1
|
Wang J, Du M, Wang X, He J, Zhang A, Chen K. Highly efficient bio-production of putrescine from L-arginine with arginase and L-ornithine decarboxylase in engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2024; 413:131471. [PMID: 39260727 DOI: 10.1016/j.biortech.2024.131471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
To achieve industrial-scale putrescine production, a high efficient bio-synthesis of putrescine involving arginase (ARG, EC 3.5.3.1) and L-ornithine decarboxylase was evaluated here. Among the four arginases tested, ARGBT from Bos Taurus showed the highest activity (1966 U/mg). Compared to the L-arginine decarboxylase (ADC) pathway, the strain expressing ARGBT and L-ornithine decarboxylase (SpeC) produced 28.7 g/L putrescine, a 38.6 % increase. Two pyridoxal phosphate (PLP) salvage pathways were evaluated, and the strain BL-PTac-PdxK co-expressed pyridoxal kinase (PdxK) performed better. D-Glucose was used as the co-substrate to improve the putrescine titer further. Under optimal conditions, 43.6 g/L putrescine was produced from 87.1 g/L L-arginine, and 76 g/L putrescine was synthesized on a 0.5 L scale. Using L-arginine fermentation broth (60 g/L) as the substrate, a titer of 30 g/L putrescine was achieved. This efficient biotransformation process presented here enables feasible industrial-scale putrescine production.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Min Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Junchen He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
| |
Collapse
|
2
|
Ji Y, Li J, Liang Y, Li L, Wang Y, Pi L, Xing P, Nomura CT, Chen S, Zhu C, Wang Q. Engineering the Tat-secretion pathway of Bacillus licheniformis for the secretion of cytoplasmic enzyme arginase. Appl Microbiol Biotechnol 2024; 108:89. [PMID: 38194145 DOI: 10.1007/s00253-023-12917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 01/10/2024]
Abstract
The industrial bacterium Bacillus licheniformis has long been used as a microbial factory for the production of enzymes due to its ability to secrete copious amounts of native extracellular proteins and its generally regarded as safe (GRAS) status. However, most attempts to use B. licheniformis to produce heterologous and cytoplasmic enzymes primarily via the general secretory (Sec) pathway have had limited success. The twin-arginine transport (Tat) pathway offers a promising alternative for the extracellular export of Sec-incompatible proteins because it transports full, correctly folded proteins. However, compared to the Sec pathway, the yields of the Tat pathway have historically been too low for commercial use. To improve the export efficiency of the Tat pathway, we identified the optimal Tat-dependent signal peptides and increased the abundance of the Tat translocases, the signal peptidase (SPase), and the intracellular chaperones. These strategic modifications significantly improved the Tat-dependent secretion of the cytoplasmic enzyme arginase into the culture medium using B. licheniformis. The extracellular enzymatic activity of arginase showed a 5.2-fold increase after these modifications. Moreover, compared to the start strain B. licheniformis 0F3, the production of extracellular GFP was improved by 3.8 times using the strategic modified strain B. licheniformis 0F13, and the extracellular enzymatic activity of SOX had a 1.3-fold increase using the strain B. licheniformis 0F14. This Tat-based production chassis has the potential for enhanced production of Sec-incompatible enzymes, therefore expanding the capability of B. licheniformis as an efficient cellular factory for the production of high-value proteins. KEY POINTS: • Systematic genetic modification of Tat-pathway in B. licheniformis. • Significant enhancement of the secretion capacity of Tat pathway for delivery the cytoplasmic enzyme arginase. • A new platform for efficient extracellular production of Sec-incompatible enzymes.
Collapse
Affiliation(s)
- Yi Ji
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | - Junliang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | - Yonglin Liang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | - Liang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | - Yajun Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | - Li Pi
- Wuhan Grand Hoyo Co., Ltd, Wuhan, 430075, People's Republic of China
| | - Panpan Xing
- Wuhan Grand Hoyo Co., Ltd, Wuhan, 430075, People's Republic of China
| | - Christopher T Nomura
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844, USA
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | - Chengjun Zhu
- Wuhan Grand Hoyo Co., Ltd, Wuhan, 430075, People's Republic of China.
| | - Qin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China.
| |
Collapse
|
3
|
K D, Kuramitsu S, Yokoyama S, Thirumananseri K, Ponnuraj K. Crystal structure analysis and molecular dynamics simulations of arginase from Thermus thermophilus. J Biomol Struct Dyn 2022:1-11. [PMID: 35994323 DOI: 10.1080/07391102.2022.2112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Arginase is a manganese-dependent metalloenzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. The product L-ornithine is an important component which has wide applications in the healthcare and pharmaceutical industry. Enzymatic biosynthesis of L-ornithine is one of the effective methods in which arginase is used as a bio-catalyst. Here, we report the crystal structure of arginase from Thermus thermophilus (TtArginase) in three different crystal forms. All structures were solved by molecular replacement and refined at 2.0 Å, 2.3 Å and 2.91 Å resolution respectively. TtArginase is compared with other structural homologs and the putative catalytic site residues were identified. To understand the thermophilic nature of TtArginase, the sequence and structural factors of TtArginase was compared with its mesophilic counterpart Bacillus subtilis arginase (BsArginase). To get insights on structural stability, molecular dynamics (MD) simulations were carried for TtArginase and BsArginase at three different temperatures (300 K, 333 K and 353 K). The results indicate that TtArginase is comparatively more stable than BsArginase. MD simulations were carried out in the absence of the metal ions at the active site which revealed high plasticity of the active site. The results suggest that metal ions are critical not only for the catalytic function, but also required for the maintenance of the proper active site geometry. Since arginase can be employed for large-scale industrial production of L-ornithine, the structural details of thermophilic arginases such as TtArginase will be helpful to engineer the protein to optimize its enzymatic action in a variety of conditions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dhanalakshmi K
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Seiki Kuramitsu
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Shigeyuki Yokoyama
- Structural Biology Laboratory, RIKEN Yokohama Institute, RIKEN, Tsurumi, Yokohama, Japan
| | - Kumarevel Thirumananseri
- Structural Biology Laboratory, RIKEN Yokohama Institute, RIKEN, Tsurumi, Yokohama, Japan.,Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamic Research, RIKEN Yokohama Institute, Tsurumi, Yokohama, Japan
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| |
Collapse
|
4
|
β-cyclodextrin based electrospun nanofibers for arginase immobilization and its application in the production of L-ornithine. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Li M, Qin J, Xiong K, Jiang B, Zhang T. Review of arginase as a promising biocatalyst: characteristics, preparation, applications and future challenges. Crit Rev Biotechnol 2021; 42:651-667. [PMID: 34612104 DOI: 10.1080/07388551.2021.1947962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As a committed step in the urea cycle, arginase cleaves l-arginine to form l-ornithine and urea. l-Ornithine is essential to: cell proliferation, collagen formation and other physiological functions, while the urea cycle itself converts highly toxic ammonia to urea for excretion. Recently, arginase was exploited as an efficient catalyst for the environmentally friendly synthesis of l-ornithine, an abundant nonprotein amino acid that is widely employed as a food supplement and nutrition product. It was also proposed as an arginine-reducing agent in order to treat arginase deficiency and to be a means of depleting arginine to treat arginine auxotrophic tumors. Targeting arginase inhibitors of the arginase/ornithine pathway offers great promise as a therapy for: cardiovascular, central nervous system diseases and cancers with high arginase expression. In this review, recent advances in the characteristics, structure, catalytic mechanism and preparation of arginase were summarized, with a focus being placed on the biotechnical and medical applications of arginase. In particular, perspectives have been presented on the challenges and opportunities for the environmentally friendly utilization of arginase during l-ornithine production and in therapies.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kai Xiong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Kumari N, Bansal S. Arginine depriving enzymes: applications as emerging therapeutics in cancer treatment. Cancer Chemother Pharmacol 2021; 88:565-594. [PMID: 34309734 DOI: 10.1007/s00280-021-04335-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the second leading cause of death globally. Chemotherapy and radiation therapy and other medications are employed to treat various types of cancer. However, each treatment has its own set of side effects, owing to its low specificity. As a result, there is an urgent need for newer therapeutics that do not disrupt healthy cells' normal functioning. Depriving nutrient or non/semi-essential amino acids to which cancerous cells are auxotrophic remains one such promising anticancer strategy. L-Arginine (Arg) is a semi-essential vital amino acid involved in versatile metabolic processes, signaling pathways, and cancer cell proliferation. Hence, the administration of Arg depriving enzymes (ADE) such as arginase, arginine decarboxylase (ADC), and arginine deiminase (ADI) could be effective in cancer therapy. The Arg auxotrophic cancerous cells like hepatocellular carcinoma, human colon cancer, leukemia, and breast cancer cells are sensitive to ADE treatment due to low expression of crucial enzymes argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL), and ornithine transcarbamylase (OCT). These therapeutic enzyme treatments induce cell death through inducing autophagy, apoptosis, generation of oxidative species, i.e., oxidative stress, and arresting the progression and expansion of cancerous cells at certain cell cycle checkpoints. The enzymes are undergoing clinical trials and could be successfully exploited as potential anticancer agents in the future.
Collapse
Affiliation(s)
- Neha Kumari
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India
| | - Saurabh Bansal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India.
| |
Collapse
|
7
|
Huang K, Zhang S, Guan X, Liu J, Li S, Song H. Thermostable arginase from Sulfobacillus acidophilus with neutral pH optimum applied for high-efficiency l-ornithine production. Appl Microbiol Biotechnol 2020; 104:6635-6646. [DOI: 10.1007/s00253-020-10721-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 01/31/2023]
|
8
|
Li S, Qiao J, Lin S, Liu Y, Ma L. A Highly Efficient Indirect P. pastoris Surface Display Method Based on the CL7/Im7 Ultra-High-Affinity System. Molecules 2019; 24:molecules24081483. [PMID: 30991754 PMCID: PMC6514646 DOI: 10.3390/molecules24081483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 02/04/2023] Open
Abstract
Cell surface display systems for immobilization of peptides and proteins on the surface of cells have various applications, such as vaccine generation, protein engineering, bio-conversion and bio-adsorption. Though plenty of methods have been established in terms of traditional yeast surface display systems, the development of a universal display method with high efficiency remains a challenge. Here we report an indirect yeast surface display method by anchoring Im7 proteins on the surface of P. pastoris, achieving highly efficient display of target proteins, including fluorescence proteins (sfGFP and mCherry) or enzymes (human Arginase I), with a CL7 fusion tag through the ultra-high-affinity interaction between Im7 and CL7. This indirect P. pastoris surface display approach is highly efficient and provides a robust platform for displaying biomolecules.
Collapse
Affiliation(s)
- Shuntang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
- Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Jie Qiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
- Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Siyu Lin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
- Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Yi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
- Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
- Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
9
|
Kai H, Xiao G, Bo J, Sen L. Construction of a food-grade arginase expression system and its application in L-ornithine production with whole cell biocatalyst. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Dhankhar R, Gulati P, Kumar S, Kapoor RK. Arginine-lowering enzymes against cancer: a technocommercial analysis through patent landscape. Expert Opin Ther Pat 2018; 28:603-614. [DOI: 10.1080/13543776.2018.1508452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rakhi Dhankhar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sanjay Kumar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rajeev Kumar Kapoor
- Enzyme Biotechnology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
11
|
Non-peptide guided auto-secretion of recombinant proteins by super-folder green fluorescent protein in Escherichia coli. Sci Rep 2017; 7:6990. [PMID: 28765554 PMCID: PMC5539203 DOI: 10.1038/s41598-017-07421-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/26/2017] [Indexed: 11/11/2022] Open
Abstract
Protein secretion in Escherichia coli is usually led by a signal peptide that targets the protein to specific secretory pathways. In this study, we demonstrated that the superfolder green fluorescent protein (sfGFP) could be served as a non-signal peptide to guide protein auto-secretion in E. coli. This auto-secretion was characterized as a three-step process through the sub-cellular localization analysis: inner membrane trans-location followed by anchoring at outer membrane, and then being released into culture media. We further determined that the beta-barrel structure and net negative charges of sfGFP played important roles in its auto-extracellular secretion property. Using sfGFP as a carrier, heterologous proteins ranging from peptide to complex protein, including antibacterial peptide PG4, endo-beta-N-acethylglucosamindase H (Endo H), human arginase-1 (ARG1), and glutamate decarboxylase (GAD) were all successfully expressed and secreted extracellularly when fused to the carboxyl end of sfGFP. Besides facilitating the extracellular secretion, sfGFP fusion proteins can also be correctly folded and formed the active complex protein structure, including the trimetric human ARG1 and homo-hexametric GAD. This is the first report that sfGFP can guide the secretion of recombinant proteins out of the cells from cytoplasm in E. coli without affecting their conformation and function.
Collapse
|
12
|
Ye R, Huang M, Lu H, Qian J, Lin W, Chu J, Zhuang Y, Zhang S. Comprehensive reconstruction and evaluation of Pichia pastoris genome-scale metabolic model that accounts for 1243 ORFs. BIORESOUR BIOPROCESS 2017; 4:22. [PMID: 28546903 PMCID: PMC5423920 DOI: 10.1186/s40643-017-0152-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/17/2017] [Accepted: 05/02/2017] [Indexed: 11/10/2022] Open
Abstract
Background Pichia pastoris is one of the most important cell factories for production of industrial enzymes and heterogenous proteins. The genome-scale metabolic model of high quality is crucial for comprehensive understanding of the P. pastoris metabolism. Methods In this paper, we upgraded P. pastoris genome-scale metabolic model based on the combination of latest genome annotations and literatures. Then the performance of the new model was evaluated using the Cobra Toolbox v2.0. Results Compared with the recently published model iMT1026, the reaction number in the new model iRY1243 was increased from 2035 to 2407 and the metabolite number was increased from 1018 to 1094. Accordingly, the unique ORF number was increased from 1026 to 1243. To improve the metabolic functions of P. pastoris genome-scale metabolic model, the biosynthesis pathways of vitamins and cofactors were carefully added. iRY1243 showed good performances when predicting the growth capability on most of the reported carbon and nitrogen sources, the metabolic flux distribution with glucose as a sole carbon source, the essential and partially essential genes, and the effects of gene deletion or overexpression on cell growth and S-adenosyl-l-methionine production. Conclusion iRY1243 is an upgraded P. pastoris genome-scale metabolic model with significant improvements in the metabolic coverage and prediction ability, and thus it will be a potential platform for further systematic investigation of P. pastoris metabolism. Electronic supplementary material The online version of this article (doi:10.1186/s40643-017-0152-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No.130, Meilong Road, Shanghai, 200237 China
| | - Mingzhi Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No.130, Meilong Road, Shanghai, 200237 China
| | - Hongzhong Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No.130, Meilong Road, Shanghai, 200237 China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No.130, Meilong Road, Shanghai, 200237 China
| | - Weilu Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No.130, Meilong Road, Shanghai, 200237 China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No.130, Meilong Road, Shanghai, 200237 China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No.130, Meilong Road, Shanghai, 200237 China
| | - Siliang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No.130, Meilong Road, Shanghai, 200237 China
| |
Collapse
|
13
|
Huang K, Zhang T, Jiang B, Mu W, Miao M. Characterization of a thermostable arginase from Rummeliibacillus pycnus SK31.001. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Bindal S, Gupta R. Thermo- and salt-tolerant chitosan cross-linked γ-glutamyl transpeptidase from Bacillus licheniformis ER15. Int J Biol Macromol 2016; 91:544-53. [DOI: 10.1016/j.ijbiomac.2016.05.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 11/30/2022]
|
15
|
Surface Immobilization of Human Arginase-1 with an Engineered Ice Nucleation Protein Display System in E. coli. PLoS One 2016; 11:e0160367. [PMID: 27479442 PMCID: PMC4968799 DOI: 10.1371/journal.pone.0160367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/18/2016] [Indexed: 01/18/2023] Open
Abstract
Ice nucleation protein (INP) is frequently used as a surface anchor for protein display in gram-negative bacteria. Here, MalE and TorA signal peptides, and three charged polypeptides, 6×Lys, 6×Glu and 6×Asp, were anchored to the N-terminus of truncated INP (InaK-N) to improve its surface display efficiency for human Arginase1 (ARG1). Our results indicated that the TorA signal peptide increased the surface translocation of non-protein fused InaK-N and human ARG1 fused InaK-N (InaK-N/ARG1) by 80.7% and 122.4%, respectively. Comparably, the MalE signal peptide decreased the display efficiencies of both the non-protein fused InaK-N and InaK-N/ARG1. Our results also suggested that the 6×Lys polypeptide significantly increased the surface display efficiency of K6-InaK-N/ARG1 by almost 2-fold, while also practically abolishing the surface translocation of non-protein fused InaK-N, indicating the interesting roles of charged polypeptides in bacteria surface display systems. Cell surface-immobilized K6-InaK-N/ARG1 presented an arginase activity of 10.7 U/OD600 under the optimized conditions of 40°C, pH 10.0 and 1 mM Mn2+, which could convert more than 95% of L-Arginine (L-Arg) to L-Ornithine (L-Orn) in 16 hours. The engineered InaK-Ns expanded the INP surface display system, which aided in the surface immobilization of human ARG1 in E. coli cells.
Collapse
|
16
|
Gasser B, Steiger MG, Mattanovich D. Methanol regulated yeast promoters: production vehicles and toolbox for synthetic biology. Microb Cell Fact 2015; 14:196. [PMID: 26627685 PMCID: PMC4667464 DOI: 10.1186/s12934-015-0387-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 11/26/2022] Open
Abstract
Promoters are indispensable elements of a standardized parts collection for synthetic biology. Regulated promoters of a wide variety of well-defined induction ratios and expression strengths are highly interesting for many applications. Exemplarily, we discuss the application of published genome scale transcriptomics data for the primary selection of methanol inducible promoters of the yeast Pichia pastoris (Komagataella sp.). Such a promoter collection can serve as an excellent toolbox for cell and metabolic engineering, and for gene expression to produce heterologous proteins.
Collapse
Affiliation(s)
- Brigitte Gasser
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, Vienna, Austria.
| | - Matthias G Steiger
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, Vienna, Austria.
| | - Diethard Mattanovich
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, Vienna, Austria.
| |
Collapse
|