1
|
Kazakov AS, Deryusheva EI, Rastrygina VA, Sokolov AS, Permyakova ME, Litus EA, Uversky VN, Permyakov EA, Permyakov SE. Interaction of S100A6 Protein with the Four-Helical Cytokines. Biomolecules 2023; 13:1345. [PMID: 37759746 PMCID: PMC10526228 DOI: 10.3390/biom13091345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
S100 is a family of over 20 structurally homologous, but functionally diverse regulatory (calcium/zinc)-binding proteins of vertebrates. The involvement of S100 proteins in numerous vital (patho)physiological processes is mediated by their interaction with various (intra/extra)cellular protein partners, including cell surface receptors. Furthermore, recent studies have revealed the ability of specific S100 proteins to modulate cell signaling via direct interaction with cytokines. Previously, we revealed the binding of ca. 71% of the four-helical cytokines via the S100P protein, due to the presence in its molecule of a cytokine-binding site overlapping with the binding site for the S100P receptor. Here, we show that another S100 protein, S100A6 (that has a pairwise sequence identity with S100P of 35%), specifically binds numerous four-helical cytokines. We have studied the affinity of the recombinant forms of 35 human four-helical cytokines from all structural families of this fold to Ca2+-loaded recombinant human S100A6, using surface plasmon resonance spectroscopy. S100A6 recognizes 26 of the cytokines from all families of this fold, with equilibrium dissociation constants from 0.3 nM to 12 µM. Overall, S100A6 interacts with ca. 73% of the four-helical cytokines studied to date, with a selectivity equivalent to that for the S100P protein, with the differences limited to the binding of interleukin-2 and oncostatin M. The molecular docking study evidences the presence in the S100A6 molecule of a cytokine-binding site, analogous to that found in S100P. The findings argue the presence in some of the promiscuous members of the S100 family of a site specific to a wide range of four-helical cytokines. This unique feature of the S100 proteins potentially allows them to modulate the activity of the numerous four-helical cytokines in the disorders accompanied by an excessive release of the cytokines.
Collapse
Affiliation(s)
- Alexey S. Kazakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Evgenia I. Deryusheva
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Victoria A. Rastrygina
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Andrey S. Sokolov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Maria E. Permyakova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Ekaterina A. Litus
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Vladimir N. Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
- Department of Molecular, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Eugene A. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Sergei E. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| |
Collapse
|
2
|
Meng B, Yang B, Qu Y, Liu Y, Wu D, Fu C, He Y, Chen X, Liu C, Kou X, Cao Y. Dual Role of Interleukin-20 in Different Stages of Osteoclast Differentiation and Its Osteoimmune Regulation during Alveolar Bone Remodeling. Int J Mol Sci 2023; 24:ijms24043810. [PMID: 36835229 PMCID: PMC9961846 DOI: 10.3390/ijms24043810] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Osteoimmunology mediators are critical to balance osteoblastogenesis and osteoclastogenesis to maintain bone homeostasis. A lot of the osteoimmunology mediators are regulated by interleukin-20 (IL-20). However, little is known about the role of IL-20 in bone remodeling. Here, we showed that IL-20 expression was correlated with osteoclast (OC) activity in remodeled alveolar bone during orthodontic tooth movement (OTM). Ovariectomize (OVX) in rats promoted OC activity and enhanced IL-20 expression, while blocking OC inhibited IL-20 expression in osteoclasts. In vitro, IL-20 treatment promoted survival, inhibited apoptosis of the preosteoclast at the early stages of osteoclast differentiation, and boosted the formation of osteoclasts and their bone resorption function at the late stages. More importantly, anti-IL-20 antibody treatment blocked IL-20-induced osteoclastogenesis and the subsequent bone resorption function. Mechanistically, we showed that IL-20 synergistically acts with RANKL to activate the NF-κB signaling pathway to promote the expression of c-Fos and NFATc1 to promote osteoclastogenesis. Moreover, we found that local injection of IL-20 or anti-IL-20 antibody enhanced osteoclast activity and accelerated OTM in rats, while blocking IL-20 reversed this phenomenon. This study revealed a previously unknown role of IL-20 in regulating alveolar bone remodeling and implies the application of IL-20 to accelerated OTM.
Collapse
Affiliation(s)
- Bowen Meng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Benyi Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yan Qu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yuanbo Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Dongle Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chaoran Fu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yifan He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Xi Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510260, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Correspondence: (X.K.); (Y.C.)
| | - Yang Cao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Correspondence: (X.K.); (Y.C.)
| |
Collapse
|
3
|
Liu C, Chu D, Kalantar‐Zadeh K, George J, Young HA, Liu G. Cytokines: From Clinical Significance to Quantification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004433. [PMID: 34114369 PMCID: PMC8336501 DOI: 10.1002/advs.202004433] [Citation(s) in RCA: 269] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/26/2021] [Indexed: 05/24/2023]
Abstract
Cytokines are critical mediators that oversee and regulate immune and inflammatory responses via complex networks and serve as biomarkers for many diseases. Quantification of cytokines has significant value in both clinical medicine and biology as the levels provide insights into physiological and pathological processes and can be used to aid diagnosis and treatment. Cytokines and their clinical significance are introduced from the perspective of their pro- and anti-inflammatory effects. Factors affecting cytokines quantification in biological fluids, native levels in different body fluids, sample processing and storage conditions, sensitivity to freeze-thaw, and soluble cytokine receptors are discussed. In addition, recent advances in in vitro and in vivo assays, biosensors based on different signal outputs and intracellular to extracellular protein expression are summarized. Various quantification platforms for high-sensitivity and reliable measurement of cytokines in different scenarios are discussed, and commercially available cytokine assays are compared. A discussion of challenges in the development and advancement of technologies for cytokine quantification that aim to achieve real-time multiplex cytokine analysis for point-of-care situations applicable for both biomedical research and clinical practice are discussed.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Dewei Chu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | | | - Jacob George
- Storr Liver CentreWestmead Institute of Medical ResearchUniversity of Sydney and Department of Gastroenterology and HepatologyWestmead HospitalWestmeadNSW2145Australia
| | - Howard A. Young
- Laboratory of Cancer ImmunometabolismCenter for Cancer ResearchNational Cancer Institute at FrederickFrederickMD21702USA
| | - Guozhen Liu
- School of Life and Health SciencesThe Chinese University of Hong KongShenzhen518172P. R. China
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
4
|
Voloshin SA, Feyzkhanova GU, Savvateeva EN, Smoldovskaya OV, Rubina A. Microarray for Quantitative Determination of Inflammatory Biomarkers in a Culture Medium. Mol Biol 2021. [DOI: 10.1134/s0026893320060138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Taneja V, Goel M, Shankar U, Kumar A, Khilnani GC, Prasad HK, Prasad GBKS, Gupta UD, Sharma TK. An Aptamer Linked Immobilized Sorbent Assay (ALISA) to Detect Circulatory IFN-α, an Inflammatory Protein among Tuberculosis Patients. ACS COMBINATORIAL SCIENCE 2020; 22:656-666. [PMID: 33063508 DOI: 10.1021/acscombsci.0c00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dysregulation of IFN-α is the basis for pathogenesis of autoimmune as well as infectious diseases. Identifying inflammatory signatures in peripheral blood of patients is an approach for monitoring active infection. Hence, estimation of type I IFNs as an inflammatory biomarker to scrutinize disease status after treatment is useful. Accordingly, an Aptamer Linked Immobilized Sorbent Assay (ALISA) for the detection of IFN-α in serum samples was developed. Sixteen aptamers were screened for their ability to bind IFN-α. Aptamer IFNα-3 exhibited specificity for IFN-α with no cross-reactivity with interferons β and γ and human serum albumin. The disassociation constant (Kd) was determined to be 3.96 ± 0.36 nM, and the limit of detection was ∼2 ng. The characterized IFNα-3 aptamer was used in ALISA to screen tuberculosis (TB) patients' sera. An elevated IFN-α level in sera derived from untreated TB patients (median = 0.31), compared to nontuberculous household contacts (median = 0.13) and healthy volunteers (median = 0.12), and further a decline in IFN-α level among treated patients (median = 0.13) were seen. The ALISA assay facilitates direct estimation of inflammatory protein(s) in circulation unlike mRNA estimation by real time PCR. Designing of aptamers similar to the IFNα-3 aptamer provides a novel approach to assess other inflammatory protein(s) in patients before, during, and after completion of treatment and would denote clinical improvement in successfully treated patients.
Collapse
Affiliation(s)
- Vibha Taneja
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282001, India
- Department of Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh 474011, India
- Aptamer Technology and Diagnostics Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute, Incubator, NCR Biotech Science Cluster, Third Milestone, Faridabad, Gurgaon Expressway, Faridabad, 121001, India
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Manish Goel
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Uma Shankar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Gopi C. Khilnani
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Hanumanthappa K. Prasad
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | | | - Umesh D. Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282001, India
| | - Tarun K. Sharma
- Aptamer Technology and Diagnostics Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute, Incubator, NCR Biotech Science Cluster, Third Milestone, Faridabad, Gurgaon Expressway, Faridabad, 121001, India
| |
Collapse
|
6
|
Zhang X, Mariano CF, Ando Y, Shen K. Bioengineering tools for probing intracellular events in T lymphocytes. WIREs Mech Dis 2020; 13:e1510. [PMID: 33073545 DOI: 10.1002/wsbm.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/11/2022]
Abstract
T lymphocytes are the central coordinator and executor of many immune functions. The activation and function of T lymphocytes are mediated through the engagement of cell surface receptors and regulated by a myriad of intracellular signaling network. Bioengineering tools, including imaging modalities and fluorescent probes, have been developed and employed to elucidate the cellular events throughout the functional lifespan of T cells. A better understanding of these events can broaden our knowledge in the immune systems biology, as well as accelerate the development of effective diagnostics and immunotherapies. Here we review the commonly used and recently developed techniques and probes for monitoring T lymphocyte intracellular events, following the order of intracellular events in T cells from activation, signaling, metabolism to apoptosis. The techniques introduced here can be broadly applied to other immune cells and cell systems. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Immune System Diseases > Biomedical Engineering Infectious Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Chelsea F Mariano
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Yuta Ando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.,USC Stem Cell, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Kragstrup TW, Andersen T, Heftdal LD, Hvid M, Gerwien J, Sivakumar P, Taylor PC, Senolt L, Deleuran B. The IL-20 Cytokine Family in Rheumatoid Arthritis and Spondyloarthritis. Front Immunol 2018; 9:2226. [PMID: 30319661 PMCID: PMC6167463 DOI: 10.3389/fimmu.2018.02226] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022] Open
Abstract
This review describes the IL-20 family of cytokines in rheumatoid arthritis (RA) and spondyloartrhitits (SpA) including psoriatic arthritis. The IL-20 receptor (R) cytokines IL-19, IL-20, and IL-24 are produced in both the peripheral blood and the synovial joint and are induced by Toll-like receptor ligands and autoantibody-associated immune complexes in monocytes. IL-19 seems to have anti-inflammatory functions in arthritis. In contrast, IL-20 and IL-24 increase the production of proinflammatory molecules such as monocyte chemoattractant protein 1 and are associated with bone degradation and radiographic progression. IL-22 is also associated with progression of bone erosions. This suggests that the IL-22RA1 subunit shared by IL-20, IL-22, and IL-24 is important for bone homeostasis. In line with this, the IL-22RA1 has been found on preosteoclasts in early RA. IL-26 is produced in high amounts by myofibroblasts and IL-26 stimulation of monocytes is an important inducer of Th17 cells in RA. This indicates a role for IL-26 as an important factor in the interactions between resident synovial cells and infiltrating leukocytes. Clinical trials that investigate inhibitors of IL-20 (fletikumab) and IL-22 (fezakinumab) in psoriasis and RA have been terminated. Instead, it seems that the strategy for modulating the IL-20 cytokine family should take the overlap in cellular sources and effector mechanisms into account. The redundancy encourages inhibition of more than one cytokine or one of the shared receptors. All IL-20 family members utilize the Janus kinase signaling pathway and are therefore potentially inhibited by drugs targeting these enzymes. Effects and adverse effects in ongoing clinical trials with inhibitors of IL-22 and the IL-22RA1 subunit and recombinant IL-22 fusion proteins will possibly provide important information about the IL-20 subfamily of cytokines in the future.
Collapse
Affiliation(s)
- Tue W Kragstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Andersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Line D Heftdal
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Malene Hvid
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Pallavur Sivakumar
- Immuno Oncology Translational Development, Celgene Corportation, Seattle, WA, United States
| | - Peter C Taylor
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Ladislav Senolt
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Wang HH, Hsu YH, Chang MS. IL-20 bone diseases involvement and therapeutic target potential. J Biomed Sci 2018; 25:38. [PMID: 29690863 PMCID: PMC5913811 DOI: 10.1186/s12929-018-0439-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Millions of people around the world suffer from bone disorders, likes osteoporosis, rheumatoid arthritis (RA), and cancer-induced osteolysis. In general, the bone remodeling balance is determined by osteoclasts and osteoblasts, respectively responsible for bone resorption and bone formation. Excessive inflammation disturbs the activities of these two kinds of cells, typically resulting in the bone loss. MAIN BODY IL-20 is emerging as a potent angiogenic, chemotactic, and proinflammatory cytokine related to several chronic inflammatory disorders likes psoriasis, atherosclerosis, cancer, liver fibrosis, and RA. IL-20 has an important role in the regulation of osteoclastogenesis and osteoblastogenesis and is upregulated in several bone-related diseases. The anti-IL-20 monoclonal antibody treatment has a therapeutic potential in several experimental disease models including ovariectomy-induced osteoporosis, cancer-induced osteolysis, and bone fracture. CONCLUSION This review article provides an overview describing the IL-20's biological functions in the common bone disorders and thus providing a novel therapeutic strategy in the future.
Collapse
Affiliation(s)
- Hsiao-Hsuan Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan.,Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ming-Shi Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. .,Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| |
Collapse
|
9
|
Kumar P, Bose PP. Visual Detection ofLeishmania donovaniandLeptomonas seymouriin Co-Infected Samples by Their Specific DNA Biomarker and Gold Nanoparticle. ChemistrySelect 2017. [DOI: 10.1002/slct.201701573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Partha Pratim Bose
- Amity Institute of Applied Sciences (AIAS); Amity University; Noida India
| |
Collapse
|
10
|
On-chip immune cell activation and subsequent time-resolved magnetic bead-based cytokine detection. Biomed Microdevices 2017; 18:93. [PMID: 27628061 DOI: 10.1007/s10544-016-0117-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cytokine profiling and immunophenotyping offer great potential for understanding many disease mechanisms, personalized diagnosis, and immunotherapy. Here, we demonstrate a time-resolved detection of cytokine from a single cell cluster using an in situ magnetic immune assay. An array of triple-layered microfluidic chambers was fabricated to enable simultaneous cell culture under perfusion flow and detection of the induced cytokines at multiple time-points. Each culture chamber comprises three fluidic compartments which are dedicated to, cell culture, perfusion and immunoassay. The three compartments are separated by porous membranes, which allow the diffusion of fresh nutrient from the perfusion compartment into the cell culture compartment and cytokines secretion from the cell culture compartment into the immune assay compartment. This structure hence enables capturing the released cytokines without disturbing the cell culture and without minimizing benefit gain from perfusion. Functionalized magnetic beads were used as a solid phase carrier for cytokine capturing and quantification. The cytokines released from differential stimuli were quantified in situ in non-differentiated U937 monocytes and differentiated macrophages.
Collapse
|
11
|
Protein Array-Based Detection of Proteins in Kidney Tissues from Patients with Membranous Nephropathy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7843584. [PMID: 28337458 PMCID: PMC5350302 DOI: 10.1155/2017/7843584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 11/26/2022]
Abstract
Membranous nephropathy (MN) is an autoimmune inflammatory disease in which proteins related with plenty of biological processes play an important role. However, the role of these proteins in the pathogenesis of MN is still unclear. This study aimed to screen differential proteins in kidney tissue samples from MN patients by using protein arrays and determine the pathways involved in the pathogenesis of MN. This study first tested a quantitative protein array (QAH-INF-3) and two semiquantitative protein arrays (L-493 and L-507) with normal renal tissue and identified L-493 as the most appropriate assay to compare protein levels between MN tissues and normal control tissues. The L-493 array identified 66 differentially expressed proteins (DEPs) that may be associated with MN. The gene oncology (GO) and protein-protein interaction (PPI) analyses revealed several processes potentially involved in MN, including extracellular matrix disassembly and organization, cell adhesion, cell-cell signaling, cellular protein metabolic process, and immune response (P < 0.05). We suggest that these different pathways work together via protein signaling and result in the pathogenesis and progression of MN.
Collapse
|
12
|
Liu G, Zhang K, Nadort A, Hutchinson MR, Goldys EM. Sensitive Cytokine Assay Based on Optical Fiber Allowing Localized and Spatially Resolved Detection of Interleukin-6. ACS Sens 2017; 2:218-226. [PMID: 28723139 DOI: 10.1021/acssensors.6b00619] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We demonstrated a cytokine detection device based on gold nanoparticle modified silica optical fiber for the monitoring of locally variable cytokine interleukin-6 (IL-6) concentrations using a sandwich immunoassay scheme. The fiber is designed to be introduced into an intrathecal catheter with micrometer-sized holes drilled along its length to enable fluid exchange between the outside and inside of the catheter. An exposed optical fiber (diameter 125 μm) modified with a layer of gold nanoparticles was functionalized with the IL-6 capture antibody to form the sensing interface. The immunocapture device was incubated with a cytokine solution to capture the analyte. The device was then exposed to the IL-6 detection antibody which was loaded on the fluorescently labeled magnetic nanoparticles, making it possible to quantify the cytokine concentration based on the intensity of fluorescence. A reliable method for quantifying the fluorescent signal on a 3D structure was developed. This device was applied to the detection of cytokine IL-6 with the low limit of detection of 1 pg mL-1 in a sample volume of 1 μL. The device has the linear detection range of 1-400 pg mL-1 and spatial resolution on the order of 200-450 μm, and it is capable of detecting localized IL-6 secreted by live BV2 cells following their liposaccharide stimulation. This biological detection system is suitable for monitoring multiple health conditions.
Collapse
Affiliation(s)
- Guozhen Liu
- ARC
Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia
- Key
Laboratory of Pesticide and Chemical Biology of Ministry of Education,
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Kaixin Zhang
- ARC
Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia
| | - Annemarie Nadort
- ARC
Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia
| | - Mark R. Hutchinson
- ARC
Centre of Excellence in Nanoscale Biophotonics (CNBP), The University of Adelaide, Adelaide 5005, Australia
| | - Ewa M. Goldys
- ARC
Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia
| |
Collapse
|
13
|
Emerging Cytokine Biosensors with Optical Detection Modalities and Nanomaterial-Enabled Signal Enhancement. SENSORS 2017; 17:s17020428. [PMID: 28241443 PMCID: PMC5335944 DOI: 10.3390/s17020428] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/12/2017] [Accepted: 02/18/2017] [Indexed: 12/17/2022]
Abstract
Protein biomarkers, especially cytokines, play a pivotal role in the diagnosis and treatment of a wide spectrum of diseases. Therefore, a critical need for advanced cytokine sensors has been rapidly growing and will continue to expand to promote clinical testing, new biomarker development, and disease studies. In particular, sensors employing transduction principles of various optical modalities have emerged as the most common means of detection. In typical cytokine assays which are based on the binding affinities between the analytes of cytokines and their specific antibodies, optical schemes represent the most widely used mechanisms, with some serving as the gold standard against which all existing and new sensors are benchmarked. With recent advancements in nanoscience and nanotechnology, many of the recently emerging technologies for cytokine detection exploit various forms of nanomaterials for improved sensing capabilities. Nanomaterials have been demonstrated to exhibit exceptional optical properties unique to their reduced dimensionality. Novel sensing approaches based on the newly identified properties of nanomaterials have shown drastically improved performances in both the qualitative and quantitative analyses of cytokines. This article brings together the fundamentals in the literature that are central to different optical modalities developed for cytokine detection. Recent advancements in the applications of novel technologies are also discussed in terms of those that enable highly sensitive and multiplexed cytokine quantification spanning a wide dynamic range. For each highlighted optical technique, its current detection capabilities as well as associated challenges are discussed. Lastly, an outlook for nanomaterial-based cytokine sensors is provided from the perspective of optimizing the technologies for sensitivity and multiplexity as well as promoting widespread adaptations of the emerging optical techniques by lowering high thresholds currently present in the new approaches.
Collapse
|
14
|
Bech R, Jalilian B, Agger R, Iversen L, Erlandsen M, Otkjaer K, Johansen C, Paludan SR, Rosenberg CA, Kragballe K, Vorup-Jensen T. Interleukin 20 regulates dendritic cell migration and expression of co-stimulatory molecules. MOLECULAR AND CELLULAR THERAPIES 2016; 4:1. [PMID: 26819710 PMCID: PMC4728801 DOI: 10.1186/s40591-016-0046-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/18/2016] [Indexed: 01/04/2023]
Abstract
Background Psoriasis is an inflammatory disease characterized by leukocyte skin infiltration. Interestingly, recent works suggest that the migration of dendritic cells (DCs) is abnormal in psoriatic skin. DCs have significant role in regulating the function of T lymphocytes, at least in part influenced by the local environment of cytokines. In psoriatic skin lesions the expression of IL-20 is highly up-regulated. It is unclear if this cytokine has any influence on DCs. Methods Here, we investigated the influence of IL-20 in monocyte-derived dendritic cell (MDDCs) in vitro. This work addressed IL-20 effects on DC maturation, receptor expression and signaling. By use of extra cellular matrix components mimicking the skin environment, we also studied the functional effects of IL-20 on the chemotactic migration of DCs. Based on the recent finding that CD18 integrin are shed during migration of myeloid leukocytes, the concentration of these adhesion molecules was measured in MDDCs culture supernatants post migration. Results Following stimulation with IL-20, immature human MDDCs enhanced the expression of the co-stimulatory molecule CD86, further enabling activation of the p38 MAPK, but not the STAT3, pathway. IL-20 increased the migration of MDDCs in a biphasic response narrowly controlled by the interleukin concentration. A concomitant change in the shedding of CD18 integrins suggested that these adhesion molecules play a role in the migration of the MDDCs through the extracellular matrix layer. Conclusion Taken together, our findings points to a possible, yet subtle, role of IL-20 in DCs migration. The biphasic response suggests that the aberrant IL-20 expression in psoriasis impedes DC migration, which could be a part of the processes that precipitates the dysregulated inflammatory response associated with this disease. Electronic supplementary material The online version of this article (doi:10.1186/s40591-016-0046-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rikke Bech
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Babak Jalilian
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ralf Agger
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Mogens Erlandsen
- Department of Public Health - Biostatistics, Aarhus University, Aarhus, Denmark
| | - Kristian Otkjaer
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Knud Kragballe
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Interdisiplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.,Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, The Bartholin Building (1240), Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| |
Collapse
|
15
|
Bech R, Jalilian B, Agger R, Iversen L, Erlandsen M, Otkjaer K, Johansen C, Paludan SR, Rosenberg CA, Kragballe K, Vorup-Jensen T. Interleukin 20 regulates dendritic cell migration and expression of co-stimulatory molecules. MOLECULAR AND CELLULAR THERAPIES 2016; 4:1. [PMID: 26819710 PMCID: PMC4728801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/18/2016] [Indexed: 11/21/2023]
Abstract
BACKGROUND Psoriasis is an inflammatory disease characterized by leukocyte skin infiltration. Interestingly, recent works suggest that the migration of dendritic cells (DCs) is abnormal in psoriatic skin. DCs have significant role in regulating the function of T lymphocytes, at least in part influenced by the local environment of cytokines. In psoriatic skin lesions the expression of IL-20 is highly up-regulated. It is unclear if this cytokine has any influence on DCs. METHODS Here, we investigated the influence of IL-20 in monocyte-derived dendritic cell (MDDCs) in vitro. This work addressed IL-20 effects on DC maturation, receptor expression and signaling. By use of extra cellular matrix components mimicking the skin environment, we also studied the functional effects of IL-20 on the chemotactic migration of DCs. Based on the recent finding that CD18 integrin are shed during migration of myeloid leukocytes, the concentration of these adhesion molecules was measured in MDDCs culture supernatants post migration. RESULTS Following stimulation with IL-20, immature human MDDCs enhanced the expression of the co-stimulatory molecule CD86, further enabling activation of the p38 MAPK, but not the STAT3, pathway. IL-20 increased the migration of MDDCs in a biphasic response narrowly controlled by the interleukin concentration. A concomitant change in the shedding of CD18 integrins suggested that these adhesion molecules play a role in the migration of the MDDCs through the extracellular matrix layer. CONCLUSION Taken together, our findings points to a possible, yet subtle, role of IL-20 in DCs migration. The biphasic response suggests that the aberrant IL-20 expression in psoriasis impedes DC migration, which could be a part of the processes that precipitates the dysregulated inflammatory response associated with this disease.
Collapse
Affiliation(s)
- Rikke Bech
- />Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- />Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Babak Jalilian
- />Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ralf Agger
- />Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lars Iversen
- />Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Mogens Erlandsen
- />Department of Public Health - Biostatistics, Aarhus University, Aarhus, Denmark
| | - Kristian Otkjaer
- />Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- />Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Knud Kragballe
- />Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- />Department of Biomedicine, Aarhus University, Aarhus, Denmark
- />Interdisiplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
- />Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, The Bartholin Building (1240), Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| |
Collapse
|
16
|
Liu G, Qi M, Hutchinson MR, Yang G, Goldys EM. Recent advances in cytokine detection by immunosensing. Biosens Bioelectron 2016; 79:810-21. [PMID: 26774995 DOI: 10.1016/j.bios.2016.01.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 01/12/2023]
Abstract
The detection of cytokines in body fluids, cells, tissues and organisms continues to attract considerable attention due to the importance of these key cell signaling molecules in biology and medicine. In this review, we describe recent advances in cytokine detection in the course of ongoing pursuit of new analytical approaches for these trace analytes with specific focus on immunosensing. We discuss recent elegant designs of sensing interface with improved performance with respect to sensitivity, selectivity, stability, simplicity, and the absence of sample matrix effects. Various immunosensing approaches based on multifunctional nanomaterials open novel opportunities for ultrasensitive detection of cytokines in body fluids in vitro and in vivo. Methodologies such as suspension arrays also known as bead assays together with optical fiber-based sensors, on their own or in combination with microfluidic devices will continue to have an important role to address the grand challenge of real-time in vivo multiplex cytokine detection.
Collapse
Affiliation(s)
- Guozhen Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia
| | - Meng Qi
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Mark R Hutchinson
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), The University of Adelaide, Adelaide 5005, Australia
| | - Guangfu Yang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Ewa M Goldys
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia.
| |
Collapse
|