1
|
Balcan B, Akdeniz B, Peker Y, Collaborators TTURCOSACT. Obstructive Sleep Apnea and Pulmonary Hypertension: A Chicken-and-Egg Relationship. J Clin Med 2024; 13:2961. [PMID: 38792502 PMCID: PMC11122166 DOI: 10.3390/jcm13102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by repeated episodes of upper airway obstruction during sleep, and it is closely linked to several cardiovascular issues due to intermittent hypoxia, nocturnal hypoxemia, and disrupted sleep patterns. Pulmonary hypertension (PH), identified by elevated pulmonary arterial pressure, shares a complex interplay with OSA, contributing to cardiovascular complications and morbidity. The prevalence of OSA is alarmingly high, with studies indicating rates of 20-30% in males and 10-15% in females, escalating significantly with age and obesity. OSA's impact on cardiovascular health is profound, particularly in exacerbating conditions like systemic hypertension and heart failure. The pivotal role of hypoxemia increases intrathoracic pressure, inflammation, and autonomic nervous system dysregulation in this interplay, which all contribute to PH's pathogenesis. The prevalence of PH among OSA patients varies widely, with studies reporting rates from 15% to 80%, highlighting the variability in diagnostic criteria and methodologies. Conversely, OSA prevalence among PH patients also remains high, often exceeding 25%, stressing the need for careful screening and diagnosis. Treatment strategies like continuous positive airway pressure (CPAP) therapy show promise in mitigating PH progression in OSA patients. However, this review underscores the need for further research into long-term outcomes and the efficacy of these treatments. This review provides comprehensive insights into the epidemiology, pathophysiology, and treatment of the intricate interplay between OSA and PH, calling for integrated, personalized approaches in diagnosis and management. The future landscape of OSA and PH management hinges on continued research, technological advancements, and a holistic approach to improving patient outcomes.
Collapse
Affiliation(s)
- Baran Balcan
- Department of Pulmonary Medicine, Koç University School of Medicine, Istanbul 34450, Turkey;
| | - Bahri Akdeniz
- Department of Cardiology, Dokuz Eylül University Faculty of Medicine, Izmir 35340, Turkey;
| | - Yüksel Peker
- Department of Pulmonary Medicine, Koç University School of Medicine, Istanbul 34450, Turkey;
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Clinical Sciences, Respiratory Medicine and Allergology, Faculty of Medicine, Lund University, 22185 Lund, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | | |
Collapse
|
2
|
Lenka J, Foley R, Metersky M, Salmon A. Relationship between obstructive sleep apnea and pulmonary hypertension: past, present and future. Expert Rev Respir Med 2024; 18:85-97. [PMID: 38646681 DOI: 10.1080/17476348.2024.2345684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) is a widely prevalent condition with consequent multiple organ systems complications. There is consensus that OSA is associated with negative effects on pulmonary hemodynamics but whether it contributes to development of clinical pulmonary hypertension (PH) is unclear. AREAS COVERED In this review, we (1) highlight previous studies looking into the possible bidirectional association of OSA and PH, focusing on those that explore clinical prognostic implications, (2) explore potential pathophysiology, (3) discuss the new metrics in OSA, (4) describe endo-phenotyping of OSA, (5) recommend possible risk assessment and screening pathways. EXPERT OPINION Relying only on symptoms to consider a sleep study in PH patients is a missed opportunity to detect OSA, which, if present and not treated, can worsen outcomes. The potential prognostic role of sleep study metrics such as oxygen desaturation index (ODI), hypoxic burden (HB) and ventilatory burden (VB) in OSA should be studied in prospective trials to identify patients at risk for PH. AHI alone has not provided clarity. In those with PH, we should consider replacing ambulatory overnight pulse oximetry (OPO) with home sleep studies (HST). In PH patients, mild OSA should be sufficient to consider PAP therapy.
Collapse
Affiliation(s)
- Jyotirmayee Lenka
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut, Farmington, CT, USA
| | - Raymond Foley
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut, Farmington, CT, USA
| | - Mark Metersky
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut, Farmington, CT, USA
| | - Adrian Salmon
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
3
|
Huang Z, Duan A, Zhao Z, Zhao Q, Zhang Y, Li X, Zhang S, Gao L, An C, Luo Q, Liu Z. Sleep-disordered breathing patterns and prognosis in pulmonary arterial hypertension: A cluster analysis of nocturnal cardiorespiratory signals. Sleep Med 2024; 113:61-69. [PMID: 37984019 DOI: 10.1016/j.sleep.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/15/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Sleep-disordered breathing (SDB) is common among pulmonary arterial hypertension (PAH) patients and has been associated with unfavorable outcomes. This study aims to cluster overnight cardiorespiratory signals to investigate PAH phenotypes and examining their prognostic implications. METHODS In this retrospective cohort study, we recruited consecutive PAH patients who underwent right heart catheterization and nocturnal cardiorespiratory polygraphy to evaluate SDB. Cluster analysis was employed to classify patients based on their SDB patterns. Cox regression analysis and Kaplan-Meier curves were utilized to assess the association between cluster membership and clinical outcomes. Logistic regression was used to identify risk factors associated with the cluster at higher risk of adverse outcomes. RESULTS The study comprised 386 PAH patients, with a mean age of 44.7 ± 17.0 years, of which 46.6 % were male. Three distinct clusters of PAH patients were identified: Cluster 1 (N = 182) presented with minimal SDB, Cluster 2 (N = 125) displayed obstructive sleep apnea (OSA) without significant hypoxemia, and Cluster 3 (N = 79) exhibited predominantly severe hypoxemic burden along with comorbid OSA. Notably, patients in Cluster 3 had an independent association with an increased risk of clinical worsening (hazard ratio 1.96, 95 % confidence interval [CI] 1.08-3.56, P = 0.027) compared to those in Clusters 1, even after adjusting for common confounders. The rate of clinical worsening for PAH-related events and mortality was higher in Cluster 3 than in Clusters 1 and 2 (26.6 % vs. 12.6 % and 19.2 %, respectively, log-rank P = 0.024). Moreover, the left ventricular mass index was identified as an independent risk factor for Cluster 3 (odds ratios 1.01, 95 % CI 1.00-1.02, P = 0.004). CONCLUSIONS Patients with PAH who have nocturnal hypoxemia and OSA had worse clinical outcomes compared to those with only minimal SDB. Tailored management strategies that address both PAH and nocturnal hypoxemia may be effective in improving clinical outcomes.
Collapse
Affiliation(s)
- Zhihua Huang
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anqi Duan
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhao
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Zhao
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Zhang
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Li
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sicheng Zhang
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luyang Gao
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenhong An
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qin Luo
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhihong Liu
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Yegen CH, Lambert M, Beurnier A, Montani D, Humbert M, Planès C, Boncoeur E, Voituron N, Antigny F. KCNK3 channel is important for the ventilatory response to hypoxia in rats. Respir Physiol Neurobiol 2023; 318:104164. [PMID: 37739151 DOI: 10.1016/j.resp.2023.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
To clarify the contribution of KCNK3/TASK-1 channel chemoreflex in response to hypoxia and hypercapnia, we used a unique Kcnk3-deficient rat. We assessed ventilatory variables using plethysmography in Kcnk3-deficient and wild-type rats at rest in response to hypoxia (10% O2) and hypercapnia (4% CO2). Immunostaining for C-Fos, a marker of neuronal activity, was performed to identify the regions of the respiratory neuronal network involved in the observed response.Under basal conditions, we observed increased minute ventilation in Kcnk3-deficient rats, which was associated with increased c-Fos positive cells in the ventrolateral region of the medulla oblongata. Kcnk3-deficient rats show an increase in ventilatory response to hypoxia without changes in response to hypercapnia. In Kcnk3-deficient rats, linked to an increased hypoxia response, we observed a greater increase in c-Fos-positive cells in the first central relay of peripheral chemoreceptors and Raphe Obscurus. This study reports that KCNK3/TASK-1 deficiency in rats induces an inadequate peripheral chemoreflex, alternating respiratory rhythmogenesis, and hypoxic chemoreflex.
Collapse
Affiliation(s)
- Céline-Hivda Yegen
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
| | - Mélanie Lambert
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Antoine Beurnier
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Service de Physiologie et d'explorations fonctionnelles, Hôpital Avicenne, APHP, Hôpitaux de Paris, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Carole Planès
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France; AP-HP, Department of Physiology - Functional Explorations, DMU Thorinno, bi-site Hôpital Bicêtre (Le Kremlin Bicêtre) and Ambroise Paré (Boulogne-Billancourt), France
| | - Emilie Boncoeur
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
| | - Nicolas Voituron
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France; Département STAPS, Université Sorbonne Paris Nord, Bobigny, France.
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France.
| |
Collapse
|
5
|
Stark P, Chang EY. Sleep Apnea Combined with Pulmonary Hypertension in a Veteran Patient Population. J Clin Med 2023; 12:4634. [PMID: 37510749 PMCID: PMC10380333 DOI: 10.3390/jcm12144634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
We have investigated the concurrence of sleep apnea and pulmonary hypertension in a Veteran population. We retrospectively reviewed 142 patients who underwent chest CT scans and had a dilated main pulmonary artery, defined as a width exceeding 29 mm on axial images. Approximately 40% of patients with pulmonary hypertension had associated sleep apnea. No significant difference in pulmonary artery diameters could be found between the group without sleep apnea and the group with sleep apnea (34.5 ± 4.2 mm vs. 34.7 ± 4.4 mm, p = 0.373).
Collapse
Affiliation(s)
- Paul Stark
- Radiology Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Radiology, University of California, San Diego, CA 92093, USA
| | - Eric Y Chang
- Radiology Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Radiology, University of California, San Diego, CA 92093, USA
| |
Collapse
|
6
|
Chaszczewska-Markowska M, Górna K, Bogunia-Kubik K, Brzecka A, Kosacka M. The Influence of Comorbidities on Chemokine and Cytokine Profile in Obstructive Sleep Apnea Patients: Preliminary Results. J Clin Med 2023; 12:jcm12030801. [PMID: 36769452 PMCID: PMC9918226 DOI: 10.3390/jcm12030801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) is frequently associated with a chronic inflammatory state and cardiovascular/metabolic complications. The aim of this study was to evaluate the influence of certain comorbidities on a panel of 45 chemokines and cytokines in OSA patients with special regard to their possible association with cardiovascular diseases. MATERIAL AND METHODS This cross-sectional study was performed on 61 newly diagnosed OSA patients. For the measurement of the plasma concentration of chemokines and cytokines, the magnetic bead-based multiplex assay for the Luminex® platform was used. RESULTS In the patients with concomitant COPD, there were increased levels of pro-inflammatory cytokines (CCL11, CD-40 ligand) and decreased anti-inflammatory cytokine (IL-10), while in diabetes, there were increased levels of pro-inflammatory cytokines (IL-6, TRIAL). Obesity was associated with increased levels of both pro-inflammatory (IL-13) and anti-inflammatory (IL-1RA) cytokines. Hypertension was associated with increased levels of both pro-inflammatory (CCL3) and anti-inflammatory (IL-10) cytokines. Increased daytime pCO2, low mean nocturnal SaO2, and the oxygen desaturation index were associated with increased levels of pro-inflammatory cytokines (CXCL1, PDGF-AB, TNF-α, and IL-15). CONCLUSIONS In OSA patients with concomitant diabetes and COPD, elevated levels of certain pro-inflammatory and decreased levels of certain anti-inflammatory cytokines may favor the persistence of a chronic inflammatory state with further consequences. Nocturnal hypoxemia, frequent episodes of desaturation, and increased daytime pCO2 are factors contributing to the chronic inflammatory state in OSA patients.
Collapse
Affiliation(s)
- Monika Chaszczewska-Markowska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Katarzyna Górna
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
- Correspondence:
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, 53-439 Wroclaw, Poland
| | - Monika Kosacka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, 53-439 Wroclaw, Poland
| |
Collapse
|
7
|
Duan A, Huang Z, Hu M, Zhao Z, Zhao Q, Jin Q, Yan L, Zhang Y, Li X, An C, Luo Q, Liu Z. The comorbidity burden and disease phenotype in pre-capillary pulmonary hypertension: The contributing role of obstructive sleep apnea. Sleep Med 2023; 101:146-153. [PMID: 36395719 DOI: 10.1016/j.sleep.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pre-capillary pulmonary hypertension (PH) with risk factors for left ventricular diastolic dysfunction, described as an atypical phenotype of "mixed" pre- and post-capillary PH, has become a research focus. However, the relationship between obstructive sleep apnea (OSA), a known risk factor for cardiometabolic conditions, and comorbidity burden and disease phenotype in PH remains unclear. OBJECTIVE This study aimed to investigate the effect of the presence and severity of OSA on the left ventricular function, comorbidity burden and disease phenotype in pre-capillary PH patients. METHODS AND RESULTS We retrospectively examined 450 consecutive pre-capillary PH patients undergoing cardiorespiratory polygraphy and right heart catheterization between May 2020 to November 2021 at Fuwai Hospital. The prevalence of OSA was 34.2%, and the presence and severity of OSA in pre-capillary PH patients was associated with increased left heart mass index (P < 0.001), pulmonary arterial wedge pressure (P = 0.06) and H2FPEF score (P < 0.001). After adjustment for confounding factors, the severity of OSA measured as apnea-hypopnea index (AHI) was an independent risk factor associated with obesity, systemic hypertension, diabetes mellitus and an atypical phenotype (OR: 1.054, P = 0.004) in pre-capillary PH. A dose-response relationship was also identified between sleep parameters (AHI, oxygen desaturation index, the percentage of sleep time with oxygen saturation<80%) and the number of key comorbidities. Patients with ≥3 comorbidities (atypical phenotype) were older, experienced negative alterations in left ventricular structure and function, and were at a higher risk of OSA. CONCLUSION OSA is relatively prevalent in pre-capillary PH patients, independently associated with the presence of a variety of comorbidities and the atypical phenotype of PH. These findings highlight the importance of OSA as a modifiable target for optimal treatment in PH with comorbidities.
Collapse
Affiliation(s)
- Anqi Duan
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Zhihua Huang
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Meixi Hu
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Zhihui Zhao
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Qing Zhao
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Qi Jin
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China; Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Yan
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Yi Zhang
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Xin Li
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Chenhong An
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Qin Luo
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China.
| | - Zhihong Liu
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China.
| |
Collapse
|