1
|
Devi MP, Haryoso E, Rais EI, Karuniawan A, Yahya MQ, Richaud A, Wang J, Rockman MV, Tarno H, Félix MA. Five new Caenorhabditis species from Indonesia provide exceptions to Haldane's rule and partial fertility of interspecific hybrids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.14.653126. [PMID: 40463165 PMCID: PMC12132545 DOI: 10.1101/2025.05.14.653126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Given the interest in the biogeography and diversity of the Caenorhabditis genus, we established a collection of these nematodes from field surveys on four Indonesian islands. We isolated over 60 Caenorhabditis strains belonging to ten species. Five species were previously known from other locations: C. briggsae , which was predominant, C. tropicalis, C. nigoni, C. brenneri and C. elegans . The five other species are new, and we describe them here as Caenorhabditis indonesiana, Caenorhabditis malino, Caenorhabditis ceno, Caenorhabditis brawijaya and Caenorhabditis ubi . RNA sequence analysis of 1,861 orthologous genes placed all species from Indonesia in the Elegans group of Caenorhabditis species. Four of the new species belong to a Sinica subclade of species so far only found in an East Asia-Indo-Pacific world region. The fifth new species, C. indonesiana , appears as the sister of the C. tropicalis - C. wallacei pair, both also found in Indonesia. The present findings are thus consistent with diversification in the Elegans group having occurred in this world region. Crosses between closely related species showed counterexamples to Haldane's "rule": for two pairs of species, in one cross direction we only found hybrid males. In addition, we found a pair of species that could partially interbreed: Caenorhabditis ubi (East Java) with C . sp. 41 (Solomon islands), with the hybrid males in one cross direction being fertile. Such closesly related species pairs are good models for genetic studies of incompatibilities arising during speciation. Summary This work addresses their biodiversity, phylogenetic relationships and genetic incompatibilities of Caenorhabditis nematodes, which are laboratory model organisms. Through field studies, the authors isolated 60 Caenorhabditis strains in Indonesia, representing ten species, including five new. From RNA sequencing and phylogenetic reconstruction, all ten species belong to the Elegans group of Caenorhabditis . In crosses between closely related species, the hybrid progeny can be all females, abiding by Haldane's rule, but in other cases all males. In one species pair, partially fertile hybrids are produced in one cross direction. These closely related species are good models for studying genetic incompatibilities.
Collapse
Affiliation(s)
- Mia Prastika Devi
- Department of Pests and Disease, Faculty of Agriculture, University of Brawijaya, JL Veteran Malang, Malang, East Java 65145, Indonesia
| | - Elkana Haryoso
- Department of Pests and Disease, Faculty of Agriculture, University of Brawijaya, JL Veteran Malang, Malang, East Java 65145, Indonesia
| | - Emha Ilhami Rais
- Department of Pests and Disease, Faculty of Agriculture, University of Brawijaya, JL Veteran Malang, Malang, East Java 65145, Indonesia
| | - Anggik Karuniawan
- Department of Pests and Disease, Faculty of Agriculture, University of Brawijaya, JL Veteran Malang, Malang, East Java 65145, Indonesia
| | - Minhajul Qowim Yahya
- Department of Pests and Disease, Faculty of Agriculture, University of Brawijaya, JL Veteran Malang, Malang, East Java 65145, Indonesia
| | - Aurélien Richaud
- Institut de Biologie de l’École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale Supérieure, Paris Sciences et Lettres, 46 rue d’Ulm, 75005 Paris, France
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Matthew V. Rockman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Hagus Tarno
- Department of Pests and Disease, Faculty of Agriculture, University of Brawijaya, JL Veteran Malang, Malang, East Java 65145, Indonesia
| | - Marie-Anne Félix
- Institut de Biologie de l’École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale Supérieure, Paris Sciences et Lettres, 46 rue d’Ulm, 75005 Paris, France
| |
Collapse
|
2
|
Baia E, Cardoso AL, de Carvalho LM, do Amarante CB, Amado LL, Venekey V. The importance of using local species in ecotoxicological studies: nematodes of Amazonian occurrence vs. Caenorhabditis elegans in the analysis of lethal and sublethal effects of aluminium. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:639-653. [PMID: 40067426 DOI: 10.1007/s10646-025-02867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 04/16/2025]
Abstract
It is recognized that in bioassays, especially those conducted for ecotoxicological purposes, preference should be given to the use of species that are adapted to the physical-chemical conditions of the environment to be monitored. However, to establish the use of alternative species instead of the standardized ones, it is recommended to carry out tests to assess/compare their sensitivity to contaminants. This study assessed the lethal and sublethal effects (growth, fertility, and reproduction) of different aluminium concentrations, including environmentally relevant concentrations recorded in the Amazon, on two nematode species (C. tropicalis and C. briggsae) with Amazonian occurrence and C. elegans. The species' responses to aluminium exposure were different. In tests to assess lethal effect, C. elegans was the most sensitive (LC50 = 3.32 ± 1.89 mg/L), while C. tropicalis was the least sensitive (LC50 = 6.98 ± 2.20 mg/L). The LC50 for C. briggsae could not be estimated due to the lack of a concentration-dependent response. On the other hand, when sublethal effects were assessed at low aluminium concentrations (environmentally relevant concentrations), C. tropicalis was the most sensitive with an inhibition rate in both reproduction and growth; C. elegans was the least sensitive, and C. briggsae showed an intermediate response. Therefore, C. tropicalis and C. elegans adopted opposite strategies in response to aluminium exposure. This study reinforces the use of local species in ecotoxicological tests and suggests the use of C. tropicalis as a test organism in future bioassays to evaluate the effects of contaminants, particularly in the tropical/Amazon region.
Collapse
Affiliation(s)
- Erivaldo Baia
- Grupo de Estudos de Nematoda Aquáticos (GENAQ), Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Av. Augusto Corrêa, 01. Guamá, Belém, PA, Brasil.
- Grupo de Estudos de Biomarcadores de Poluição Aquática na Amazônia (BioPaq), Laboratório de Ecotoxicologia e Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Av. Augusto Corrêa, 01. Guamá, Belém, PA, Brazil.
| | - Adauto Lima Cardoso
- Grupo de Estudos de Biomarcadores de Poluição Aquática na Amazônia (BioPaq), Laboratório de Ecotoxicologia e Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Av. Augusto Corrêa, 01. Guamá, Belém, PA, Brazil
- Laboratório Genômica Integrativa, Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, 18618-970, SP, Brazil
| | - Leandro Machado de Carvalho
- Laboratório de Análises Químicas, Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristine Bastos do Amarante
- Laboratório de Análises Químicas, Coordenação de Ciências da Terra e Ecologia, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901. Terra Firme, Belém, PA, Brazil
| | - Lílian Lund Amado
- Grupo de Estudos de Biomarcadores de Poluição Aquática na Amazônia (BioPaq), Laboratório de Ecotoxicologia e Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Av. Augusto Corrêa, 01. Guamá, Belém, PA, Brazil
| | - Virág Venekey
- Grupo de Estudos de Nematoda Aquáticos (GENAQ), Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Av. Augusto Corrêa, 01. Guamá, Belém, PA, Brasil
| |
Collapse
|
3
|
McCauley MA, Milligan WR, Lin J, Penley MJ, Quinn LM, Morran LT. An empirical test of Baker's law: dispersal favors increased rates of self-fertilization. Evolution 2025; 79:432-441. [PMID: 39660484 DOI: 10.1093/evolut/qpae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
Baker's law is the observation that recently dispersed populations are more likely to be self-fertilizing than populations at the range core. The explanatory hypothesis is that dispersal favors self-fertilization due to reproductive assurance. Caenorhabditis elegans nematodes reproduce via either self-fertilization or outcrossing and frequently disperse in small numbers to new bacterial food sources. While C. elegans males facilitate outcrossing, males and outcrossing are rare in natural C. elegans populations. Here, we use experimental evolution to test if frequent dispersal selects for the invasion of self-fertilization into predominantly outcrossing populations. C. elegans dispersal often occurs in the dauer alternative life stage. Therefore, we tested the effects of dispersal on rates of self-fertilization in populations exposed to dauer-inducing conditions and populations maintained under standard lab conditions. Overall, we found that populations required to disperse to new food sources rapidly evolved substantially elevated rates of self-fertilization compared to populations that were not required to disperse in both dauer and non-dauer populations. Our results demonstrate that frequent dispersal can readily favor the evolution of increased selfing rates in C. elegans populations, regardless of life stage. These data provide a potential mechanism to explain the dearth of outcrossing in natural populations of C. elegans.
Collapse
Affiliation(s)
- Michelle A McCauley
- Population Biology, Ecology, and Evolution Graduate Program, Emory University, Atlanta, GA, United States
| | | | - Julie Lin
- Department of Biology, Emory University, Atlanta, GA, United States
| | - McKenna J Penley
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Lilja M Quinn
- Department of Biology, Washington University, St. Louis, MO, United States
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Rockman MV. Parental-effect gene-drive elements under partial selfing, or why do Caenorhabditis genomes have hyperdivergent regions? Genetics 2025; 229:1-36. [PMID: 39475455 PMCID: PMC11708918 DOI: 10.1093/genetics/iyae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Self-fertile Caenorhabditis nematodes carry a surprising number of Medea elements, alleles that act in heterozygous mothers and cause death or developmental delay in offspring that do not inherit them. At some loci, both alleles in a cross operate as independent Medeas, affecting all the homozygous progeny of a selfing heterozygote. The genomic coincidence of Medea elements and ancient, deeply coalescing haplotypes, which pepper the otherwise homogeneous genomes of these animals, raises questions about how these apparent gene-drive elements persist for long periods of time. Here, I investigate how mating system affects the evolution of Medeas, and their paternal-effect counterparts, peels. Despite an intuition that antagonistic alleles should induce balancing selection by killing homozygotes, models show that, under partial selfing, antagonistic elements experience positive frequency dependence: the common allele drives the rare one extinct, even if the rare one is more penetrant. Analytical results for the threshold frequency required for one allele to invade a population show that a very weakly penetrant allele, one whose effects would escape laboratory detection, could nevertheless prevent a much more penetrant allele from invading under high rates of selfing. Ubiquitous weak antagonistic Medeas and peels could then act as localized barriers to gene flow between populations, generating genomic islands of deep coalescence. Analysis of gene expression data, however, suggests that this cannot be the whole story. A complementary explanation is that ordinary ecological balancing selection generates ancient haplotypes on which Medeas can evolve, while high homozygosity in these selfers minimizes the role of gene drive in their evolution.
Collapse
Affiliation(s)
- Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
5
|
Schalkowski R, Kasimatis KR, Greischar MA, Cutter AD. Reproductive Interference Alters Species Coexistence in Nematodes due to Asymmetric Sperm-Induced Harm. Ecol Lett 2025; 28:e70067. [PMID: 39901585 PMCID: PMC11791382 DOI: 10.1111/ele.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025]
Abstract
Species coexistence is shaped by a range of biotic and abiotic factors. Beyond predation, parasitism and competition, one species may interfere with another's reproduction to induce sexual exclusion from a habitat. Here, we test for reproductive interference from inter-species mating between sympatric nematodes Caenorhabditis macrosperma and C. nouraguensis. Higher intrinsic population growth of C. nouraguensis arises from greater reproductive output by both sexes, predicting it to be superior in resource competition. Mate discrimination between species is incomplete, however, with inter-species mating errors reducing lifespan and reproductive fitness of female C. nouraguensis only. These asymmetric costs arise within hours, due to ectopic migration of C. macrosperma's giant sperm cells. We modelled the population dynamic impacts of reproductive interference, then confirmed rapid sexual exclusion in mixed-species communities with multi-generation experiments. These findings demonstrate the profound ecological implications of reproductive interference for demographic parameters and species coexistence through a cell-mediated mechanism of inter-species harm.
Collapse
Affiliation(s)
- Rebecca Schalkowski
- Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Katja R. Kasimatis
- Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Megan A. Greischar
- Department of Ecology & Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
| | - Asher D. Cutter
- Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
6
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
7
|
Bouvarel L, Liu D, Zheng C. Visualizing genomic evolution in Caenorhabditis through WormSynteny. BMC Genomics 2024; 25:1009. [PMID: 39468698 PMCID: PMC11520455 DOI: 10.1186/s12864-024-10919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Understanding the syntenic relationships among genomes is crucial to elucidate the genomic mechanisms that drive the evolution of species. The nematode Caenorhabditis is a good model for studying genomic evolution due to the well-established biology of Caenorhabditis elegans and the availability of > 50 genomes in the genus. However, effective alignment of more than ten species in Caenorhabditis has not been conducted before, and there is currently no tool to visualize the synteny of more than two species. In this study, we used Progressive Cactus, a recently developed multigenome aligner, to align the genomes of eleven Caenorhabditis species. Through the progressive alignment, we reconstructed nine ancestral genomes, analyzed the mutational types that cause genomic rearrangement during speciation, and found that insertion and duplication are the major driving forces for genome expansion. Dioecious species appear to expand their genomes more than androdioecious species. We then built an online interactive app called WormSynteny to visualize the syntenic relationship among the eleven species. Users can search the alignment dataset using C. elegans query sequences, construct synteny plots at different genomic scales, and use a set of options to control alignment output and plot presentation. We showcased the use of WormSynteny to visualize the syntenic conservation of one-to-one orthologues among species, tandem and dispersed gene duplication in C. elegans, and the evolution of exon and intron structures. Importantly, the integration of orthogroup information with synteny linkage in WormSynteny allows the easy visualization of conserved genomic blocks and disruptive rearrangement. In conclusion, WormSynteny provides immediate access to the syntenic relationships among the most widely used Caenorhabditis species and can facilitate numerous comparative genomics studies. This pilot study with eleven species also serves as a proof-of-concept to a more comprehensive larger-scale analysis using hundreds of nematode genomes, which is expected to reveal mechanisms that drive genomic evolution in the Nematoda phylum. Finally, the WormSynteny software provides a generalizable solution for visualizing the output of Progressive Cactus with interactive graphics, which would be useful for a broad community of genome researchers.
Collapse
Affiliation(s)
- Lilly Bouvarel
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Dongyao Liu
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Rockman MV. Parental-effect gene-drive elements under partial selfing, or why do Caenorhabditis genomes have hyperdivergent regions? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604817. [PMID: 39091748 PMCID: PMC11291142 DOI: 10.1101/2024.07.23.604817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Self-fertile Caenorhabditis nematodes carry a surprising number of Medea elements, alleles that act in heterozygous mothers and cause death or developmental delay in offspring that don't inherit them. At some loci, both alleles in a cross operate as independent Medeas, affecting all the homozygous progeny of a selfing heterozygote. The genomic coincidence of Medea elements and ancient, deeply coalescing haplotypes, which pepper the otherwise homogeneous genomes of these animals, raises questions about how these apparent gene-drive elements persist for long periods of time. Here I investigate how mating system affects the evolution of Medeas, and their paternal-effect counterparts, peels. Despite an intuition that antagonistic alleles should induce balancing selection by killing homozygotes, models show that, under partial selfing, antagonistic elements experience positive frequency dependence: the common allele drives the rare one extinct, even if the rare one is more penetrant. Analytical results for the threshold frequency required for one allele to invade a population show that a very weakly penetrant allele, one whose effects would escape laboratory detection, could nevertheless prevent a much more penetrant allele from invading under high rates of selfing. Ubiquitous weak antagonistic Medeas and peels could then act as localized barriers to gene flow between populations, generating genomic islands of deep coalescence. Analysis of gene expression data, however, suggest that this cannot be the whole story. A complementary explanation is that ordinary ecological balancing selection generates ancient haplotypes on which Medeas can evolve, while high homozygosity in these selfers minimizes the role of gene drive in their evolution.
Collapse
Affiliation(s)
- Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003
| |
Collapse
|
9
|
Crombie TA, McKeown R, Moya ND, Evans K, Widmayer S, LaGrassa V, Roman N, Tursunova O, Zhang G, Gibson S, Buchanan C, Roberto N, Vieira R, Tanny R, Andersen E. CaeNDR, the Caenorhabditis Natural Diversity Resource. Nucleic Acids Res 2024; 52:D850-D858. [PMID: 37855690 PMCID: PMC10767927 DOI: 10.1093/nar/gkad887] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Studies of model organisms have provided important insights into how natural genetic differences shape trait variation. These discoveries are driven by the growing availability of genomes and the expansive experimental toolkits afforded to researchers using these species. For example, Caenorhabditis elegans is increasingly being used to identify and measure the effects of natural genetic variants on traits using quantitative genetics. Since 2016, the C. elegans Natural Diversity Resource (CeNDR) has facilitated many of these studies by providing an archive of wild strains, genome-wide sequence and variant data for each strain, and a genome-wide association (GWA) mapping portal for the C. elegans community. Here, we present an updated platform, the Caenorhabditis Natural Diversity Resource (CaeNDR), that enables quantitative genetics and genomics studies across the three Caenorhabditis species: C. elegans, C. briggsae and C. tropicalis. The CaeNDR platform hosts several databases that are continually updated by the addition of new strains, whole-genome sequence data and annotated variants. Additionally, CaeNDR provides new interactive tools to explore natural variation and enable GWA mappings. All CaeNDR data and tools are accessible through a freely available web portal located at caendr.org.
Collapse
Affiliation(s)
- Timothy A Crombie
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ryan McKeown
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Nicolas D Moya
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Cell, Molecular, Developmental biology, and Biophysics Graduate Program, ohns Hopkins University, Baltimore, MD, USA
| | - Kathryn S Evans
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Vincent LaGrassa
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Natalie Roman
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Orzu Tursunova
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sophia B Gibson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Claire M Buchanan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Nicole M Roberto
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Rodolfo Vieira
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Robyn E Tanny
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
10
|
Susoy V, Samuel ADT. Evolutionarily conserved behavioral plasticity enables context-dependent mating in C. elegans. Curr Biol 2023; 33:4532-4537.e3. [PMID: 37769659 PMCID: PMC10615801 DOI: 10.1016/j.cub.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Behavioral plasticity helps humans and animals to achieve their goals by adapting their behaviors to different environments.1,2 Although behavioral plasticity is ubiquitous, many innate species-specific behaviors, such as mating, are often assumed to be stereotyped and unaffected by plasticity or learning, especially in invertebrates. Here, we describe a novel case of behavioral plasticity in the nematode C. elegans. Under standard lab conditions (agar plates with bacterial food), the male performs parallel mating,3,4,5 a largely two-dimensional behavioral strategy where his body and tail remain flat on the surface and slide alongside the partner's body from initial contact to copulation. But when placed in liquid media, the male performs spiral mating, a distinctly three-dimensional behavioral strategy where he winds around the partner's body in a helical embrace. The performance of spiral mating does not require a long-term change in growing conditions, but it does improve with experience. This experience-dependent improvement appears to involve a critical period-a time window around the L4 larval stage to the early adult stage-which coincides with the development of most male-specific neurons. We tested several wild isolates of C. elegans and other Caenorhabditis species and found that most were capable of parallel mating on surfaces and spiral mating in liquids. We suggest that two- and three-dimensional mating strategies in Caenorhabditis are plastic, conditionally expressed phenotypes conserved across the genus, which can be genetically "fixed" in some species.
Collapse
Affiliation(s)
- Vladislav Susoy
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Aravinthan D T Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
11
|
Sloat S, Rockman M. Sexual antagonism evolves when autosomes influence offspring sex ratio. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544982. [PMID: 37398423 PMCID: PMC10312671 DOI: 10.1101/2023.06.14.544982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Sex allocation theory generally assumes maternal control of offspring sex and makes few predictions for populations evolving under paternal control. Using population genetic simulations, we show that maternal and paternal control of the sex ratio lead to different equilibrium sex ratios in structured populations. Sex ratios evolved under paternal control are more female biased. This effect is dependent on the population subdivision; fewer founding individuals leads to both more biased sex ratios and a greater difference between the paternal and maternal equilibria. In addition, sexual antagonism evolves in simulations with both maternally- and paternally-acting loci. Maternally-acting loci continuously accumulate ever more female-biasing effects as male-biasing effects accumulate at paternally-acting loci. The difference in evolved sex-ratio equilibria and the evolution of sexual antagonism can be largely explained by differences in the between-group variance of maternal and paternal effects in the founding generation. These theoretical results apply to any system with biparental autosomal influence over offspring sex, opening up an exciting new line of questioning.
Collapse
Affiliation(s)
- Solomon Sloat
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Matthew Rockman
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003
| |
Collapse
|
12
|
Sloat SA, Noble LM, Paaby AB, Bernstein M, Chang A, Kaur T, Yuen J, Tintori SC, Jackson JL, Martel A, Salome Correa JA, Stevens L, Kiontke K, Blaxter M, Rockman MV. Caenorhabditis nematodes colonize ephemeral resource patches in neotropical forests. Ecol Evol 2022; 12:e9124. [PMID: 35898425 PMCID: PMC9309040 DOI: 10.1002/ece3.9124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 01/09/2023] Open
Abstract
Factors shaping the distribution and abundance of species include life-history traits, population structure, and stochastic colonization-extinction dynamics. Field studies of model species groups help reveal the roles of these factors. Species of Caenorhabditis nematodes are highly divergent at the sequence level but exhibit highly conserved morphology, and many of these species live in sympatry on microbe-rich patches of rotten material. Here, we use field experiments and large-scale opportunistic collections to investigate species composition, abundance, and colonization efficiency of Caenorhabditis species in two of the world's best-studied lowland tropical field sites: Barro Colorado Island in Panamá and La Selva in Sarapiquí, Costa Rica. We observed seven species of Caenorhabditis, four of them known only from these collections. We formally describe two species and place them within the Caenorhabditis phylogeny. While these localities contain species from many parts of the phylogeny, both localities were dominated by globally distributed androdiecious species. We found that Caenorhabditis individuals were able to colonize baits accessible only through phoresy and preferentially colonized baits that were in direct contact with the ground. We estimate the number of colonization events per patch to be low.
Collapse
Affiliation(s)
- Solomon A. Sloat
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Luke M. Noble
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Annalise B. Paaby
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Max Bernstein
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Audrey Chang
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Taniya Kaur
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - John Yuen
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Sophia C. Tintori
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Jacqueline L. Jackson
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Arielle Martel
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Jose A. Salome Correa
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | | | - Karin Kiontke
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger InstituteHinxtonUK
| | - Matthew V. Rockman
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| |
Collapse
|
13
|
Liu Y, Jingjing Z, Li C. Characterization of the complete mitochondrial genome of a nematode species, Caenorhabditis tribulationis (Nematoda, Rhabditidae). Mitochondrial DNA B Resour 2022; 7:930-932. [PMID: 35692637 PMCID: PMC9176374 DOI: 10.1080/23802359.2022.2079103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
In the present study, we reported the complete mitogenome sequence of Caenorhabditis tribulationis Stevens & Félix 2019. The whole mitogenome of C. tribulationis is 14006 bp in length with an extreme bias of high AT content (75.26%) (GenBank accession no. OL362111). The mitochondrial genome contains 12 protein-coding genes (PCGs), 22 transfer RNA (tRNAs) genes, 2 ribosomal RNA (12S rRNA and 16S rRNA) genes, and a control region. All genes were unidirectionally transcribed on the same strand, typical for other nematode mitogenomes. 9 PCGs were initiated by typical ATN codons, except for NAD2, CYTB and NAD4, which were start with TTG codons. All the PCGs were predicted to use the typical TAN as the stop codons. The phylogenetic analysis showed that the relationship of C. tribulationis is very close to other species in the family Rhabditidae and separated form species of the families Ascarididae, Toxocaridae, Anisakidae and Ascaridiidae with high bootstrap value support.
Collapse
Affiliation(s)
- Yuheng Liu
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, P. R. China
| | - Zhang Jingjing
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Chao Li
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, P. R. China
| |
Collapse
|
14
|
Crombie TA, Battlay P, Tanny RE, Evans KS, Buchanan CM, Cook DE, Dilks CM, Stinson LA, Zdraljevic S, Zhang G, Roberto NM, Lee D, Ailion M, Hodgins KA, Andersen EC. Local adaptation and spatiotemporal patterns of genetic diversity revealed by repeated sampling of Caenorhabditis elegans across the Hawaiian Islands. Mol Ecol 2022; 31:2327-2347. [PMID: 35167162 PMCID: PMC9306471 DOI: 10.1111/mec.16400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
The nematode Caenorhabditis elegans is among the most widely studied organisms, but relatively little is known about its natural ecology. Genetic diversity is low across much of the globe but high in the Hawaiian Islands and across the Pacific Rim. To characterize the niche and genetic diversity of C. elegans on the Hawaiian Islands and to explore how genetic diversity might be influenced by local adaptation, we repeatedly sampled nematodes over a three-year period, measured various environmental parameters at each sampling site, and whole-genome sequenced the C. elegans isolates that we identified. We found that the typical Hawaiian C. elegans niche comprises moderately moist native forests at high elevations (500-1,500 m) where ambient air temperatures are cool (15-20°C). Compared to other Caenorhabditis species found on the Hawaiian Islands (e.g., Caenorhabditis briggsae and Caenorhabditis tropicalis), we found that C. elegans were enriched in native habitats. We measured levels of genetic diversity and differentiation among Hawaiian C. elegans and found evidence of seven genetically distinct groups distributed across the islands. Then, we scanned these genomes for signatures of local adaptation and identified 18 distinct regions that overlap with hyper-divergent regions, which may be maintained by balancing selection and are enriched for genes related to environmental sensing, xenobiotic detoxification, and pathogen resistance. These results provide strong evidence of local adaptation among Hawaiian C. elegans and contribute to our understanding of the forces that shape genetic diversity on the most remote volcanic archipelago in the world.
Collapse
Affiliation(s)
- Timothy A. Crombie
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Paul Battlay
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Robyn E. Tanny
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Kathryn S. Evans
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Claire M. Buchanan
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Daniel E. Cook
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences ProgramNorthwestern UniversityEvanstonIllinoisUSA
| | - Clayton M. Dilks
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences ProgramNorthwestern UniversityEvanstonIllinoisUSA
| | - Loraina A. Stinson
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences ProgramNorthwestern UniversityEvanstonIllinoisUSA
| | - Stefan Zdraljevic
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences ProgramNorthwestern UniversityEvanstonIllinoisUSA
| | - Gaotian Zhang
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Nicole M. Roberto
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Daehan Lee
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Michael Ailion
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Kathryn A. Hodgins
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Erik C. Andersen
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| |
Collapse
|
15
|
Stevens L, Moya ND, Tanny RE, Gibson SB, Tracey A, Na H, Chitrakar R, Dekker J, Walhout AJ, Baugh LR, Andersen EC. Chromosome-level reference genomes for two strains of Caenorhabditis briggsae: an improved platform for comparative genomics. Genome Biol Evol 2022; 14:6554914. [PMID: 35348662 PMCID: PMC9011032 DOI: 10.1093/gbe/evac042] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The publication of the Caenorhabditis briggsae reference genome in 2003 enabled the first comparative genomics studies between C. elegans and C. briggsae, shedding light on the evolution of genome content and structure in the Caenorhabditis genus. However, despite being widely used, the currently available C. briggsae reference genome is substantially less complete and structurally accurate than the C. elegans reference genome. Here, we used high-coverage Oxford Nanopore long-read and chromosome conformation capture data to generate chromosome-level reference genomes for two C. briggsae strains: QX1410, a new reference strain closely related to the laboratory AF16 strain, and VX34, a highly divergent strain isolated in China. We also sequenced 99 recombinant inbred lines (RILs) generated from reciprocal crosses between QX1410 and VX34 to create a recombination map and identify chromosomal domains. Additionally, we used both short- and long-read RNA sequencing (RNA-seq) data to generate high-quality gene annotations. By comparing these new reference genomes to the current reference, we reveal that hyper-divergent haplotypes cover large portions of the C. briggsae genome, similar to recent reports in C. elegans and C. tropicalis. We also show that the genomes of selfing Caenorhabditis species have undergone more rearrangement than their outcrossing relatives, which has biased previous estimates of rearrangement rate in Caenorhabditis. These new genomes provide a substantially improved platform for comparative genomics in Caenorhabditis and narrow the gap between the quality of genomic resources available for C. elegans and C. briggsae.
Collapse
Affiliation(s)
- Lewis Stevens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Nicolas D. Moya
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Robyn E. Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sophia B. Gibson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Huimin Na
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Albertha J.M. Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - L. Ryan Baugh
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
16
|
Abstract
Wild populations of the model organism C. elegans represent a valuable resource, allowing for genetic characterization underlying natural phenotypic variation. Here we provide a simple protocol on how to sample and rapidly identify C. elegans wild isolates. We outline how to find suitable habitats and organic substrates, followed by describing isolation and identification of C. elegans live cultures based on easily recognizable morphological characteristics, molecular barcodes, and mating tests. This protocol uses standard laboratory equipment and requires little prior knowledge of C. elegans biology.
Collapse
Affiliation(s)
| | - Nausicaa Poullet
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
- URZ, INRAE, Petit-Bourg (Guadeloupe), France
| | | |
Collapse
|
17
|
Wang W, Flury AG, Garrison JL, Brem RB. Cold Survival and Its Molecular Mechanisms in a Locally Adapted Nematode Population. Genome Biol Evol 2021; 13:evab188. [PMID: 34383891 PMCID: PMC8449824 DOI: 10.1093/gbe/evab188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
Since Darwin, evolutionary biologists have sought to understand the drivers and mechanisms of natural trait diversity. The field advances toward this goal with the discovery of phenotypes that vary in the wild, their relationship to ecology, and their underlying genes. Here, we established resistance to extreme low temperature in the free-living nematode Caenorhabditis briggsae as an ecological and evolutionary model system. We found that C. briggsae strains of temperate origin were strikingly more cold-resistant than those isolated from tropical localities. Transcriptional profiling revealed expression patterns unique to the resistant temperate ecotype, including dozens of genes expressed at high levels even after multiple days of cold-induced physiological slowdown. Mutational analysis validated a role in cold resistance for seven such genes. These findings highlight a candidate case of robust, genetically complex adaptation in an emerging model nematode, and shed light on the mechanisms at play.
Collapse
Affiliation(s)
- Wenke Wang
- Buck Institute for Research on Aging, Novato, California, USA
- Department of Plant and Microbial Biology, UC Berkeley, USA
| | - Anna G Flury
- Buck Institute for Research on Aging, Novato, California, USA
- Department of Plant and Microbial Biology, UC Berkeley, USA
| | - Jennifer L Garrison
- Buck Institute for Research on Aging, Novato, California, USA
- Leonard Davis School of Gerontology, University of Southern California, USA
- Department of Cellular and Molecular Pharmacology, UC San Francisco, USA
- Global Consortium for Reproductive Longevity & Equality, Novato, California, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, California, USA
- Department of Plant and Microbial Biology, UC Berkeley, USA
- Leonard Davis School of Gerontology, University of Southern California, USA
| |
Collapse
|
18
|
Lee D, Zdraljevic S, Stevens L, Wang Y, Tanny RE, Crombie TA, Cook DE, Webster AK, Chirakar R, Baugh LR, Sterken MG, Braendle C, Félix MA, Rockman MV, Andersen EC. Balancing selection maintains hyper-divergent haplotypes in Caenorhabditis elegans. Nat Ecol Evol 2021; 5:794-807. [PMID: 33820969 PMCID: PMC8202730 DOI: 10.1038/s41559-021-01435-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
Across diverse taxa, selfing species have evolved independently from outcrossing species thousands of times. The transition from outcrossing to selfing decreases the effective population size, effective recombination rate and heterozygosity within a species. These changes lead to a reduction in genetic diversity, and therefore adaptive potential, by intensifying the effects of random genetic drift and linked selection. Within the nematode genus Caenorhabditis, selfing has evolved at least three times, and all three species, including the model organism Caenorhabditis elegans, show substantially reduced genetic diversity relative to outcrossing species. Selfing and outcrossing Caenorhabditis species are often found in the same niches, but we still do not know how selfing species with limited genetic diversity can adapt to these environments. Here, we examine the whole-genome sequences from 609 wild C. elegans strains isolated worldwide and show that genetic variation is concentrated in punctuated hyper-divergent regions that cover 20% of the C. elegans reference genome. These regions are enriched in environmental response genes that mediate sensory perception, pathogen response and xenobiotic stress response. Population genomic evidence suggests that genetic diversity in these regions has been maintained by long-term balancing selection. Using long-read genome assemblies for 15 wild strains, we show that hyper-divergent haplotypes contain unique sets of genes and show levels of divergence comparable to levels found between Caenorhabditis species that diverged millions of years ago. These results provide an example of how species can avoid the evolutionary dead end associated with selfing.
Collapse
Affiliation(s)
- Daehan Lee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ye Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, People's Republic of China
| | - Robyn E Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Timothy A Crombie
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Daniel E Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Amy K Webster
- Department of Biology, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | | | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, INSERM, École Normale Supérieure, Paris Sciences et Lettres, Paris, France
| | - Matthew V Rockman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
19
|
Le TS, Nguyen TTH, Thi Mai Huong B, Nguyen HG, Ha BH, Nguyen VS, Nguyen MH, Nguyen HH, Wang J. Cultivation of Caenorhabditis elegans on new cheap monoxenic media without peptone. J Nematol 2021; 53:e2021-36. [PMID: 33860269 PMCID: PMC8040142 DOI: 10.21307/jofnem-2021-036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 01/30/2023] Open
Abstract
The study of species biodiversity within the Caenorhabditis genus of nematodes would be facilitated by the isolation of as many species as possible. So far, over 50 species have been found, usually associated with decaying vegetation or soil samples, with many from Africa, South America and Southeast Asia. Scientists based in these regions can contribute to Caenorhabditis sampling and their proximity would allow intensive sampling, which would be useful for understanding the natural history of these species. However, severely limited research budgets are often a constraint for these local scientists. In this study, we aimed to find a more economical, alternative growth media to rear Caenorhabditis and related species. We tested 25 media permutations using cheaper substitutes for the reagents found in the standard nematode growth media (NGM) and found three media combinations that performed comparably to NGM with respect to the reproduction and longevity of C. elegans. These new media should facilitate the isolation and characterization of Caenorhabditis and other free-living nematodes for the researchers in the poorer regions such as Africa, South America, and Southeast Asia where nematode diversity appears high.
Collapse
Affiliation(s)
- Tho Son Le
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - T. T. Hang Nguyen
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Bui Thi Mai Huong
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - H. Gam Nguyen
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - B. Hong Ha
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Van Sang Nguyen
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Minh Hung Nguyen
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Huy-Hoang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
20
|
Noble LM, Yuen J, Stevens L, Moya N, Persaud R, Moscatelli M, Jackson JL, Zhang G, Chitrakar R, Baugh LR, Braendle C, Andersen EC, Seidel HS, Rockman MV. Selfing is the safest sex for Caenorhabditis tropicalis. eLife 2021; 10:e62587. [PMID: 33427200 PMCID: PMC7853720 DOI: 10.7554/elife.62587] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
Mating systems have profound effects on genetic diversity and compatibility. The convergent evolution of self-fertilization in three Caenorhabditis species provides a powerful lens to examine causes and consequences of mating system transitions. Among the selfers, Caenorhabditis tropicalis is the least genetically diverse and most afflicted by outbreeding depression. We generated a chromosomal-scale genome for C. tropicalis and surveyed global diversity. Population structure is very strong, and islands of extreme divergence punctuate a genomic background that is highly homogeneous around the globe. Outbreeding depression in the laboratory is caused largely by multiple Medea-like elements, genetically consistent with maternal toxin/zygotic antidote systems. Loci with Medea activity harbor novel and duplicated genes, and their activity is modified by mito-nuclear background. Segregating Medea elements dramatically reduce fitness, and simulations show that selfing limits their spread. Frequent selfing in C. tropicalis may therefore be a strategy to avoid Medea-mediated outbreeding depression.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
- Institute de Biologie, École Normale Supérieure, CNRS, InsermParisFrance
| | - John Yuen
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Nicolas Moya
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Riaad Persaud
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Marc Moscatelli
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Jacqueline L Jackson
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | | | - L Ryan Baugh
- Department of Biology, Duke UniversityDurhamUnited States
| | - Christian Braendle
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, InsermNiceFrance
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hannah S Seidel
- Department of Biology, Eastern Michigan UniversityYpsilantiUnited States
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
21
|
Brandão RA, Fenker J, Lopes BEPDC, de Sena VMDA, Vasconcelos BD. Diet of terrestrial anurans in an ephemeral and simplified habitat during the dry season in the Brazilian Cerrado. ETHOL ECOL EVOL 2020. [DOI: 10.1080/03949370.2020.1755373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Reuber A. Brandão
- Laboratório de Fauna e Unidades de Conservação, Departamento de Engenharia Florestal, Universidade de Brasília, Brasília, DF, CEP: 70.910-900, Brazil
| | - Jéssica Fenker
- Ecology and Evolution Division, Research School of Biology, Australian National University, Canberra-ACT, 2612, Australia
| | - Bruno E. Pires de Carmago Lopes
- Laboratório de Fauna e Unidades de Conservação, Departamento de Engenharia Florestal, Universidade de Brasília, Brasília, DF, CEP: 70.910-900, Brazil
| | - Vitor M. de Alcantara de Sena
- Laboratório de Fauna e Unidades de Conservação, Departamento de Engenharia Florestal, Universidade de Brasília, Brasília, DF, CEP: 70.910-900, Brazil
| | - Beatriz D. Vasconcelos
- Laboratório de Fauna e Unidades de Conservação, Departamento de Engenharia Florestal, Universidade de Brasília, Brasília, DF, CEP: 70.910-900, Brazil
| |
Collapse
|
22
|
Bubrig LT, Sutton JM, Fierst JL. Caenorhabditis elegans dauers vary recovery in response to bacteria from natural habitat. Ecol Evol 2020; 10:9886-9895. [PMID: 33005351 PMCID: PMC7520223 DOI: 10.1002/ece3.6646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/06/2023] Open
Abstract
Many species use dormant stages for habitat selection by tying recovery to informative external cues. Other species have an undiscerning strategy in which they recover randomly despite having advanced sensory systems. We investigated whether elements of a species' habitat structure and life history can bar it from developing a discerning recovery strategy. The nematode Caenorhabditis elegans has a dormant stage called the dauer larva that disperses between habitat patches. On one hand, C. elegans colonization success is profoundly influenced by the bacteria found in its habitat patches, so we might expect this to select for a discerning strategy. On the other hand, C. elegans' habitat structure and life history suggest that there is no fitness benefit to varying recovery, which might select for an undiscerning strategy. We exposed dauers of three genotypes to a range of bacteria acquired from the worms' natural habitat. We found that C. elegans dauers recover in all conditions but increase recovery on certain bacteria depending on the worm's genotype, suggesting a combination of undiscerning and discerning strategies. Additionally, the worms' responses did not match the bacteria's objective quality, suggesting that their decision is based on other characteristics.
Collapse
Affiliation(s)
- Louis T. Bubrig
- Department of Biological SciencesThe University of AlabamaTuscaloosaALUSA
| | - John M. Sutton
- Department of Biological SciencesThe University of AlabamaTuscaloosaALUSA
| | - Janna L. Fierst
- Department of Biological SciencesThe University of AlabamaTuscaloosaALUSA
| |
Collapse
|
23
|
Ewe CK, Torres Cleuren YN, Rothman JH. Evolution and Developmental System Drift in the Endoderm Gene Regulatory Network of Caenorhabditis and Other Nematodes. Front Cell Dev Biol 2020; 8:170. [PMID: 32258041 PMCID: PMC7093329 DOI: 10.3389/fcell.2020.00170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 01/17/2023] Open
Abstract
Developmental gene regulatory networks (GRNs) underpin metazoan embryogenesis and have undergone substantial modification to generate the tremendous variety of animal forms present on Earth today. The nematode Caenorhabditis elegans has been a central model for advancing many important discoveries in fundamental mechanistic biology and, more recently, has provided a strong base from which to explore the evolutionary diversification of GRN architecture and developmental processes in other species. In this short review, we will focus on evolutionary diversification of the GRN for the most ancient of the embryonic germ layers, the endoderm. Early embryogenesis diverges considerably across the phylum Nematoda. Notably, while some species deploy regulative development, more derived species, such as C. elegans, exhibit largely mosaic modes of embryogenesis. Despite the relatively similar morphology of the nematode gut across species, widespread variation has been observed in the signaling inputs that initiate the endoderm GRN, an exemplar of developmental system drift (DSD). We will explore how genetic variation in the endoderm GRN helps to drive DSD at both inter- and intraspecies levels, thereby resulting in a robust developmental system. Comparative studies using divergent nematodes promise to unveil the genetic mechanisms controlling developmental plasticity and provide a paradigm for the principles governing evolutionary modification of an embryonic GRN.
Collapse
Affiliation(s)
- Chee Kiang Ewe
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | | | - Joel H. Rothman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
24
|
|
25
|
Stevens L, Rooke S, Falzon LC, Machuka EM, Momanyi K, Murungi MK, Njoroge SM, Odinga CO, Ogendo A, Ogola J, Fèvre EM, Blaxter M. The Genome of Caenorhabditis bovis. Curr Biol 2020; 30:1023-1031.e4. [PMID: 32109387 DOI: 10.1016/j.cub.2020.01.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/10/2019] [Accepted: 01/23/2020] [Indexed: 11/26/2022]
Abstract
The free-living nematode Caenorhabditis elegans is a key laboratory model for metazoan biology. C. elegans has also become a model for parasitic nematodes despite being only distantly related to most parasitic species. All of the ∼65 Caenorhabditis species currently in culture are free-living, with most having been isolated from decaying plant or fungal matter. Caenorhabditis bovis is a particularly unusual species that has been isolated several times from the inflamed ears of Zebu cattle in Eastern Africa, where it is associated with the disease bovine parasitic otitis. C. bovis is therefore of particular interest to researchers interested in the evolution of nematode parasitism. However, as C. bovis is not in laboratory culture, it remains little studied. Here, by sampling livestock markets and slaughterhouses in Western Kenya, we successfully reisolated C. bovis from the ear of adult female Zebu. We sequenced the genome of C. bovis using the Oxford Nanopore MinION platform in a nearby field laboratory and used the data to generate a chromosome-scale draft genome sequence. We exploited this draft genome sequence to reconstruct the phylogenetic relationships of C. bovis to other Caenorhabditis species and reveal the changes in genome size and content that have occurred during its evolution. We also identified expansions in several gene families that have been implicated in parasitism in other nematode species. The high-quality draft genome and our analyses thereof represent a significant advancement in our understanding of this unusual Caenorhabditis species.
Collapse
Affiliation(s)
- Lewis Stevens
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | - Stefan Rooke
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Laura C Falzon
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK; International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Eunice M Machuka
- Biosciences, Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Kelvin Momanyi
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Maurice K Murungi
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Samuel M Njoroge
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya; Centre for Microbiology Research, Kenya Medical Research Institute, KNH Grounds, PO Box 54840 00200, Nairobi, Kenya
| | - Christian O Odinga
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Allan Ogendo
- Veterinary Department, Busia County Government, PO Box Private Bag 50400, Busia, Kenya
| | - Joseph Ogola
- Veterinary Department, Bungoma County Government, PO Box 2489 50200, Bungoma, Kenya
| | - Eric M Fèvre
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK; International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Mark Blaxter
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
26
|
Crombie TA, Zdraljevic S, Cook DE, Tanny RE, Brady SC, Wang Y, Evans KS, Hahnel S, Lee D, Rodriguez BC, Zhang G, van der Zwagg J, Kiontke K, Andersen EC. Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity and admixture with global populations. eLife 2019; 8:50465. [PMID: 31793880 PMCID: PMC6927746 DOI: 10.7554/elife.50465] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023] Open
Abstract
Hawaiian isolates of the nematode species Caenorhabditis elegans have long been known to harbor genetic diversity greater than the rest of the worldwide population, but this observation was supported by only a small number of wild strains. To better characterize the niche and genetic diversity of Hawaiian C. elegans and other Caenorhabditis species, we sampled different substrates and niches across the Hawaiian islands. We identified hundreds of new Caenorhabditis strains from known species and a new species, Caenorhabditis oiwi. Hawaiian C. elegans are found in cooler climates at high elevations but are not associated with any specific substrate, as compared to other Caenorhabditis species. Surprisingly, admixture analysis revealed evidence of shared ancestry between some Hawaiian and non-Hawaiian C. elegans strains. We suggest that the deep diversity we observed in Hawaii might represent patterns of ancestral genetic diversity in the C. elegans species before human influence.
Collapse
Affiliation(s)
- Tim A Crombie
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Daniel E Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Robyn E Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Shannon C Brady
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Ye Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Kathryn S Evans
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Steffen Hahnel
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Daehan Lee
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Briana C Rodriguez
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Joost van der Zwagg
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Karin Kiontke
- Department of Biology, New York University, New York, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
27
|
Stevens L, Félix M, Beltran T, Braendle C, Caurcel C, Fausett S, Fitch D, Frézal L, Gosse C, Kaur T, Kiontke K, Newton MD, Noble LM, Richaud A, Rockman MV, Sudhaus W, Blaxter M. Comparative genomics of 10 new Caenorhabditis species. Evol Lett 2019; 3:217-236. [PMID: 31007946 PMCID: PMC6457397 DOI: 10.1002/evl3.110] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 01/29/2023] Open
Abstract
The nematode Caenorhabditis elegans has been central to the understanding of metazoan biology. However, C. elegans is but one species among millions and the significance of this important model organism will only be fully revealed if it is placed in a rich evolutionary context. Global sampling efforts have led to the discovery of over 50 putative species from the genus Caenorhabditis, many of which await formal species description. Here, we present species descriptions for 10 new Caenorhabditis species. We also present draft genome sequences for nine of these new species, along with a transcriptome assembly for one. We exploit these whole-genome data to reconstruct the Caenorhabditis phylogeny and use this phylogenetic tree to dissect the evolution of morphology in the genus. We reveal extensive variation in genome size and investigate the molecular processes that underlie this variation. We show unexpected complexity in the evolutionary history of key developmental pathway genes. These new species and the associated genomic resources will be essential in our attempts to understand the evolutionary origins of the C. elegans model.
Collapse
Affiliation(s)
- Lewis Stevens
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3JTUnited Kingdom
| | - Marie‐Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale SupérieureParis Sciences et Lettres75005ParisFrance
| | - Toni Beltran
- MRC London Institute of Medical SciencesLondonW12 0NNUnited Kingdom
| | - Christian Braendle
- Université Côte d'Azur, Centre National de la Recherche Scientifique, InsermInstitute of Biology Valrose06108NiceFrance
| | - Carlos Caurcel
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3JTUnited Kingdom
| | - Sarah Fausett
- Université Côte d'Azur, Centre National de la Recherche Scientifique, InsermInstitute of Biology Valrose06108NiceFrance
| | - David Fitch
- Department of BiologyNew York UniversityNew YorkNew York10003
| | - Lise Frézal
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale SupérieureParis Sciences et Lettres75005ParisFrance
| | - Charlie Gosse
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale SupérieureParis Sciences et Lettres75005ParisFrance
| | - Taniya Kaur
- Center for Genomics and Systems Biology, Department of BiologyNew York UniversityNew YorkNew York10003
| | - Karin Kiontke
- Department of BiologyNew York UniversityNew YorkNew York10003
| | - Matthew D. Newton
- MRC London Institute of Medical SciencesLondonW12 0NNUnited Kingdom
- Molecular Virology, Department of MedicineImperial College LondonDu Cane RoadLondonW12 0NNUnited Kingdom
| | - Luke M. Noble
- Center for Genomics and Systems Biology, Department of BiologyNew York UniversityNew YorkNew York10003
| | - Aurélien Richaud
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale SupérieureParis Sciences et Lettres75005ParisFrance
| | - Matthew V. Rockman
- Center for Genomics and Systems Biology, Department of BiologyNew York UniversityNew YorkNew York10003
| | - Walter Sudhaus
- Institut für Biologie/ZoologieFreie Universität BerlinBerlinD‐14195Germany
| | - Mark Blaxter
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3JTUnited Kingdom
| |
Collapse
|
28
|
Woodruff GC, Johnson E, Phillips PC. A large close relative of C. elegans is slow-developing but not long-lived. BMC Evol Biol 2019; 19:74. [PMID: 30866802 PMCID: PMC6416856 DOI: 10.1186/s12862-019-1388-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Variation in body size is thought to be a major driver of a wide variety of ecological and evolutionary patterns, including changes in development, reproduction, and longevity. Additionally, drastic changes in natural context often have profound effects on multiple fitness-related traits. Caenorhabditis inopinata is a recently-discovered fig-associated nematode that is unusually large relative to other members of the genus, including the closely related model system C. elegans. Here we test whether the dramatic increase in body size and shift in ecological context has led to correlated changes in key life history and developmental parameters within this species. RESULTS Using four developmental milestones, C. inopinata was found to have a slower rate of development than C. elegans across a range of temperatures. Despite this, C. inopinata did not reveal any differences in adult lifespan from C. elegans after accounting for differences in developmental timing and reproductive mode. C. inopinata fecundity was generally lower than that of C. elegans, but fitness improved under continuous-mating, consistent with sperm-limitation under gonochoristic (male/female) reproduction. C. inopinata also revealed greater fecundity and viability at higher temperatures. CONCLUSION Consistent with observations in other ectotherms, slower growth in C. inopinata indicates a potential trade-off between body size and developmental timing, whereas its unchanged lifespan suggests that longevity is largely uncoupled from its increase in body size. Additionally, temperature-dependent patterns of fitness in C. inopinata are consistent with its geographic origins in subtropical Okinawa. Overall, these results underscore the extent to which changes in ecological context and body size can shape life history traits.
Collapse
Affiliation(s)
- Gavin C. Woodruff
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, USA
| | - Erik Johnson
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, USA
| | - Patrick C. Phillips
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, USA
| |
Collapse
|
29
|
Ting JJ, Cutter AD. Demographic consequences of reproductive interference in multi-species communities. BMC Ecol 2018; 18:46. [PMID: 30400870 PMCID: PMC6219154 DOI: 10.1186/s12898-018-0201-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reproductive interference can mediate interference competition between species through sexual interactions that reduce the fitness of one species by another. Theory shows that the positive frequency-dependent effects of such costly errors in mate recognition can dictate species coexistence or exclusion even with countervailing resource competition differences between species. While usually framed in terms of pre-mating or post-zygotic costs, reproductive interference manifests between individual Caenorhabditis nematodes from negative interspecies gametic interactions: sperm cells from interspecies matings can migrate ectopically to induce female sterility and premature death. The potential for reproductive interference to exert population level effects on Caenorhabditis trait evolution and community structure, however, remains unknown. RESULTS Here we test whether a species that is superior in individual-level reproductive interference (C. nigoni) can exact negative demographic effects on competitor species that are superior in resource competition (C. briggsae and C. elegans). We observe coexistence over six generations and find evidence of demographic reproductive interference even under conditions unfavorable to its influence. C. briggsae and C. elegans show distinct patterns of reproductive interference in competitive interactions with C. nigoni. CONCLUSIONS These results affirm that individual level negative effects of reproductive interference mediated by gamete interactions can ramify to population demography, with the potential to influence patterns of species coexistence separately from the effects of direct resource competition.
Collapse
Affiliation(s)
- Janice J Ting
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, M5S3B2, Canada
| | - Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, M5S3B2, Canada.
| |
Collapse
|
30
|
Haag ES, Fitch DHA, Delattre M. From "the Worm" to "the Worms" and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018; 210:397-433. [PMID: 30287515 PMCID: PMC6216592 DOI: 10.1534/genetics.118.300243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular and developmental biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | - Marie Delattre
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France
| |
Collapse
|
31
|
Pristionchus nematodes occur frequently in diverse rotting vegetal substrates and are not exclusively necromenic, while Panagrellus redivivoides is found specifically in rotting fruits. PLoS One 2018; 13:e0200851. [PMID: 30074986 PMCID: PMC6075748 DOI: 10.1371/journal.pone.0200851] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/05/2018] [Indexed: 01/31/2023] Open
Abstract
The lifestyle and feeding habits of nematodes are highly diverse. Several species of Pristionchus (Nematoda: Diplogastridae), including Pristionchus pacificus, have been reported to be necromenic, i.e. to associate with beetles in their dauer diapause stage and wait until the death of their host to resume development and feed on microbes in the decomposing beetle corpse. We review the literature and suggest that the association of Pristionchus to beetles may be phoretic and not necessarily necromenic. The view that Pristionchus nematodes have a necromenic lifestyle is based on studies that have sought Pristionchus only by sampling live beetles. By surveying for nematode genera in different types of rotting vegetal matter, we found Pristionchus spp. at a similar high frequency as Caenorhabditis, often in large numbers and in feeding stages. Thus, these Pristionchus species may feed in decomposing vegetal matter. In addition, we report that one species of Panagrellus (Nematoda: Panagrolaimidae), Panagrellus redivivoides, is found in rotting fruits but not in rotting stems, with a likely association with Drosophila fruitflies. Based on our sampling and the observed distribution of feeding and dauer stages, we propose a life cycle for Pristionchus nematodes and Panagrellus redivivoides that is similar to that of C. elegans, whereby they feed on the microbial blooms on decomposing vegetal matter and are transported between food patches by coleopterans for Pristionchus spp., fruitflies for Panagrellus redivivoides and isopods and terrestrial molluscs for C. elegans.
Collapse
|
32
|
Cutter AD. X exceptionalism in Caenorhabditis speciation. Mol Ecol 2017; 27:3925-3934. [PMID: 29134711 DOI: 10.1111/mec.14423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
Speciation genetics research in diverse organisms shows the X-chromosome to be exceptional in how it contributes to "rules" of speciation. Until recently, however, the nematode phylum has been nearly silent on this issue, despite the model organism Caenorhabditis elegans having touched most other topics in biology. Studies of speciation with Caenorhabditis accelerated with the recent discovery of species pairs showing partial interfertility. The resulting genetic analyses of reproductive isolation in nematodes demonstrate key roles for the X-chromosome in hybrid male sterility and inviability, opening up new understanding of the genetic causes of Haldane's rule, Darwin's corollary to Haldane's rule, and enabling tests of the large-X effect hypothesis. Studies to date implicate improper chromatin regulation of the X-chromosome by small RNA pathways as integral to hybrid male dysfunction. Sexual transitions in reproductive mode to self-fertilizing hermaphroditism inject distinctive molecular evolutionary features into the speciation process for some species. Caenorhabditis also provides unique opportunities for analysis in a system with XO sex determination that lacks a Y-chromosome, sex chromosome-dependent sperm competition differences and mechanisms of gametic isolation, exceptional accessibility to the development process and rapid experimental evolution. As genetic analysis of reproductive isolation matures with investigation of multiple pairs of Caenorhabditis species and new species discovery, nematodes will provide a powerful complement to more established study organisms for deciphering the genetic basis of and rules to speciation.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|