1
|
Kurishima H, Chiba D, Baba K, Hamada S, Suzuki T, Kanabuchi R, Fujii G, Oyama M, Ochiai T, Mori Y, Aizawa T. Long-term results of Chiari pelvic osteotomy on the preservation of hip function with mean follow-up of more than 30 years and its prognostic factors. J Orthop Sci 2024; 29:990-994. [PMID: 37344327 DOI: 10.1016/j.jos.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Clinical outcomes of Chiari pelvic osteotomy for acetabular dysplasia, including conversion to total hip arthroplasty (THA), have not been adequately explored. The purpose of this study was to examine the long-term results and clinical outcomes of Chiari pelvic osteotomy as the primary outcome and to analyze its prognostic factors as the second outcome. METHODS This study was a multicenter, retrospective cohort study. Ninety-seven patients underwent Chiari pelvic osteotomy at three hospitals between March 1975 and October 1997. The long-term clinical outcomes of Chiari pelvic osteotomy, including conversion to THA and hip pain, were analyzed using the Kaplan-Meier method. In addition, the prognostic factors for conversion to THA after Chiari pelvic osteotomy were evaluated with clinical variables and radiographic parameters. RESULTS The study included 51 hips in 45 patients (4 men and 41 women) with long-term follow-up. The survival rates assessed by Kaplan-Meier analysis with conversion to THA as an endpoint, were 90.2% (95% confidence interval (CI) 82.0-98.4%) at 20 years and 73.5% (95% CI 61.1-86.0%) at 30 years. In contrast, the Kaplan-Meier survival rates with the Japanese Orthopaedic Association hip score for pain ≤20 as an endpoint, were 86.3% (95% CI 76.8-95.7%) at 20 years and 65.6% (95% CI 52.3-79.0%) at 30 years. Only older age at osteotomy was the significantly poor prognostic factor for conversion to THA, with a hazard ratio of 1.11/year, 95% CI 1.06 to 1.18, (p < 0.01). CONCLUSION Chiari pelvic osteotomy may still be a good alternative to bony reconstructive surgery for acetabular dysplasia especially in young patients. Only older age at the osteotomy was related to the poor prognosis of preserving hip function.
Collapse
Affiliation(s)
- Hiroaki Kurishima
- Tohoku University School of Medicine Department of Orthopaedic Surgery, 1-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi 980-8574, Japan; Department of Orthopaedic Surgery, Japanese Red Cross Sendai Hospital, 2-43-3 Yagiyamahoncho, Taihaku-Ku, Sendai, Miyagi 982-8501, Japan.
| | - Daisuke Chiba
- Tohoku University School of Medicine Department of Orthopaedic Surgery, 1-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi 980-8574, Japan.
| | - Kazuyoshi Baba
- Tohoku University School of Medicine Department of Orthopaedic Surgery, 1-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi 980-8574, Japan.
| | - Soshi Hamada
- Tohoku University School of Medicine Department of Orthopaedic Surgery, 1-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi 980-8574, Japan.
| | - Takayuki Suzuki
- Tohoku University School of Medicine Department of Orthopaedic Surgery, 1-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi 980-8574, Japan.
| | - Ryuichi Kanabuchi
- Tohoku University School of Medicine Department of Orthopaedic Surgery, 1-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi 980-8574, Japan.
| | - Genji Fujii
- Department of Orthopaedic Surgery, Matsuda Hospital, 17-1 Tatsutayashiki, Sanezawa, Izumi-Ku, Sendai, Miyagi 981-3217, Japan.
| | - Masamizu Oyama
- Department of Orthopaedic Surgery, Japanese Red Cross Sendai Hospital, 2-43-3 Yagiyamahoncho, Taihaku-Ku, Sendai, Miyagi 982-8501, Japan.
| | - Tatsuhiro Ochiai
- Miyagi Children's Hospital, 4-3-17 Ochiai, Aoba-Ku, Sendai, Miyagi 989-3126, Japan.
| | - Yu Mori
- Tohoku University School of Medicine Department of Orthopaedic Surgery, 1-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi 980-8574, Japan.
| | - Toshimi Aizawa
- Tohoku University School of Medicine Department of Orthopaedic Surgery, 1-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi 980-8574, Japan.
| |
Collapse
|
2
|
Sunavala-Dossabhoy G, Saba BM, McCarthy KJ. Debulking of the Femoral Stem in a Primary Total Hip Joint Replacement: A Novel Method to Reduce Stress Shielding. Bioengineering (Basel) 2024; 11:393. [PMID: 38671814 PMCID: PMC11047840 DOI: 10.3390/bioengineering11040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In current-generation designs of total primary hip joint replacement, the prostheses are fabricated from alloys. The modulus of elasticity of the alloy is substantially higher than that of the surrounding bone. This discrepancy plays a role in a phenomenon known as stress shielding, in which the bone bears a reduced proportion of the applied load. Stress shielding has been implicated in aseptic loosening of the implant which, in turn, results in reduction in the in vivo life of the implant. Rigid implants shield surrounding bone from mechanical loading, and the reduction in skeletal stress necessary to maintain bone mass and density results in accelerated bone loss, the forerunner to implant loosening. Femoral stems of various geometries and surface modifications, materials and material distributions, and porous structures have been investigated to achieve mechanical properties of stems closer to those of bone to mitigate stress shielding. For improved load transfer from implant to femur, the proposed study investigated a strategic debulking effort to impart controlled flexibility while retaining sufficient strength and endurance properties. Using an iterative design process, debulked configurations based on an internal skeletal truss framework were evaluated using finite element analysis. The implant models analyzed were solid; hollow, with a proximal hollowed stem; FB-2A, with thin, curved trusses extending from the central spine; and FB-3B and FB-3C, with thick, flat trusses extending from the central spine in a balanced-truss and a hemi-truss configuration, respectively. As outlined in the International Organization for Standardization (ISO) 7206 standards, implants were offset in natural femur for evaluation of load distribution or potted in testing cylinders for fatigue testing. The commonality across all debulked designs was the minimization of proximal stress shielding compared to conventional solid implants. Stem topography can influence performance, and the truss implants with or without the calcar collar were evaluated. Load sharing was equally effective irrespective of the collar; however, the collar was critical to reducing the stresses in the implant. Whether bonded directly to bone or cemented in the femur, the truss stem was effective at limiting stress shielding. However, a localized increase in maximum principal stress at the proximal lateral junction could adversely affect cement integrity. The controlled accommodation of deformation of the implant wall contributes to the load sharing capability of the truss implant, and for a superior biomechanical performance, the collared stem should be implanted in interference fit. Considering the results of all implant designs, the truss implant model FB-3C was the best model.
Collapse
Affiliation(s)
- Gulshan Sunavala-Dossabhoy
- Department of Biochemistry and Molecular Biology, LSU Health Science Center in Shreveport and Feist Weiller Cancer Center, Shreveport, LA 71130, USA
| | - Brent M. Saba
- Saba Metallurgical and Plant Engineering Services, LLC, Madisonville, LA 70447, USA;
| | - Kevin J. McCarthy
- Department of Cellular Biology and Anatomy, LSU Health Science Center in Shreveport and Feist Weiller Cancer Center, Shreveport, LA 71130, USA;
| |
Collapse
|
3
|
Koguchi M, Mori Y, Kamimura M, Ito K, Tanaka H, Kurishima H, Koyama T, Mori N, Masahashi N, Aizawa T. Low Young's Modulus TiNbSn Alloy Locking Plates Accelerate Osteosynthesis in Rabbit Tibiae. TOHOKU J EXP MED 2023; 261:199-209. [PMID: 37704419 DOI: 10.1620/tjem.2023.j075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
A new beta TiNbSn alloy with a low Young's modulus of approximately 40 GPa has been developed to resolve the stress shielding by Young's modulus divergence. In this study, the efficacy of TiNbSn alloy locking plates on bone repair is compared to that of commercially pure titanium (CP-Ti). The TiNbSn alloy and CP-Ti, which have Young's moduli of 49.1 GPa and 107 GPa, respectively, were compared. Male Japanese white rabbits were anesthetized, and osteotomy and osteosynthesis with locking plates were performed on the right tibia. The bone repair was assessed using micro-computed tomography (CT), histomorphometry, immunohistochemistry, and mechanical testing. Micro-CT, histomorphometry, immunohistochemistry, and mechanical testing were performed four weeks after osteotomy. Six weeks after surgery, micro-CT and mechanical testing were performed. Micro-CT analysis at four weeks after surgery showed that the intramedullary fracture callus in the TiNbSn alloy group had more bone volume and numerous bridging structures compared to the CP-Ti group (CP-Ti vs. TiNbSn alloy, 34.3 ± 13.1 mm3 vs. 61.3 ± 19.6 mm3, p = 0.02; mean ± standard deviation). At four weeks post-osteotomy, the healed tibia showed significantly higher strength in the TiNbSn alloy group compared with CP-Ti (CP-Ti vs. TiNbSn alloy, 81.3 ± 31.2 N vs. 133.7 ± 46.6 N, p = 0.04). TiNbSn alloy locking plates had a more positive impact on bone formation and bone strength restoration than the CP-Ti locking plates during the early phase of bone healing.
Collapse
Affiliation(s)
- Masashi Koguchi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Masayuki Kamimura
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Kentaro Ito
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Hidetatsu Tanaka
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Hiroaki Kurishima
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Tomoki Koyama
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Naoko Mori
- Department of Radiology, Akita University Graduate School of Medicine
| | | | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| |
Collapse
|
4
|
Baba K, Mori Y, Chiba D, Kuwahara Y, Kurishima H, Tanaka H, Kogure A, Kamimura M, Yamada N, Ohtsu S, Oyama M, Masahashi N, Hanada S, Itoi E, Aizawa T. TiNbSn stems with gradient changes of Young's modulus and stiffness reduce stress shielding compared to the standard fit-and-fill stems. Eur J Med Res 2023; 28:214. [PMID: 37400903 DOI: 10.1186/s40001-023-01199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The difference between Young's moduli of the femur and the stem causes stress shielding (SS). TiNbSn (TNS) stem has a low Young's modulus and strength with gradient functional properties during the change in elastic modulus with heat treatment. The aim of this study was to investigate the inhibitory effect of TNS stems on SS and their clinical outcomes compared to conventional stems. METHODS This study was a clinical trial. Primary THA was performed using a TNS stem from April 2016 to September 2017 for patients in the TNS group. Unilateral THA was performed using a Ti6Al4V alloy stem from January 2007 to February 2011 for patients in the control group. The TNS and Ti6Al4V stems were matched in shape. Radiographs were obtained at the 1- and 3-year follow-ups. Two surgeons independently checked the SS grade and appearance of cortical hypertrophy (CH). The Japanese Orthopaedic Association (JOA) scores before and 1 year after surgery were assessed as clinical scores. RESULTS None of the patients in the TNS group had grade 3 or 4 SS. In contrast, in the control group, 24% and 40% of patients had grade 3 and 4 SS at the 1- and 3-year follow-ups, respectively. The SS grade was lower in the TNS group than in the control group at the 1- and 3-year follow-ups (p < 0.001). The frequencies of CH in both groups were no significant difference at the 1- and 3-year follow-ups. The JOA scores of the TNS group significantly improved at 1 year after surgery and were comparable to control group. CONCLUSION The TNS stem reduced SS at 1 and 3 years after THA compared to the proximal-engaging cementless stem, although the shapes of the stems matched. The TNS stem could reduce SS, stem loosening, and periprosthetic fractures. TRIAL REGISTRATION Current Controlled Trials. ISRCTN21241251. https://www.isrctn.com/search?q=21241251 . The date of registration was October 26, 2021. Retrospectively registered.
Collapse
Affiliation(s)
- Kazuyoshi Baba
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Daisuke Chiba
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yoshiyuki Kuwahara
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hiroaki Kurishima
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hidetatsu Tanaka
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Atsushi Kogure
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Masayuki Kamimura
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Norikazu Yamada
- Department of Orthopaedic Surgery, Sendai Red Cross Hospital, 2‑43‑3 Yagiyamahoncho, Taihaku‑ku, Sendai, Miyagi, 982-8501, Japan
| | - Susumu Ohtsu
- Department of Orthopaedic Surgery, Osaki Citizen Hospital, 3-8-1 Furukawahonami, Osaki, Miyagi, 989-6183, Japan
| | - Masamizu Oyama
- Department of Orthopaedic Surgery, Sendai Red Cross Hospital, 2‑43‑3 Yagiyamahoncho, Taihaku‑ku, Sendai, Miyagi, 982-8501, Japan
| | - Naoya Masahashi
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Shuji Hanada
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku Rosai Hospital, 4-3-21 Dainohara, Aoba-ku, Sendai, Miyagi, 981-0911, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
5
|
Mori Y, Mori N. Approaches to reduce periprosthetic bone resorption after total hip arthroplasty. J Bone Miner Metab 2023; 41:575-576. [PMID: 37029833 DOI: 10.1007/s00774-023-01423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/09/2023]
Affiliation(s)
- Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan.
| | - Naoko Mori
- Department of Radiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| |
Collapse
|
6
|
Johnston A, Callanan A. Recent Methods for Modifying Mechanical Properties of Tissue-Engineered Scaffolds for Clinical Applications. Biomimetics (Basel) 2023; 8:205. [PMID: 37218791 PMCID: PMC10204517 DOI: 10.3390/biomimetics8020205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
The limited regenerative capacity of the human body, in conjunction with a shortage of healthy autologous tissue, has created an urgent need for alternative grafting materials. A potential solution is a tissue-engineered graft, a construct which supports and integrates with host tissue. One of the key challenges in fabricating a tissue-engineered graft is achieving mechanical compatibility with the graft site; a disparity in these properties can shape the behaviour of the surrounding native tissue, contributing to the likelihood of graft failure. The purpose of this review is to examine the means by which researchers have altered the mechanical properties of tissue-engineered constructs via hybrid material usage, multi-layer scaffold designs, and surface modifications. A subset of these studies which has investigated the function of their constructs in vivo is also presented, followed by an examination of various tissue-engineered designs which have been clinically translated.
Collapse
Affiliation(s)
| | - Anthony Callanan
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK;
| |
Collapse
|
7
|
Mori Y, Ueno K, Chiba D, Hashimoto K, Kawai Y, Baba K, Tanaka H, Aki T, Ogasawara M, Shibasaki N, Tokunaga K, Aizawa T, Nagasaki M. Genome-Wide Association Study and Transcriptome of Japanese Patients with Developmental Dysplasia of the Hip Demonstrates an Association with the Ferroptosis Signaling Pathway. Int J Mol Sci 2023; 24:ijms24055019. [PMID: 36902448 PMCID: PMC10003185 DOI: 10.3390/ijms24055019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
This study examined the association between developmental dysplasia of the hip (DDH) and disease-associated loci in a Japanese cohort. A genome-wide association study (GWAS) of 238 Japanese patients with DDH and 2044 healthy individuals was performed. As a replicate, GWAS was also conducted on the UK Biobank data with 3315 cases and matched 74,038 controls. Gene set enrichment analyses (GSEAs) of both the genetics and transcriptome of DDH were performed. Transcriptome analysis of cartilage specimens from DDH-associated osteoarthritis and femoral neck fractures was performed as a control. Most of the lead variants were very low-frequency ones in the UK, and variants in the Japanese GWAS could not be replicated with the UK GWAS. We assigned DDH-related candidate variants to 42 and 81 genes from the Japanese and UK GWASs, respectively, using functional mapping and annotation. GSEA of gene ontology, disease ontology, and canonical pathways identified the most enriched pathway to be the ferroptosis signaling pathway, both in the Japanese gene set as well as the Japanese and UK merged set. Transcriptome GSEA also identified significant downregulation of genes in the ferroptosis signaling pathway. Thus, the ferroptosis signaling pathway may be associated with the pathogenic mechanism of DDH.
Collapse
Affiliation(s)
- Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Daisuke Chiba
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ko Hashimoto
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kazuyoshi Baba
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hidetatsu Tanaka
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takashi Aki
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masanori Ogasawara
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Naoto Shibasaki
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8507, Japan
- Correspondence:
| |
Collapse
|
8
|
Mori Y, Fujimori S, Kurishima H, Inoue H, Ishii K, Kubota M, Kawakami K, Mori N, Aizawa T, Masahashi N. Antimicrobial Properties of TiNbSn Alloys Anodized in a Sulfuric Acid Electrolyte. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1487. [PMID: 36837117 PMCID: PMC9968052 DOI: 10.3390/ma16041487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
TiNbSn alloy is a high-performance titanium alloy which is biosafe, strong, and has a low Young's modulus. TiNbSn alloy has been clinically applied as a material for orthopedic prosthesis. Anodized TiNbSn alloys with acetic and sulfuric acid electrolytes have excellent biocompatibility for osseointegration. Herein, TiNbSn alloy was anodized in a sulfuric acid electrolyte to determine the antimicrobial activity. The photocatalytic activities of the anodic oxide alloys were investigated based on their electronic band structure and crystallinity. In addition, the cytotoxicity of the anodized TiNbSn alloy was evaluated using cell lines of the osteoblast and fibroblast lineages. The antimicrobial activity of the anodic oxide alloy was assessed according to the ISO 27447 using methicillin-susceptible Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli. The anodic oxide comprised rutile and anatase titanium dioxide (TiO2) and exhibited a porous microstructure. A well-crystallized rutile TiO2 phase was observed in the anodized TiNbSn alloy. The methylene blue degradation tests under ultraviolet illumination exhibited photocatalytic activity. In antimicrobial tests, the anodized TiNbSn alloy exhibited robust antimicrobial activities under ultraviolet illumination for all bacterial species, regardless of drug resistance. Therefore, the anodized TiNbSn alloy can be used as a functional biomaterial with low Young's modulus and excellent antimicrobial activity.
Collapse
Affiliation(s)
- Yu Mori
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Satoko Fujimori
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hiroaki Kurishima
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hiroyuki Inoue
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-machi, Naka-ku, Sakai 599-8531, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology, and Immunology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Maya Kubota
- Graduate School of Engineering, Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology, and Immunology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Naoko Mori
- Department of Radiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Toshimi Aizawa
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Naoya Masahashi
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
9
|
Ito K, Mori Y, Kamimura M, Koguchi M, Kurishima H, Koyama T, Mori N, Masahashi N, Hanada S, Itoi E, Aizawa T. β-type TiNbSn Alloy Plates With Low Young Modulus Accelerates Osteosynthesis in Rabbit Tibiae. Clin Orthop Relat Res 2022; 480:1817-1832. [PMID: 35543573 PMCID: PMC9384929 DOI: 10.1097/corr.0000000000002240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/19/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Ti6Al4V alloy, which is commonly used for biomedical applications, has a Young modulus (110 GPa) that is higher than that of human cortical bone (11 to 20 GPa). Using an implant with a material with a low Young modulus that enhances load sharing by the bone even more than those made of Ti6Al4V could be beneficial for bone healing and further reduce the potential for stress shielding. A new β-type TiNbSn alloy has a low Young modulus of approximately 40 to 49 GPa. However, whether the new titanium alloy with a lower Young modulus is advantageous in terms of fracture healing has not been assessed, and a small-animal model seems a reasonable first step in its assessment. QUESTIONS/PURPOSES To assess the impact of a TiNbSn alloy plate with a lower Young modulus compared with a Ti6Al4V alloy plate on fracture healing, we evaluated: (1) bony bridging and callus volume, (2) new bone formation and remaining cartilage tissue, (3) osteoblast activity in the callus, and (4) mechanical strength and stiffness of the callus in bending. METHODS Fracture plates manufactured from TiNbSn and Ti6Al4V alloys, which have Young moduli of 49 GPa and 110 GPa, respectively, were compared. The main reason for using rabbits was the high reliability of the three-point bending mechanical test of the rabbit tibia. Forty-two male Japanese white rabbits weighing 2.8 to 3.4 kg were anesthetized. A 5-cm skin incision was made on the medial side in the mid-diaphysis of the right tibia. Eight-hole plates were used, which were 42 mm long, 5 mm wide, and 1.2 mm thick. Plate fixation was performed using three proximal and three distal screws. After the plate was installed, an osteotomy was performed using a 1-mm-wide wire saw to create a standardized tibial transverse osteotomy model with a 1-mm gap. Bone healing was quantitatively assessed by two nonblinded observers using micro-CT (bony bridging and callus volume), histomorphometry (new bone formation and remaining cartilage tissue), immunohistochemistry (osteoblast activity), and mechanical testing (mechanical strength and stiffness in bending). Measurements on nondemineralized specimens were descriptive statistics due to their small number. Four weeks after osteotomy and fixation, 30 rabbits were euthanized to undergo micro-CT and subsequent mechanical testing (n = 12), histomorphometry and immunohistochemistry with demineralized specimens (n = 12), and histomorphometry with a nondemineralized specimen (n = 6). Eight weeks postoperatively, 12 rabbits were euthanized for micro-CT and subsequent mechanical testing. RESULTS Intramedullary fracture calluses treated with TiNbSn alloy plates had larger bone volumes and more numerous bridging structures than those treated with Ti6Al4V alloy plates at 4 weeks after osteotomy (Ti6Al4V alloy versus TiNbSn alloy: 30 ± 7 mm 3 versus 52 ± 14 mm 3 , mean difference 22 [95% CI 9 to 37]; p = 0.005; ICC 0.98 [95% CI 0.95 to 0.99]). Histologic assessments demonstrated there was greater new bone formation (total callus: Ti6Al4V versus TiNbSn: 16 ± 4 mm 2 versus 24 ± 7 mm 2 , mean difference 8 [95% CI 1 to 16]; p = 0.04; ICC 0.98 [95% CI 0.93 to 0.99]; intramedullary callus: Ti6Al4V versus TiNbSn: 6 ± 4 mm 2 versus 13 ± 5 mm 2 , mean difference 7 [95% CI 1 to 13]; p = 0.02; ICC 0.98 [95% CI 0.95 to 0.99]) and a higher number of osteocalcin-positive cells (Ti6Al4V alloy versus TiNbSn alloy: 1397 ± 197 cells/mm 2 versus 2044 ± 183 cells/mm 2 , mean difference 647 [95% CI 402 to 892]; p < 0.001; ICC 0.98 [95% CI 0.95 to 0.99]) in the TiNbSn alloy group than in the Ti6Al4V alloy group. At 4 weeks after osteotomy, both bone strength and stiffness of the healed bone in the TiNbSn alloy group were higher than those in the Ti6Al4V alloy group (maximum load: Ti6Al4V alloy versus TiNbSn alloy: 83 ± 30 N versus 127 ± 26 N; mean difference 44 [95% CI 8 to 80]; p = 0.02; stiffness: Ti6Al4V alloy versus TiNbSn alloy: 92 ± 43 N/mm versus 165 ± 63 N/mm; mean difference 73 [95% CI 4 to 143]; p = 0.047). Eight weeks after osteotomy, no between-group differences were observed in the strength and stiffness of the healed bone. CONCLUSION The results of this study indicate that TiNbSn alloy plate with a lower Young modulus resulted in improved bone formation and stiffer callus during the early phase (4 weeks after surgery) but not the later phase (8 weeks after surgery) of bone healing. CLINICAL RELEVANCE An overly stiff plate may impair callus formation and bone healing. The TiNbSn alloy plate with a low Young modulus improves the early formation of new bone and stiff callus at the osteotomy site compared with the Ti6Al4V alloy plate in the healing process, which may promote bone repair. TiNbSn alloy may be a promising biomaterial for fracture treatment devices. Further research to address concerns about the strength of TiNbSn alloy plates, such as fatigue life and plate fracture, will be necessary for clinical applications, including mechanical tests to verify fatigue life and validation in larger animals with greater body weight.
Collapse
Affiliation(s)
- Kentaro Ito
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Kamimura
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Koguchi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Kurishima
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoki Koyama
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoko Mori
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoya Masahashi
- Institute for Material Research, Tohoku University, Sendai, Japan
| | - Shuji Hanada
- Institute for Material Research, Tohoku University, Sendai, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
10
|
Mori Y, Masahashi N, Aizawa T. A Review of Anodized TiNbSn Alloys for Improvement in Layer Quality and Application to Orthopedic Implants. MATERIALS 2022; 15:ma15155116. [PMID: 35897548 PMCID: PMC9331693 DOI: 10.3390/ma15155116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023]
Abstract
Titanium alloys are useful for application in orthopedic implants. However, complications, such as prosthetic infections and aseptic loosening, often occur after orthopedic devices are implanted. Therefore, innovation in surface modification techniques is essential to develop orthopedic materials with optimal properties at the biomaterial–bone interface. In this review, we present recent research on the improvement in the osteoconductivity and antibacterial effect of the Ti-33.6% Nb-4% Sn (TiNbSn) alloy by anodic oxidation and other related studies. TiNbSn alloys are excellent new titanium alloys with a low Young’s modulus, high tensile strength, and with gradient functional properties such as a thermally adjustable Young’s modulus and strength. Titanium dioxide (TiO2), when obtained by the anodic oxidation of a TiNbSn alloy, improves bone affinity and provides antibacterial performance owing to its photocatalytic activity. The safety of TiO2 and its strong bonding with metal materials make its method of preparation a promising alternative to conventional methods for improving the surface quality of orthopedic implants. Implementing anodization technology for TiNbSn alloys may alleviate orthopedic surgery-related complications, such as loosening, stress shielding, and infection after arthroplasty.
Collapse
Affiliation(s)
- Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan;
- Correspondence: ; Tel.: +81-22-717-7245; Fax: +81-22-717-7248
| | - Naoya Masahashi
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan;
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan;
| |
Collapse
|
11
|
Negayama T, Iwata K, Shimamura M, Senda T, Mashiba T, Kaji Y, Yamamoto T. Total hip arthroplasty after rotational acetabular osteotomy for developmental dysplasia of the hip: a retrospective observational study. BMC Musculoskelet Disord 2022; 23:646. [PMID: 35794611 PMCID: PMC9258082 DOI: 10.1186/s12891-022-05597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Total hip arthroplasty after osteotomy is more technically challenging than primary total hip arthroplasty, especially concerning cup placement. This is attributed to bone morphological abnormalities caused by acetabular bone loss and osteophyte formation. This study aimed to investigate the clinical and radiological outcomes of total hip arthroplasty after rotational acetabular osteotomy compared with those of primary total hip arthroplasty, focusing mainly on acetabular deformity and cup position. Methods The study included 22 hips that had undergone rotational acetabular osteotomy and 22 hips in an age- and sex-matched control group of patients who underwent total hip arthroplasties between 2005 and 2020. We analyzed cup abduction and anteversion; lateral, anterior, and posterior cup center–edge angle; hip joint center position; femoral anteversion angle; and presence of acetabular defect using postoperative radiography and computed tomography. Operative results and clinical evaluations were also analyzed. Results The clinical evaluation showed that the postoperative flexion range of motion was lower in total hip arthroplasty after rotational acetabular osteotomy than in primary total hip arthroplasty, although no significant difference was noted in the postoperative total Japanese Orthopedic Association hip score. The operative time was significantly longer in the rotational acetabular osteotomy group than in the control group, but there was no significant difference in blood loss. The lateral cup center–edge angle was significantly higher and the posterior cup center–edge angle was significantly lower in the total hip arthroplasty after rotational acetabular osteotomy, suggesting a posterior bone defect existed in the acetabulum. In total hip arthroplasty after rotational acetabular osteotomy, the hip joint center was located significantly superior and lateral to the primary total hip arthroplasty. Conclusions In total hip arthroplasty after rotational acetabular osteotomy, the cup tended to be placed in the superior and lateral positions, where there was more bone volume. The deformity of the acetabulum and the high hip center should be considered for treatment success because they may cause cup instability, limited range of motion, and impingement.
Collapse
|
12
|
Self-organized TiO2 nanotubes on Ti-Nb-Fe alloys for biomedical applications: Synthesis and characterization. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Kurishima H, Mori Y, Ishii K, Inoue H, Mokudai T, Fujimori S, Itoi E, Hanada S, Masahashi N, Aizawa T. Antibacterial Activity of an Anodized TiNbSn Alloy Prepared in Sodium Tartrate Electrolyte. Front Bioeng Biotechnol 2022; 10:883335. [PMID: 35480976 PMCID: PMC9035674 DOI: 10.3389/fbioe.2022.883335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we anodized a TiNbSn alloy with low Young’s modulus in an electrolyte of sodium tartrate with and without hydrogen peroxide (H2O2). The photo-induced characteristics of the anodized alloy were analyzed for crystallinity and electrochemical conditions with comparisons to the effect with the addition of H2O2. The antibacterial activity was evaluated using methicillin-resistant Staphylococcus aureus and other pathogenic bacteria according to ISO 27447, and time decay antibacterial tests were also conducted. The anodized oxide had a porous microstructure with anatase- and rutile-structured titanium dioxide (TiO2). In contrast, the peaks of rutile-structured TiO2 were accelerated in the anodized TiNbSn alloy with H2O2. The formation of hydroxyl radicals and methylene blue breaching performance under ultraviolet irradiation was confirmed in the anodic oxide on TiNbSn alloy with and without H2O2. The anodic oxide on TiNbSn alloy had a robust antibacterial activity, and no significant difference was detected with or without H2O2. We conclude that anodized TiNbSn alloy with sodium tartrate electrolyte may be a functional biomaterial with a low Young’s modulus and an antibacterial function.
Collapse
Affiliation(s)
- Hiroaki Kurishima
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Mori
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Yu Mori,
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Inoue
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
| | - Takayuki Mokudai
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Satoko Fujimori
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eiji Itoi
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuji Hanada
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Naoya Masahashi
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Toshimi Aizawa
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
14
|
Abstract
Total hip arthroplasty is one of the most common and successful orthopedic surgeries. Sometimes, periprosthetic osteolysis occurs associated with the stress-shielding effect: it results in the reduction of bone density, where the femur is not correctly loaded, and in the formation of denser bone, where stresses are confined. This paper illustrates the stress shielding effect as a cause of the failing replacement of the hip joint. An extensive literature survey has been accomplished to describe the phenomenon and identify solutions. The latter refer to the design criteria and the choice of innovative materials/treatments for prosthetic device production. Experimental studies and numerical simulations have been reviewed. The paper includes an introduction to explain the scope; a section illustrating the causes of the stress shielding effect; a section focusing on recent attempts to redefine prosthetic device design criteria, current strategies to improve the osteointegration process, and a number of innovative biomaterials; functionally graded materials are presented in a dedicated section: they allow customizing prosthesis features with respect to the host bone. Conclusions recommend an integrated approach for the production of new prosthetic devices: the “engineering community” has to support the “medical community” to assure an effective translation of research results into clinical practice.
Collapse
|