPD, by a direct quantitative comparison of cell aging in the airway with that in the more accessible peripheral blood leukocytes, providing additional knowledge which could offer a potential translation into the disease management.
Collapse
Affiliation(s)
- Manuela Campisi
- Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Padua, Italy
| | - Filippo Liviero
- Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Padua, Italy
| | - Piero Maestrelli
- Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Padua, Italy
| | - Gabriella Guarnieri
- Respiratory Pathophysiology Unit, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Padua, Italy
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Padua, Italy
| |
Collapse
|
11
|
Huo X, Jin S, Wang Y, Ma L. DNA methylation in chronic obstructive pulmonary disease. Epigenomics 2021; 13:1145-1155. [PMID: 34142873 DOI: 10.2217/epi-2021-0111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a complex disease with polygenetic tendency, is one of the most important health problems in the world. Recently, in the study of the pathogenesis of the COPD, epigenetic changes caused by environmental factors, such as DNA methylation, started to attract more attention than genetic factors. In this review, we discuss the main features of DNA methylation, such as DNA methyltransferases and the methylation sites that modulate the DNA methylation level, and their roles in COPD progression. Finally, to promote new ideas for the prevention and treatment of COPD, we focus on the potential of DNA methylation as a COPD therapeutic target.
Collapse
Affiliation(s)
- XinXin Huo
- School of Public Health, Lanzhou University, Lanzhou, China
| | - SiHui Jin
- School of Public Health, Lanzhou University, Lanzhou, China
| | - YiGe Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Terzikhan N, Xu H, Edris A, Bracke KR, Verhamme FM, Stricker BH, Dupuis J, Lahousse L, O'Connor GT, Brusselle GG. Epigenome-wide association study on diffusing capacity of the lung. ERJ Open Res 2021; 7:00567-2020. [PMID: 33748261 PMCID: PMC7957297 DOI: 10.1183/23120541.00567-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/21/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Epigenetics may play an important role in the pathogenesis of lung diseases. However, little is known about the epigenetic factors that influence impaired gas exchange at the lung. AIM To identify the epigenetic signatures of the diffusing capacity of the lung measured by carbon monoxide uptake (the diffusing capacity of the lung for carbon monoxide (D LCO)). METHODS An epigenome-wide association study (EWAS) was performed on diffusing capacity, measured by carbon monoxide uptake (D LCO) and per alveolar volume (V A) (as D LCO/V A), using the single-breath technique in 2674 individuals from two population-based cohort studies. These were the Rotterdam Study (RS, the "discovery panel") and the Framingham Heart Study (FHS, the "replication panel"). We assessed the clinical relevance of our findings by investigating the identified sites in whole blood and by lung tissue specific gene expression. RESULTS We identified and replicated two CpG sites (cg05575921 and cg05951221) that were significantly associated with D LCO/V A and one (cg05575921) suggestively associated with D LCO. Furthermore, we found a positive association between aryl hydrocarbon receptor repressor (AHRR) gene (cg05575921) hypomethylation and gene expression of exocyst complex component 3 (EXOC3) in whole blood. We confirmed that the expression of EXOC3 in lung tissue is positively associated with D LCO/V A and D LCO. CONCLUSIONS We report on epigenome-wide associations with diffusing capacity in the general population. Our results suggest EXOC3 to be an excellent candidate, through which smoking-induced hypomethylation of AHRR might affect pulmonary gas exchange.
Collapse
Affiliation(s)
- Natalie Terzikhan
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Dept of Epidemiology, Erasmus MC – University Medical Center Rotterdam, Rotterdam, The Netherlands
- These authors contributed equally
| | - Hanfei Xu
- Dept of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- These authors contributed equally
| | - Ahmed Edris
- Dept of Epidemiology, Erasmus MC – University Medical Center Rotterdam, Rotterdam, The Netherlands
- Dept of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Ken R. Bracke
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Fien M. Verhamme
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bruno H.C. Stricker
- Dept of Epidemiology, Erasmus MC – University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Josée Dupuis
- Dept of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- These authors contributed equally
| | - Lies Lahousse
- Dept of Epidemiology, Erasmus MC – University Medical Center Rotterdam, Rotterdam, The Netherlands
- Dept of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- These authors contributed equally
| | - George T. O'Connor
- Pulmonary Center, Boston University Schools of Medicine and Public Health, Boston, MA, USA
- These authors contributed equally
| | - Guy G. Brusselle
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Dept of Epidemiology, Erasmus MC – University Medical Center Rotterdam, Rotterdam, The Netherlands
- Dept of Respiratory Medicine, Erasmus MC – University Medical Center Rotterdam, Rotterdam, The Netherlands
- These authors contributed equally
| |
Collapse
|
13
|
Patel R, Solatikia F, Zhang H, Wolde A, Kadalayil L, Karmaus W, Ewart S, Arathimos R, Relton C, Ring S, Henderson AJ, Arshad SH, Holloway JW. Sex-specific associations of asthma acquisition with changes in DNA methylation during adolescence. Clin Exp Allergy 2020; 51:318-328. [PMID: 33150670 DOI: 10.1111/cea.13776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Underlying biological mechanisms involved in sex differences in asthma status changes from pre- to post-adolescence are unclear. DNA methylation (DNAm) has been shown to be associated with the risk of asthma. OBJECTIVE We hypothesized that asthma acquisition from pre- to post-adolescence was associated with changes in DNAm during this period at asthma-associated cytosine-phosphate-guanine (CpG) sites and such an association was sex-specific. METHODS Subjects from the Isle of Wight birth cohort (IOWBC) with DNAm in blood at ages 10 and 18 years (n = 124 females, 151 males) were studied. Using a training-testing approach, epigenome-wide CpGs associated with asthma were identified. Logistic regression was used to examine sex-specific associations of DNAm changes with asthma acquisition between ages 10 and 18 at asthma-associated CpGs. The ALSPAC birth cohort was used for independent replication. To assess functional relevance of identified CpGs, association of DNAm with gene expression in blood was assessed. RESULTS We identified 535 CpGs potentially associated with asthma. Significant interaction effects of DNAm changes and sex on asthma acquisition in adolescence were found at 13 of the 535 CpGs in IOWBC (P-values <1.0 × 10-3 ). In the replication cohort, consistent interaction effects were observed at 10 of the 13 CpGs. At 7 of these 10 CpGs, opposite DNAm changes across adolescence were observed between sexes in both cohorts. In both cohorts, cg20891917, located on IFRD1 linked to asthma, shows strong sex-specific effects on asthma transition (P-values <.01 in both cohorts). CONCLUSION AND CLINICAL RELEVANCE Gender reversal in asthma acquisition is associated with opposite changes in DNAm (males vs females) from pre- to post-adolescence at asthma-associated CpGs. These CpGs are potential biomarkers of sex-specific asthma acquisition in adolescence.
Collapse
Affiliation(s)
- Rutu Patel
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Farnaz Solatikia
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA.,Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Alemayehu Wolde
- Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA
| | - Latha Kadalayil
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Ryan Arathimos
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,National Institute for Health Research Bristol Biomedical Research Centre, University of Bristol, University Hospitals Bristol NHS Foundation Trust, Bristol, UK.,Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,National Institute for Health Research Bristol Biomedical Research Centre, University of Bristol, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Susan Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,National Institute for Health Research Bristol Biomedical Research Centre, University of Bristol, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | | | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,David Hide Asthma and Allergy Research Centre, Isle of Wight, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
14
|
Kachroo P, Morrow JD, Kho AT, Vyhlidal CA, Silverman EK, Weiss ST, Tantisira KG, DeMeo DL. Co-methylation analysis in lung tissue identifies pathways for fetal origins of COPD. Eur Respir J 2020; 56:13993003.02347-2019. [PMID: 32482784 DOI: 10.1183/13993003.02347-2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
COPD likely has developmental origins; however, the underlying molecular mechanisms are not fully identified. Investigation of lung tissue-specific epigenetic modifications such as DNA methylation using network approaches might facilitate insights linking in utero smoke (IUS) exposure and risk for COPD in adulthood.We performed genome-wide methylation profiling for adult lung DNA from 160 surgical samples and 78 fetal lung DNA samples isolated from discarded tissue at 8-18 weeks of gestation. Co-methylation networks were constructed to identify preserved modules that shared methylation patterns in fetal and adult lung tissues and associations with fetal IUS exposure, gestational age and COPD.Weighted correlation networks highlighted preserved and co-methylated modules for both fetal and adult lung data associated with fetal IUS exposure, COPD and lower adult lung function. These modules were significantly enriched for genes involved in embryonic organ development and specific inflammation-related pathways, including Hippo, phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), Wnt, mitogen-activated protein kinase and transforming growth factor-β signalling. Gestational age-associated modules were remarkably preserved for COPD and lung function, and were also annotated to genes enriched for the Wnt and PI3K/AKT pathways.Epigenetic network perturbations in fetal lung tissue exposed to IUS and of early lung development recapitulated in adult lung tissue from ex-smokers with COPD. Overlapping fetal and adult lung tissue network modules highlighted putative disease pathways supportive of exposure-related and age-associated developmental origins of COPD.
Collapse
Affiliation(s)
- Priyadarshini Kachroo
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jarrett D Morrow
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alvin T Kho
- Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Edwin K Silverman
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA .,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
15
|
He LX, Tang ZH, Huang QS, Li WH. DNA Methylation: A Potential Biomarker of Chronic Obstructive Pulmonary Disease. Front Cell Dev Biol 2020; 8:585. [PMID: 32733890 PMCID: PMC7358425 DOI: 10.3389/fcell.2020.00585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a serious public health concern worldwide. By 2040, 4.41 million people are estimated to expire annually due to COPD. However, till date, it has remained difficult to alter the activity or progress of the disease through treatment. In order to address this issue, the best way would be to find biomarkers and new therapeutic targets for COPD. DNA methylation (DNAm) may be a potential biomarker for disease prevention, diagnosis, and prognosis, and its reversibility further makes it a potential drug design target in COPD. In this review, we aimed to explore the role of DNAm as biomarkers and disease mediators in different tissue samples from patients with COPD.
Collapse
Affiliation(s)
- Lin-Xi He
- School of Basic Medicine Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao-Hui Tang
- School of Basic Medicine Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing-Song Huang
- Department of Respiratory, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei-Hong Li
- School of Basic Medicine Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Amaral AFS, Imboden M, Wielscher M, Rezwan FI, Minelli C, Garcia-Aymerich J, Peralta GP, Auvinen J, Jeong A, Schaffner E, Beckmeyer-Borowko A, Holloway JW, Jarvelin MR, Probst-Hensch NM, Jarvis DL. Role of DNA methylation in the association of lung function with body mass index: a two-step epigenetic Mendelian randomisation study. BMC Pulm Med 2020; 20:171. [PMID: 32546146 PMCID: PMC7298775 DOI: 10.1186/s12890-020-01212-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 06/09/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Low lung function has been associated with increased body mass index (BMI). The aim of this study was to investigate whether the effect of BMI on lung function is mediated by DNA methylation. METHODS We used individual data from 285,495 participants in four population-based cohorts: the European Community Respiratory Health Survey, the Northern Finland Birth Cohort 1966, the Swiss Study on Air Pollution and Lung Disease in Adults, and the UK Biobank. We carried out Mendelian randomisation (MR) analyses in two steps using a two-sample approach with SNPs as instrumental variables (IVs) in each step. In step 1 MR, we estimated the causal effect of BMI on peripheral blood DNA methylation (measured at genome-wide level) using 95 BMI-associated SNPs as IVs. In step 2 MR, we estimated the causal effect of DNA methylation on FEV1, FVC, and FEV1/FVC using two SNPs acting as methQTLs occurring close (in cis) to CpGs identified in the first step. These analyses were conducted after exclusion of weak IVs (F statistic < 10) and MR estimates were derived using the Wald ratio, with standard error from the delta method. Individuals whose data were used in step 1 were not included in step 2. RESULTS In step 1, we found that BMI might have a small causal effect on DNA methylation levels (less than 1% change in methylation per 1 kg/m2 increase in BMI) at two CpGs (cg09046979 and cg12580248). In step 2, we found no evidence of a causal effect of DNA methylation at cg09046979 on lung function. We could not estimate the causal effect of DNA methylation at cg12580248 on lung function as we could not find publicly available data on the association of this CpG with SNPs. CONCLUSIONS To our knowledge, this is the first paper to report the use of a two-step MR approach to assess the role of DNA methylation in mediating the effect of a non-genetic factor on lung function. Our findings do not support a mediating effect of DNA methylation in the association of lung function with BMI.
Collapse
Affiliation(s)
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Matthias Wielscher
- Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Faisal I. Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Cosetta Minelli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Gabriela P. Peralta
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Juha Auvinen
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Emmanuel Schaffner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Anna Beckmeyer-Borowko
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Marjo-Riitta Jarvelin
- Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Nicole M. Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Deborah L. Jarvis
- National Heart and Lung Institute, Imperial College London, London, UK
| | - for the ALEC consortium
- National Heart and Lung Institute, Imperial College London, London, UK
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
17
|
Long interspersed nuclear element-1 methylation status in the circulating DNA from blood of patients with malignant and chronic inflammatory lung diseases. Eur J Cancer Prev 2020; 30:127-131. [PMID: 32516173 DOI: 10.1097/cej.0000000000000601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Along with other malignant diseases, lung cancer arises from the precancerous lung tissue state. Aberrant DNA methylation (hypermethylation of certain genes and hypomethylation of retrotransposons) is known as one of the driving forces of malignant cell transformation. Epigenetic changes were shown to be detectable in DNA, circulating in the blood (cirDNA) of cancer patients, indicating the possibility to use them as cancer markers. The current study is the first to compare the Long interspersed nuclear element-1 (LINE-1) methylation level in the blood from lung cancer patients before treatment versus different control groups as healthy subjects, patients with bronchitis and patients with chronic obstructive pulmonary disease (COPD). The concentration of LINE-1 methylated fragments, region 1 (LINE-1 methylated, LINE-1-met) was estimated by quantitative methyl-specific PCR. The total concentration of the circulating LINE-1 copies was measured by qPCR specific for LINE-1 region 2, which was selected due to its CpG methylation-independent sequence (LINE-1-Ind). Both LINE-1 methylation level and LINE-1 methylation index (LINE-1-met/LINE-1-Ind ratio) was decreased in lung cancer patients compared with the joint control group (healthy subjects + patients with bronchitis + COPD patients) (Mann-Whitney U-test, P = 0.016). We also found that the tendency of LINE-1 methylation index decreases in the cirDNA from lung cancer patients versus COPD patients (Mann-Whitney U-test, P = 0.07). Our data indicate that the quantitative analysis of the LINE-1 methylation level in the cirDNA is valuable for discrimination of lung cancer patients from patients with chronic inflammatory lung diseases.
Collapse
|
18
|
Imboden M, Wielscher M, Rezwan FI, Amaral A, Schaffner E, Jeong A, Beckmeyer-Borowko A, Harris SE, Starr JM, Deary I, Flexeder C, Waldenberger M, Peters A, Schulz H, Chen S, Sunny SK, Karmaus WJ, Jiang Y, Erhart G, Kronenberg F, Arathimos R, Sharp GC, Henderson AJ, Fu Y, Piirilä P, Pietiläinen KH, Ollikainen M, Johansson A, Gyllensten U, de Vries M, van der Plaat DA, de Jong K, Boezen HM, Hall I, Tobin MD, Jarvelin MR, Holloway J, Jarvis D, Probst-Hensch NM. Epigenome-wide association study of lung function level and its change. Eur Respir J 2019; 54:13993003.00457-2019. [PMID: 31073081 PMCID: PMC6610463 DOI: 10.1183/13993003.00457-2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Previous reports link differential DNA methylation (DNAme) to environmental exposures that are associated with lung function. Direct evidence on lung function DNAme is, however, limited. We undertook an agnostic epigenome-wide association study (EWAS) on pre-bronchodilation lung function and its change in adults.In a discovery-replication EWAS design, DNAme in blood and spirometry were measured twice, 6-15 years apart, in the same participants of three adult population-based discovery cohorts (n=2043). Associated DNAme markers (p<5×10-7) were tested in seven replication cohorts (adult: n=3327; childhood: n=420). Technical bias-adjusted residuals of a regression of the normalised absolute β-values on control probe-derived principle components were regressed on level and change of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and their ratio (FEV1/FVC) in the covariate-adjusted discovery EWAS. Inverse-variance-weighted meta-analyses were performed on results from discovery and replication samples in all participants and never-smokers.EWAS signals were enriched for smoking-related DNAme. We replicated 57 lung function DNAme markers in adult, but not childhood samples, all previously associated with smoking. Markers not previously associated with smoking failed replication. cg05575921 (AHRR (aryl hydrocarbon receptor repressor)) showed the statistically most significant association with cross-sectional lung function (FEV1/FVC: pdiscovery=3.96×10-21 and pcombined=7.22×10-50). A score combining 10 DNAme markers previously reported to mediate the effect of smoking on lung function was associated with lung function (FEV1/FVC: p=2.65×10-20).Our results reveal that lung function-associated methylation signals in adults are predominantly smoking related, and possibly of clinical utility in identifying poor lung function and accelerated decline. Larger studies with more repeat time-points are needed to identify lung function DNAme in never-smokers and in children.
Collapse
Affiliation(s)
- Medea Imboden
- Chronic Disease Epidemiology Unit, Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland,These authors contributed equally to this work
| | - Matthias Wielscher
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK,Dept of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK,These authors contributed equally to this work
| | - Faisal I. Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK,These authors contributed equally to this work
| | - André F.S. Amaral
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK,Population Health and Occupational Disease, NHLI, Imperial College London, London, UK,These authors contributed equally to this work
| | - Emmanuel Schaffner
- Chronic Disease Epidemiology Unit, Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland
| | - Ayoung Jeong
- Chronic Disease Epidemiology Unit, Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland
| | - Anna Beckmeyer-Borowko
- Chronic Disease Epidemiology Unit, Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland
| | - Sarah E. Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK,Medical Genetics Section, University of Edinburgh Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK,Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK,Dept of Psychology, University of Edinburgh, Edinburgh, UK
| | - Claudia Flexeder
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Holger Schulz
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Su Chen
- Dept of Mathematical Sciences, University of Memphis, Memphis, TN, USA
| | - Shadia Khan Sunny
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Wilfried J.J. Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Gertraud Erhart
- Division of Genetic Epidemiology, Dept of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Dept of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ryan Arathimos
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK,Dept of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gemma C. Sharp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK,Dept of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK,Bristol Dental School, University of Bristol, Bristol, UK
| | | | - Yu Fu
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Päivi Piirilä
- Unit of Clinical Physiology, HUS Medical Imaging Center, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Kirsi H. Pietiläinen
- Obesity Research Unit, Research Programs Unit, University of Helsinki, Helsinki, Finland,Abdominal Center, Endocrinology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Asa Johansson
- Dept of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ulf Gyllensten
- Dept of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maaike de Vries
- University of Groningen, University Medical Center Groningen, Dept of Epidemiology, Groningen, The Netherlands,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Diana A. van der Plaat
- University of Groningen, University Medical Center Groningen, Dept of Epidemiology, Groningen, The Netherlands,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kim de Jong
- University of Groningen, University Medical Center Groningen, Dept of Epidemiology, Groningen, The Netherlands,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H. Marike Boezen
- University of Groningen, University Medical Center Groningen, Dept of Epidemiology, Groningen, The Netherlands,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ian P. Hall
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK,National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK
| | - Martin D. Tobin
- Dept of Health Sciences, University of Leicester, Leicester, UK,National Institute of Health Research Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Marjo-Riitta Jarvelin
- Dept of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland,Biocenter Oulu, University of Oulu, Oulu, Finland,Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland,Dept of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK,These authors contributed equally to this work
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK,These authors contributed equally to this work
| | - Deborah Jarvis
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK,Population Health and Occupational Disease, NHLI, Imperial College London, London, UK,These authors contributed equally to this work
| | - Nicole M. Probst-Hensch
- Chronic Disease Epidemiology Unit, Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland,These authors contributed equally to this work
| |
Collapse
|
19
|
Freudenheim JL, Shields PG, Song MA, Smiraglia D. DNA Methylation and Smoking: Implications for Understanding Effects of Electronic Cigarettes. CURR EPIDEMIOL REP 2019. [DOI: 10.1007/s40471-019-00191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Lahousse L. Epigenetic targets for lung diseases. EBioMedicine 2019; 43:24-25. [PMID: 30981649 PMCID: PMC6557802 DOI: 10.1016/j.ebiom.2019.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Lies Lahousse
- Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
21
|
Bermingham ML, Walker RM, Marioni RE, Morris SW, Rawlik K, Zeng Y, Campbell A, Redmond P, Whalley HC, Adams MJ, Hayward C, Deary IJ, Porteous DJ, McIntosh AM, Evans KL. Identification of novel differentially methylated sites with potential as clinical predictors of impaired respiratory function and COPD. EBioMedicine 2019; 43:576-586. [PMID: 30935889 PMCID: PMC6557748 DOI: 10.1016/j.ebiom.2019.03.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background The causes of poor respiratory function and COPD are incompletely understood, but it is clear that genes and the environment play a role. As DNA methylation is under both genetic and environmental control, we hypothesised that investigation of differential methylation associated with these phenotypes would permit mechanistic insights, and improve prediction of COPD. We investigated genome-wide differential DNA methylation patterns using the recently released 850 K Illumina EPIC array. This is the largest single population, whole-genome epigenetic study to date. Methods Epigenome-wide association studies (EWASs) of respiratory function and COPD were performed in peripheral blood samples from the Generation Scotland: Scottish Family Health Study (GS:SFHS) cohort (n = 3781; 274 COPD cases and 2919 controls). In independent COPD incidence data (n = 149), significantly differentially methylated sites (DMSs; p < 3.6 × 10−8) were evaluated for their added predictive power when added to a model including clinical variables, age, sex, height and smoking history using receiver operating characteristic analysis. The Lothian Birth Cohort 1936 (LBC1936) was used to replicate association (n = 895) and prediction (n = 178) results. Findings We identified 28 respiratory function and/or COPD associated DMSs, which mapped to genes involved in alternative splicing, JAK-STAT signalling, and axon guidance. In prediction analyses, we observed significant improvement in discrimination between COPD cases and controls (p < .05) in independent GS:SFHS (p = .016) and LBC1936 (p = .010) datasets by adding DMSs to a clinical model. Interpretation Identification of novel DMSs has provided insight into the molecular mechanisms regulating respiratory function and aided prediction of COPD risk. Further studies are needed to assess the causality and clinical utility of identified associations. Fund Wellcome Trust Strategic Award 10436/Z/14/Z.
Collapse
Affiliation(s)
- Mairead L Bermingham
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Stewart W Morris
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Konrad Rawlik
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, UK
| | - Yanni Zeng
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Paul Redmond
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Jiang S, Shan F, Zhang Y, Jiang L, Cheng Z. Increased serum IL-17 and decreased serum IL-10 and IL-35 levels correlate with the progression of COPD. Int J Chron Obstruct Pulmon Dis 2018; 13:2483-2494. [PMID: 30154651 PMCID: PMC6108328 DOI: 10.2147/copd.s167192] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose This study aimed to measure the serum levels of interleukin (IL)-17, IL-10, and IL-35 in patients with stable chronic obstructive pulmonary disease (COPD) and disclose the correlations between their expression levels and clinical factors of patients. Methods A total of 75 patients with stable COPD (47 males and 28 females) and 30 healthy controls (15 males and 15 females) were included in this study. The serum levels of IL-17, IL-10, and IL-35 were determined by enzyme-linked immunosorbent assay. The correlations between their expression levels and clinical factors of patients were determined using linear regression methods. Results The serum level of IL-17 was upregulated in stable COPD, and increased IL-17 expression was positively correlated with the Global Initiative for Chronic Obstructive Lung Disease (GOLD) grading, modified Medical Research Council (mMRC) score, and long clinical history (P<0.05), but negatively correlated with the pulmonary function (P<0.05) of patients. The serum levels of IL-10 and IL-35 were downregulated in stable COPD, and decreased IL-10 and IL-35 levels negatively correlated with the smoking status, GOLD grading, mMRC score, and long clinical history (P<0.05), but positively correlated with the pulmonary function (P<0.05) of patients. Moreover, the level of IL-17 negatively correlated with IL-10 and IL-35, but IL-10 positively correlated with IL-35. Conclusion The serum levels of IL-17, IL-10, and IL-35 correlated with the clinical factors of COPD, indicating that they can serve as indicators to estimate the progression of COPD.
Collapse
Affiliation(s)
- Shenghua Jiang
- Department of Respiratory Medicine, Affiliated Hospital, Qingdao University, Qingdao, China, .,Department of Respiratory Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Fenglian Shan
- Department of Respiratory Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Youwen Zhang
- Department of Respiratory Medicine, Affiliated Hospital, Qingdao University, Qingdao, China, .,Department of Respiratory Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Luning Jiang
- Department of Respiratory Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Zhaozhong Cheng
- Department of Respiratory Medicine, Affiliated Hospital, Qingdao University, Qingdao, China,
| |
Collapse
|
23
|
de Vries M, van der Plaat DA, Vonk JM, Boezen HM. No association between DNA methylation and COPD in never and current smokers. BMJ Open Respir Res 2018; 5:e000282. [PMID: 30018765 PMCID: PMC6045732 DOI: 10.1136/bmjresp-2018-000282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 12/04/2022] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory lung disease with cigarette smoke as the main risk factor for its development. Since not every smoker develops COPD, other factors likely underlie differences in susceptibility to develop COPD. Here, we tested if DNA methylation may be such a factor by assessing the association between DNA methylation levels and COPD in never and current smokers from the general population. Methods For the current study, 1561 subjects were non-randomly selected from the LifeLines cohort study. We included 903 never smokers and 658 current smokers with and without COPD, defined as pre-bronchodilator forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC) <70%. Subsequently, we performed robust regression analysis on whole blood DNA methylation levels of 420 938 CpG sites with COPD as outcome. Results None of the CpG sites in both the never and the current smokers were genome-wide significantly associated with COPD. CpG site cg14972228 annotated to SIPAL3 was most significant (p=5.66×10−6) in the never smokers, while CpG site cg08282037 annotated to EPS8L1 was most significant (p=1.45×10−5) in the current smokers. Conclusion In contrast to a previous, smaller study, we did not observe any significant association between DNA methylation levels and the presence of COPD, independent of smoking status. Apparently, DNA methylation studies are highly variable.
Collapse
Affiliation(s)
- Maaike de Vries
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Diana A van der Plaat
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - H Marike Boezen
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| |
Collapse
|
24
|
Wu DD, Song J, Bartel S, Krauss-Etschmann S, Rots MG, Hylkema MN. The potential for targeted rewriting of epigenetic marks in COPD as a new therapeutic approach. Pharmacol Ther 2018; 182:1-14. [PMID: 28830839 DOI: 10.1016/j.pharmthera.2017.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is an age and smoking related progressive, pulmonary disorder presenting with poorly reversible airflow limitation as a result of chronic bronchitis and emphysema. The prevalence, disease burden for the individual, and mortality of COPD continues to increase, whereas no effective treatment strategies are available. For many years now, a combination of bronchodilators and anti-inflammatory corticosteroids has been most widely used for therapeutic management of patients with persistent COPD. However, this approach has had disappointing results as a large number of COPD patients are corticosteroid resistant. In patients with COPD, there is emerging evidence showing aberrant expression of epigenetic marks such as DNA methylation, histone modifications and microRNAs in blood, sputum and lung tissue. Therefore, novel therapeutic approaches may exist using epigenetic therapy. This review aims to describe and summarize current knowledge of aberrant expression of epigenetic marks in COPD. In addition, tools available for restoration of epigenetic marks are described, as well as delivery mechanisms of epigenetic editors to cells. Targeting epigenetic marks might be a very promising tool for treatment and lung regeneration in COPD in the future.
Collapse
Affiliation(s)
- Dan-Dan Wu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Juan Song
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands; Tianjin Medical University, School of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Department of Immunology, Tianjin, China
| | - Sabine Bartel
- Early Life Origins of Chronic Lung Disease, Priority Area Asthma & Allergy, Leibnitz Center for Medicine and Biosciences, Research Center Borstel and Christian Albrechts University Kiel; Airway Research Center North, member of the German Center for Lung Research (DZL), Germany
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Priority Area Asthma & Allergy, Leibnitz Center for Medicine and Biosciences, Research Center Borstel and Christian Albrechts University Kiel; Airway Research Center North, member of the German Center for Lung Research (DZL), Germany
| | - Marianne G Rots
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Machteld N Hylkema
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands.
| |
Collapse
|
25
|
Brandsma CA, de Vries M, Costa R, Woldhuis RR, Königshoff M, Timens W. Lung ageing and COPD: is there a role for ageing in abnormal tissue repair? Eur Respir Rev 2017; 26:26/146/170073. [PMID: 29212834 DOI: 10.1183/16000617.0073-2017] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/20/2017] [Indexed: 11/05/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide, with increasing prevalence, in particular in the elderly. COPD is characterised by abnormal tissue repair resulting in (small) airways disease and emphysema. There is accumulating evidence that ageing hallmarks are prominent features of COPD. These ageing hallmarks have been described in different subsets of COPD patients, in different lung compartments and also in a variety of cell types, and thus might contribute to different COPD phenotypes. A better understanding of the main differences and similarities between normal lung ageing and the pathology of COPD may improve our understanding of the mechanisms driving COPD pathology, in particular in those patients that develop the most severe form of COPD at a relatively young age, i.e. severe early-onset COPD patients.In this review, after introducing the main concepts of lung ageing and COPD pathology, we focus on the role of (abnormal) ageing in lung remodelling and repair in COPD. We discuss the current evidence for the involvement of ageing hallmarks in these pathological features of COPD. We also highlight potential novel treatment strategies and opportunities for future research based on our current knowledge of abnormal lung ageing in COPD.
Collapse
Affiliation(s)
- Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands .,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Maaike de Vries
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Dept of Epidemiology, Groningen, The Netherlands
| | - Rita Costa
- Comprehensive Pneumology Center, Helmholtz Zentrum München, University Hospital of the Ludwig Maximilians University, Munich, Germany
| | - Roy R Woldhuis
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Helmholtz Zentrum München, University Hospital of the Ludwig Maximilians University, Munich, Germany.,Division of Pulmonary Sciences and Critical Care Medicine, Dept of Medicine, University of Colorado, Denver, CO, USA.,Both authors contributed equally
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,Both authors contributed equally
| |
Collapse
|
26
|
Bauer M, Fink B, Seyfarth HJ, Wirtz H, Frille A. Tobacco-smoking induced GPR15-expressing T cells in blood do not indicate pulmonary damage. BMC Pulm Med 2017; 17:159. [PMID: 29183299 PMCID: PMC5706341 DOI: 10.1186/s12890-017-0509-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/17/2017] [Indexed: 12/26/2022] Open
Abstract
Background Recently, it was shown that chronic tobacco smoking evokes specific cellular and molecular changes in white blood cells by an excess of G protein-coupled receptor 15 (GPR15)-expressing T cells as well as a hypomethylation at DNA CpG site cg05575921 in granulocytes. In the present study, we aimed to clarify the general usefulness of these two biomarkers as putative signs of non-cancerous change in homeostasis of the lungs. Methods In a clinical cohort consisting of 42 patients with chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD) and pneumonia and a control cohort of 123 volunteers, the content of GPR15-expressing blood cells as well as the degree of methylation at cg05575921 were analysed by flow-cytometry and pyrosequencing, respectively. Smoking behaviour was estimated by questionnaire and cotinine level in plasma. Results Never-smoking patients could be distinguished from former and current smokers by both the proportion of GPR15-expressing T cells as well as cg05575921 methylation in granulocytes, with 100% and 97% specificity and 100% sensitivity, respectively. However, both parameters were not affected by lung diseases. The degrees of both parameters were not changed neither in non-smoking nor smoking patients, compared to appropriate control cohorts of volunteers. Conclusions The degree of GPR15-expressing cells among T cells as well as the methylation at cg05575921 in granulocytes in blood are both rather signs of tobacco-smoking induced systemic inflammation because they don’t indicate specifically non-cancerous pathological changes in the lungs.
Collapse
Affiliation(s)
- Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
| | - Beate Fink
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | | | - Hubert Wirtz
- Department of Respiratory Medicine, University of Leipzig, Leipzig, Germany
| | - Armin Frille
- Department of Respiratory Medicine, University of Leipzig, Leipzig, Germany.,Leipzig University Medical Center, IFB AdiposityDiseases, Leipzig, Germany
| |
Collapse
|