1
|
Zamora‐Camacho FJ, Aragón P. Increased Temperature and Exposure to Ammonium Alter the Life Cycle of an Anuran Species. Ecol Evol 2024; 14:e70685. [PMID: 39629171 PMCID: PMC11612019 DOI: 10.1002/ece3.70685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Amphibian populations are undergoing a major recession worldwide, likely triggered by global change components such as the global warming and pollutants, among which agrochemicals, in general, and fertilizers, in particular, play a central role given their relevance in agriculture. Potential synergies among these stressors could maximize their individual effects. In this work, we investigated the consequences of a controlled chronic exposure to increased temperature and a sublethal dose of ammonium during the larval stage of Pelophylax perezi frogs on the growth, development, and locomotor performance of tadpoles and the metamorphs they gave rise to. To that end, tadpoles were reared either in heated or nonheated tanks, with or without ammonium added. The parents of these tadpoles came from either a pine grove or an agrosystem. Survival was reduced in agrosystem tadpoles reared with ammonium. Increased temperature potentiated tadpole growth while giving way to smaller metamorphs. Faster growth could be a consequence of increased metabolism, whereas the smaller size could follow an accelerated development and metamorphosis, which reduced the growth period. Also, swimming speed was greater in tadpoles reared in heated tanks, while jumping distance was greater in metamorphs reared in nonheated tanks. The effects of temperature were more marked in agrosystem than in pine grove individuals, which could mirror reduced adaptability. Thus, the ability to withstand the effects of these stressors was lower in agrosystem tadpoles.
Collapse
Affiliation(s)
- Francisco Javier Zamora‐Camacho
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
- Department of Biology of Organisms and SystemsUniversity of OviedoOviedoSpain
| | - Pedro Aragón
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
| |
Collapse
|
2
|
Martin C, Capilla-Lasheras P, Monaghan P, Burraco P. The impact of chemical pollution across major life transitions: a meta-analysis on oxidative stress in amphibians. Proc Biol Sci 2024; 291:20241536. [PMID: 39191283 PMCID: PMC11349447 DOI: 10.1098/rspb.2024.1536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Among human actions threatening biodiversity, the release of anthropogenic chemical pollutants which have become ubiquitous in the environment, is a major concern. Chemical pollution can induce damage to macromolecules by causing the overproduction of reactive oxygen species, affecting the redox balance of animals. In species undergoing metamorphosis (i.e. the vast majority of the extant animal species), antioxidant responses to chemical pollution may differ between pre- and post-metamorphic stages. Here, we meta-analysed (N = 104 studies, k = 2283 estimates) the impact of chemical pollution on redox balance across the three major amphibian life stages (embryo, tadpole, adult). Before metamorphosis, embryos did not experience any redox change while tadpoles activate their antioxidant pathways and do not show increased oxidative damage from pollutants. Tadpoles may have evolved stronger defences against pollutants to reach post-metamorphic life stages. In contrast, post-metamorphic individuals show only weak antioxidant responses and marked oxidative damage in lipids. The type of pollutant (i.e. organic versus inorganic) has contrasting effects across amphibian life stages. Our findings show a divergent evolution of the redox balance in response to pollutants across life transitions of metamorphosing amphibians, most probably a consequence of differences in the ecological and developmental processes of each life stage.
Collapse
Affiliation(s)
- Colette Martin
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, Braunschweig38106, Germany
| | - Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Swiss Ornithological Institute, Bird Migration Unit, Seerose 1, Sempach6204, Switzerland
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
| | - Pablo Burraco
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
| |
Collapse
|
3
|
Cochrane MM, Addis BR, Lowe WH. Stage-Specific Demographic Effects of Hydrologic Variation in a Stream Salamander. Am Nat 2024; 203:E175-E187. [PMID: 38635365 DOI: 10.1086/729466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractWe lack a strong understanding of how organisms with complex life histories respond to climate variation. Many stream-associated species have multistage life histories that are likely to influence the demographic consequences of floods and droughts. However, tracking stage-specific demographic responses requires high-resolution, long-term data that are rare. We used 8 years of capture-recapture data for the headwater stream salamander Gyrinophilus porphyriticus to quantify the effects of flooding and drying magnitude on stage-specific vital rates and population growth. Drying reduced larval recruitment but increased the probability of metamorphosis (i.e., adult recruitment). Flooding reduced adult recruitment but had no effect on larval recruitment. Larval and adult survival declined with flooding but were unaffected by drying. Annual population growth rates (λ) declined with flooding and drying. Lambda also declined over the study period (2012-2021), although mean λ was 1.0 over this period. Our results indicate that G. porphyriticus populations are resilient to hydrologic variation because of compensatory effects on recruitment of larvae versus adults (i.e., reproduction vs. metamorphosis). Complex life cycles may enable this resilience to climate variation by creating opportunities for compensatory demographic responses across stages. However, more frequent and intense hydrologic variation in the latter half of this study contributed to a decline in λ over time, suggesting that increasing environmental variability poses a threat even when demographic compensation occurs.
Collapse
|
4
|
Padilla P, Herrel A, Denoël M. Invading new climates at what cost? Ontogenetic differences in the thermal dependence of metabolic rate in an invasive amphibian. J Therm Biol 2024; 121:103836. [PMID: 38604116 DOI: 10.1016/j.jtherbio.2024.103836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Global warming can either promote or constrain the invasive potential of alien species. In ectotherm invaders that exhibit a complex life cycle, success is inherently dependent on the capacity of each developmental stage to cope with environmental change. This is particularly relevant for invasive anurans, which disperse on land while requiring water for reproduction. However, it remains unknown how the different life stages respond in terms of energy expenditure under different climate change scenarios. We here quantified the oxygen uptake of frogs at rest (a proxy of the standard metabolic rate) in the aquatic phase (at the tadpole and climax, i.e. during metamorphosis, stages) and in the terrestrial phase (metamorphosed stage) at three environmental temperatures. To do so, we used marsh frogs (Pelophylax ridibundus), an amphibian with the largest invasive range within the palearctic realm and for which their adaptation to global warming might be key to their invasion success. Beyond an increase of metabolic rate with temperature, our data show variation in thermal adaptation across life stages and a higher metabolic cost during metamorphosis. These results suggest that the cost to shift habitat and face changes in temperature may be a constraint on the invasive potential of species with a complex life cycle which may be particularly vulnerable during metamorphosis.
Collapse
Affiliation(s)
- Pablo Padilla
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic Science Unit of Research (FOCUS), University of Liège, Liège, Belgium; UMR 7179, C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Paris, France.
| | - Anthony Herrel
- UMR 7179, C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Paris, France; Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium; Department of Biology, University of Antwerp, Wilrijk, Belgium; Naturhistorisches Museum Bern, Bern, Switzerland
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic Science Unit of Research (FOCUS), University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Cochrane MM, Addis BR, Swartz LK, Lowe WH. Individual growth rates and size at metamorphosis increase with watershed area in a stream salamander. Ecology 2024; 105:e4217. [PMID: 38037284 DOI: 10.1002/ecy.4217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
A fundamental goal of ecology is to understand how the physical environment influences intraspecific variability in life history and, consequently, fitness. In streams, discharge and associated habitat conditions change along a continuum from intermittency to permanence: Headwater streams typically have smaller watersheds and are thus more prone to drying than higher-order streams with larger watersheds and more consistent discharge. However, few empirical studies have assessed life history and associated population responses to this continuum in aquatic organisms. We tested the prediction that individual growth, rate of development, and population growth increase with watershed area in the long-lived stream salamander Gyrinophilus porphyriticus, where we use watershed area as a proxy for hydrologic intermittence. To address this hypothesis, we used 8 years of mark-recapture data from 53 reaches across 10 headwater streams in New Hampshire, USA. Individual growth rates and mean size at metamorphosis increased with watershed area for watersheds from 0.12 to 1.66 km2 . Population growth rates increased with watershed area; however, this result was not statistically significant at our sample size. Mean age of metamorphosis did not vary across watershed areas. Lower individual growth rates and smaller sizes at metamorphosis likely contributed to reduced lifetime fecundity and population growth in reaches with the smallest watershed areas and highest vulnerability to drought. These responses suggest that as droughts increase due to climate change, headwater specialists in hydrologically intermittent environments will experience a reduction in fitness due to smaller body sizes or other growth-related mechanisms.
Collapse
Affiliation(s)
- Madaline M Cochrane
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Brett R Addis
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Leah K Swartz
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Winsor H Lowe
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
6
|
Burraco P, Torres-Montoro JC, Gomez-Mestre I. Larval plastic responses to warming and desiccation delay gonadal maturation in postmetamorphic spadefoot toads. Evolution 2023; 77:2687-2695. [PMID: 37793129 DOI: 10.1093/evolut/qpad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
Developmental plasticity allows organisms to adjust life-history traits to varying environmental conditions, which can have concomitant effects across life stages. Many amphibians are suitable model systems to study plasticity because their larvae can adjust growth and differentiation under fluctuating environments. It is unknown, however, whether somatic and gonadal differentiation are equally affected by environmentally induced plasticity or whether their decoupling alters gonadal maturation postmetamorphosis, which may affect fitness. We tested if developmental acceleration in response to warming and desiccation risk results in shifts in gonadal maturation during metamorphosis and postmetamorphic growth in western spadefoot toads (Pelobates cultripes). We found additive effects of increased temperature and desiccation risk on development and growth at metamorphosis, which largely constrained gonadal maturation in metamorphic and postmetamorphic individuals of both sexes. Furthermore, the conditions experienced by larvae incurred sex-specific carryover effects on the gonadal maturation of juveniles 5 months after metamorphosis. In females, high temperature delayed ovarian maturation regardless of the water level. In males, exposure to high temperature and high water levels slightly delayed the testes' maturation. These results highlight the relevance of larval plasticity in the gonadal maturation of species undergoing metamorphosis, which may have implications for population demographics and the evolution of life histories.
Collapse
Affiliation(s)
- Pablo Burraco
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Doñana Biological Station (CSIC), Sevilla, Spain
| | - Juan Carlos Torres-Montoro
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Doñana Biological Station (CSIC), Sevilla, Spain
| | - Ivan Gomez-Mestre
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Doñana Biological Station (CSIC), Sevilla, Spain
| |
Collapse
|
7
|
da Silva PR, Borges-Martins M, Oliveira GT. Impacts of isolated or mixed Roundup® Original DI and Boral® 500 SC herbicides on the survival and metamorphosis of Melanophryniscus admirabilis tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106715. [PMID: 37820410 DOI: 10.1016/j.aquatox.2023.106715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
The bufonid species Melanophryniscus admirabilis is restricted to a single location in the southern Atlantic Forest, Brazil. Although the site of occurrence of M. admirabilis is covered with native forest and it is not directly exposed to pesticides application, the area is surrounded by agricultural activity. Our objectives were to evaluate possible alterations in morphological parameters (body mass, snout-vent length, and body index), metamorphosis (time to reach Gosner stages 42, 46 and to complete metamorphosis), and survival of M. admirabilis exposed to isolated Roundup® Original DI (R1: 234 and R2: 2340 µg.L-1 of glyphosate) and Boral® 500 SC, (B1: 130 and B2: 980 µg.L-1 of sulfentrazone) or mixed (R1+B1, R2+B1, R1+B2, R2+B2). Spawns of M. admirabilis were collected in natural lakes in the municipality of Arvorezinha and taken to laboratory cultivation. After the tadpoles acquired free swimming, the animals were acclimated for five days and fed ad libitum. The aquariums were contaminated with herbicides on the sixth day of cultivation, and the animals stayed in these aquariums for four days. Afterwards, the tadpoles were transferred to aquariums with clean water and monitored until metamorphosis (Gosner stage 46), when they were weighed, measured (snout-cloacal length) and cryoeuthanized. We observed no alterations in morphological parameters; however, survival was reduced in exposed groups (mortality index: 71 % in R2 and 29-64 % in mixed groups), suggesting energy allocation for metamorphosis at the expense of survival. Boral did not alter metamorphosis time. Roundup isolated and mixed with Boral altered the timing of Gosner stages 42 and 46 and reduced metamorphosis time, suggesting endocrine disruption. Thus, monitoring the presence and limiting the use of these pesticides in the area where M. admirabilis occurs can be crucial for conservation strategies.
Collapse
Affiliation(s)
- Patrícia Rodrigues da Silva
- Conservation Physiology Laboratory, Morphological Sciences Department, Postgraduate Program in Ecology and Evolution of Biodiversity, School of Health Sciences and Life, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Ipiranga ave. 6681 Building 12 C, Porto Alegre, Brazil
| | - Márcio Borges-Martins
- Herpetology Laboratory, Zoology Department, Postgraduate Program in Animal Biology, Biological Sciences Institute, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Guendalina Turcato Oliveira
- Conservation Physiology Laboratory, Morphological Sciences Department, Postgraduate Program in Ecology and Evolution of Biodiversity, School of Health Sciences and Life, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Ipiranga ave. 6681 Building 12 C, Porto Alegre, Brazil.
| |
Collapse
|
8
|
Băncilă RI, Stănescu F, Plăiaşu R, Nae I, Székely D, Vlad SE, Cogălniceanu D. Food and light availability induce plastic responses in fire salamander larvae from contrasting environments. PeerJ 2023; 11:e16046. [PMID: 37810773 PMCID: PMC10559897 DOI: 10.7717/peerj.16046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023] Open
Abstract
Phenotypic plasticity has been proposed as a mechanism facilitating the colonisation and adaptation to novel environments, such as caves. However, phenotypic plasticity in subterranean environments remains largely unexplored. Here, we test for plasticity in growth and development of fire salamander larvae (Salamandra salamandra) from subterranean and surface habitats, in response to contrasting food availability and light conditions. We hypothesized that: (i) low food availability and absence of light decrease larval growth and delay metamorphosis, (ii) light conditions mediate the effects of food availability on growth and time to metamorphosis, and (iii) larval response to contrasting light and food conditions is shaped by the habitat of origin. Our study showed that reduced food availability significantly delayed metamorphosis and slowed total length and body mass growth rates, while exposure to constant darkness slowed body mass growth rate. However, larvae slowed growth rates and increased time to metamorphosis without compromising size at metamorphosis. The effect of food availability on growth and time to metamorphosis did not change under different light conditions. Fire salamanders from subterranean and surface habitats responded differently only in relation to contrasting food availability conditions. Specifically, larvae from the surface habitat grew faster in high food conditions, while growth in larvae from the subterranean habitat was not influenced by food availability. Initial size also appeared to be an influential factor, since larger and heavier larvae grew slower, metamorphosed faster, and the size advantage was maintained in newly-metamorphosed juveniles. Overall, the results of our experiment suggest that plasticity and local adaptation favor the exploitation of aquatic subterranean habitats for breeding by fire salamanders, allowing successful development even under food shortage and day-length constraints, without compromising metamorphic size. Our findings have implications for conservation because they confirm that phenotypic plasticity plays a critical role in allowing fire salamanders to overcome altered environmental conditions.
Collapse
Affiliation(s)
- Raluca Ioana Băncilă
- “Emil Racoviţă” Institute of Speleology of Romanian Academy of Sciences, Bucharest, Romania
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanţa, Constanţa, Romania
| | - Florina Stănescu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanţa, Constanţa, Romania
- Black Sea Institute for Development and Security Studies, Ovidius University Constanţa, Constanţa, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University Constanţa, Constanţa, Romania
| | - Rodica Plăiaşu
- “Emil Racoviţă” Institute of Speleology of Romanian Academy of Sciences, Bucharest, Romania
| | - Ioana Nae
- “Emil Racoviţă” Institute of Speleology of Romanian Academy of Sciences, Bucharest, Romania
| | - Diana Székely
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanţa, Constanţa, Romania
- Museo de Zoología, Universidad Técnica Particular de Loja, Loja, Ecuador
- Departamento de Ciencias Biológicas y Agropecuarias, Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs-Lab), Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Sabina E. Vlad
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanţa, Constanţa, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University Constanţa, Constanţa, Romania
- Chelonia Romania, Bucharest, Romania
| | - Dan Cogălniceanu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanţa, Constanţa, Romania
- Chelonia Romania, Bucharest, Romania
| |
Collapse
|
9
|
Sillar KT, Simmers J, Combes D. From tadpole to adult frog locomotion. Curr Opin Neurobiol 2023; 82:102753. [PMID: 37549591 DOI: 10.1016/j.conb.2023.102753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 08/09/2023]
Abstract
The transition from larval to adult locomotion in the anuran, Xenopus laevis, involves a dramatic switch from axial to appendicular swimming including intermediate stages when the tail and hindlimbs co-exist and contribute to propulsion. Hatchling tadpole swimming is generated by an axial central pattern generator (CPG) which matures rapidly during early larval life. During metamorphosis, the developing limbs are controlled by a de novo appendicular CPG driven initially by the axial system before segregating to allow both systems to operate together or independently. Neuromodulation plays important roles throughout, but key modulators switch their effects from early inhibitory influences to facilitating locomotion. Temperature affects the construction and operation of locomotor networks and global changes in environmental temperature place aquatic poikilotherms, like amphibians, at risk. The locomotor control strategy of anurans differs from other amphibian groups such as salamanders, where evolution has acted upon the thyroid hormone pathway to sculpt different developmental outcomes.
Collapse
Affiliation(s)
- Keith T Sillar
- School of Psychology and Neuroscience, University of St Andrews, St Marys Quad., St Andrews, Fife KY16 9AP, Scotland.
| | - John Simmers
- Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, 33706 Bordeaux, France
| | - Denis Combes
- Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, 33706 Bordeaux, France
| |
Collapse
|
10
|
Boualit L, Cayuela H, Ballu A, Cattin L, Reis C, Chèvre N. The Amphibian Short-Term Assay: Evaluation of a New Ecotoxicological Method for Amphibians Using Two Organophosphate Pesticides Commonly Found in Nature-Assessment of Behavioral Traits. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1595-1606. [PMID: 37097014 DOI: 10.1002/etc.5642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023]
Abstract
Neurotoxic pesticides are used worldwide to protect crops from insects; they are recognized to impact nontarget organisms that live in areas surrounded by treated crops. Many biochemical and cell-based solutions have been developed for testing insecticide neurotoxicity. Nevertheless, such solutions provide a partial assessment of the impact of neurotoxicity, neglecting important phenotypic components such as behavior. Behavior is the apical endpoint altered by neurotoxicity, and scientists are increasingly recommending including behavioral endpoints in available tests or developing new methods for assessing contaminant-induced behavioral changes. In the present study, we extended an existing protocol (the amphibian short-term assay) with a behavioral test. To this purpose, we developed a homemade device along with an open-source computing solution for tracking trajectories of Xenopus laevis tadpoles exposed to two organophosphates insecticides (OPIs), diazinon (DZN) and chlorpyrifos (CPF). The data resulting from the tracking were then analyzed, and the impact of exposure to DZN and CPF was tested on speed- and direction-related components. Our results demonstrate weak impacts of DZN on the behavioral components, while CPF demonstrated strong effects, notably on speed-related components. Our results also suggest a time-dependent alteration of behavior by CPF, with the highest impacts at day 6 and an absence of impact at day 8. Although only two OPIs were tested, we argue that our solution coupled with biochemical biomarkers is promising for testing the neurotoxicity of this pesticide group on amphibians. Environ Toxicol Chem 2023;42:1595-1606. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Laurent Boualit
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Hugo Cayuela
- Laboratoire de Biométrie et Biologie Evolution, Université Lyon 1, Villeurbanne, France
| | - Aurélien Ballu
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Loïc Cattin
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Christophe Reis
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Nathalie Chèvre
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Nolan N, Hayward MW, Klop-Toker K, Mahony M, Lemckert F, Callen A. Complex Organisms Must Deal with Complex Threats: How Does Amphibian Conservation Deal with Biphasic Life Cycles? Animals (Basel) 2023; 13:1634. [PMID: 37238064 PMCID: PMC10215276 DOI: 10.3390/ani13101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The unprecedented rate of global amphibian decline is attributed to The Anthropocene, with human actions triggering the Sixth Mass Extinction Event. Amphibians have suffered some of the most extreme declines, and their lack of response to conservation actions may reflect challenges faced by taxa that exhibit biphasic life histories. There is an urgent need to ensure that conservation measures are cost-effective and yield positive outcomes. Many conservation actions have failed to meet their intended goals of bolstering populations to ensure the persistence of species into the future. We suggest that past conservation efforts have not considered how different threats influence multiple life stages of amphibians, potentially leading to suboptimal outcomes for their conservation. Our review highlights the multitude of threats amphibians face at each life stage and the conservation actions used to mitigate these threats. We also draw attention to the paucity of studies that have employed multiple actions across more than one life stage. Conservation programs for biphasic amphibians, and the research that guides them, lack a multi-pronged approach to deal with multiple threats across the lifecycle. Conservation management programs must recognise the changing threat landscape for biphasic amphibians to reduce their notoriety as the most threatened vertebrate taxa globally.
Collapse
Affiliation(s)
- Nadine Nolan
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Matthew W. Hayward
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Kaya Klop-Toker
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Michael Mahony
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Frank Lemckert
- Eco Logical Australia Pty Ltd., Perth, WA 6000, Australia;
| | - Alex Callen
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| |
Collapse
|
12
|
Orford JT, Tan H, Tingley R, Alton LA, Wong BBM, Martin JM. Bigger and bolder: Widespread agricultural pollutant 17β-trenbolone increases growth and alters behaviour in tadpoles (Litoria ewingii). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106577. [PMID: 37207487 DOI: 10.1016/j.aquatox.2023.106577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
Endocrine-disrupting chemicals-compounds that directly interfere with the endocrine system of exposed animals-are insidious environmental pollutants that can disrupt hormone function, even at very low concentrations. The dramatic impacts that some endocrine-disrupting chemicals can have on the reproductive development of wildlife are well documented. However, the potential of endocrine-disrupting chemicals to disrupt animal behaviour has received far less attention, despite the important links between behavioural processes and population-level fitness. Accordingly, we investigated the impacts of 14 and 21-day exposure to two environmentally realistic levels of 17β-trenbolone (4.6 and 11.2 ng/L), a potent endocrine-disrupting steroid and agricultural pollutant, on growth and behaviour in tadpoles of an anuran amphibian, the southern brown tree frog (Litoria ewingii). We found that 17β-trenbolone altered morphology, baseline activity and responses to a predatory threat, but did not affect anxiety-like behaviours in a scototaxis assay. Specifically, we found that tadpoles exposed to our high-17β-trenbolone treatment were significantly longer and heavier at 14 and 21 days. We also found that tadpoles exposed to 17β-trenbolone showed higher levels of baseline activity, and significantly reduced their activity following a simulated predator strike. These results provide insights into the wider repercussions of agricultural pollutants on key developmental and behavioural traits in aquatic species, and demonstrate the importance of behavioural studies in the ecotoxicological field.
Collapse
Affiliation(s)
- Jack T Orford
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia.
| | - Hung Tan
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia
| | - Reid Tingley
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia; EnviroDNA, Victoria, Melbourne, Australia
| | - Lesley A Alton
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia; Centre for Geometric Biology, Monash University, Victoria, Melbourne, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish Universityof Agricultural Sciences, Umeå, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
13
|
Callen A, Pizzatto L, Stockwell MP, Clulow S, Clulow J, Mahony MJ. The effect of salt dosing for chytrid mitigation on tadpoles of a threatened frog, Litoria aurea. J Comp Physiol B 2023; 193:239-247. [PMID: 36811723 PMCID: PMC9992028 DOI: 10.1007/s00360-023-01479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/10/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
The novel fungal pathogen Batrachochytrium dendrobatidis (chytrid) is one of the greatest threats to amphibians worldwide. Small increases in water salinity (up to ca. 4 ppt) have been shown to limit chytrid transmission between frogs, potentially providing a way to create environmental refugia to reduce its impact at a landscape scale. However, the effect of increasing water salinity on tadpoles, a life stage confined to water, is highly variable. Increased water salinity can lead to reduced size and altered growth patterns in some species, with flow-on effects to vital rates such as survival and reproduction. It is thus important to assess potential trade-offs caused by increasing salinity as a tool to mitigate chytrid in susceptible frogs. We conducted laboratory experiments to examine the effects of salinity on the survival and development of tadpoles of a threatened frog (Litoria aurea), previously demonstrated as a suitable candidate for trialling landscape manipulations to mitigate chytrid. We exposed tadpoles to salinity ranging from 1 to 6 ppt and measured survival, time to metamorphosis, body mass and locomotor performance of post-metamorphic frogs as a measure of fitness. Survival and time to metamorphosis did not differ between salinity treatments or controls reared in rainwater. Body mass was positively associated with increasing salinity in the first 14 days. Juvenile frogs from three salinity treatments also showed the same or better locomotor performance compared to rainwater controls, confirming that environmental salinity may influence life history traits in the larval stage, potentially as a hormetic response. Our research suggests that salt concentrations in the range previously shown to improve survival of frogs in the presence of chytrid are unlikely to impact larval development of our candidate threatened species. Our study lends support to the idea of manipulating salinity to create environmental refugia from chytrid for at least some salt-tolerant species.
Collapse
Affiliation(s)
- Alex Callen
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Ligia Pizzatto
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Michelle P Stockwell
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Simon Clulow
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Bruce, ACT, 2617, Australia
| | - John Clulow
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Michael J Mahony
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
14
|
Kijanović A, Vukov T, Mirč M, Krizmanić I, Tomašević Kolarov N. Inability of yellow‐bellied toad to accelerate metamorphosis in desiccation conditions. J Zool (1987) 2023. [DOI: 10.1111/jzo.13056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- A. Kijanović
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia University of Belgrade Belgrade Serbia
| | - T. Vukov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia University of Belgrade Belgrade Serbia
| | - M. Mirč
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia University of Belgrade Belgrade Serbia
| | - I. Krizmanić
- Faculty of Biology, Institute of Zoology University of Belgrade Belgrade Serbia
| | - N. Tomašević Kolarov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia University of Belgrade Belgrade Serbia
| |
Collapse
|
15
|
Richardson EL, Marshall DJ. Mapping the correlations and gaps in studies of complex life histories. Ecol Evol 2023; 13:e9809. [PMID: 36820248 PMCID: PMC9937794 DOI: 10.1002/ece3.9809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
For species with complex life histories, phenotypic correlations between life-history stages constrain both ecological and evolutionary trajectories. Studies that seek to understand correlations across the life history differ greatly in their experimental approach: some follow individuals ("individual longitudinal"), while others follow cohorts ("cohort longitudinal"). Cohort longitudinal studies risk confounding results through Simpson's Paradox, where correlations observed at the cohort level do not match that of the individual level. Individual longitudinal studies are laborious in comparison, but provide a more reliable test of correlations across life-history stages. Our understanding of the prevalence, strength, and direction of phenotypic correlations depends on the approaches that we use, but the relative representation of different approaches remains unknown. Using marine invertebrates as a model group, we used a formal, systematic literature map to screen 17,000+ papers studying complex life histories, and characterized the study type (i.e., cohort longitudinal, individual longitudinal, or single stage), as well as other factors. For 3315 experiments from 1716 articles, 67% focused on a single stage, 31% were cohort longitudinal and just 1.7% used an individual longitudinal approach. While life-history stages have been studied extensively, we suggest that the field prioritize individual longitudinal studies to understand the phenotypic correlations among stages.
Collapse
Affiliation(s)
- Emily L. Richardson
- Centre for Geometric Biology, School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Dustin J. Marshall
- Centre for Geometric Biology, School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
16
|
Petrović TG, Vučić T, Burraco P, Gavrilović BR, Despotović SG, Gavrić JP, Radovanović TB, Šajkunić S, Ivanović A, Prokić MD. Higher temperature induces oxidative stress in hybrids but not in parental species: A case study of crested newts. J Therm Biol 2023; 112:103474. [PMID: 36796919 DOI: 10.1016/j.jtherbio.2023.103474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
Ectotherms are particularly sensitive to global warming due to their limited capacity to thermoregulate, which can impact their performance and fitness. From a physiological standpoint, higher temperatures often enhance biological processes that can induce the production of reactive oxygen species and result in a state of cellular oxidative stress. Temperature alters interspecific interactions, including species hybridization. Hybridization under different thermal conditions could amplify parental (genetic) incompatibilities, thus affecting a hybrid's development and distribution. Understanding the impact of global warming on the physiology of hybrids and particularly their oxidative status could help in predicting future scenarios in ecosystems and in hybrids. In the present study, we investigated the effect of water temperature on the development, growth and oxidative stress of two crested newt species and their reciprocal hybrids. Larvae of Triturus macedonicus and T. ivanbureschi, and their T. macedonicus-mothered and T. ivanbureschi-mothered hybrids were exposed for 30 days to temperatures of 19°C and 24°C. Under the higher temperature, the hybrids experienced increases in both growth and developmental rates, while parental species exhibited accelerated growth (T. macedonicus) or development (T. ivanbureschi). Warm conditions also had different effects on the oxidative status of hybrid and parental species. Parental species had enhanced antioxidant responses (catalase, glutathione peroxidase, glutathione S-transferase and SH groups), which allowed them to alleviate temperature-induced stress (revealed by the absence of oxidative damage). However, warming induced an antioxidant response in the hybrids, including oxidative damage in the form of lipid peroxidation. These findings point to a greater disruption of redox regulation and metabolic machinery in hybrid newts, which can be interpreted as the cost of hybridization that is likely linked to parental incompatibilities expressed under a higher temperature. Our study aims to improve mechanistic understanding of the resilience and distribution of hybrid species that cope with climate-driven changes.
Collapse
Affiliation(s)
- Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Tijana Vučić
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia; Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, the Netherlands.
| | - Pablo Burraco
- Doñana Biological Station (CSIC), C/ Americo Vespucci 26, 41092, Seville, Spain.
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Sanja Šajkunić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Ana Ivanović
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia.
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| |
Collapse
|
17
|
Evariste L, Mouchet F, Pinelli E, Flahaut E, Gauthier L, Barret M. Gut microbiota impairment following graphene oxide exposure is associated to physiological alterations in Xenopus laevis tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159515. [PMID: 36270377 DOI: 10.1016/j.scitotenv.2022.159515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Graphene-based nanomaterials such as graphene oxide (GO) possess unique properties triggering high expectations for the development of technological applications. Thus, GO is likely to be released in aquatic ecosystems. It is essential to evaluate its ecotoxicological potential to ensure a safe use of these nanomaterials. In amphibians, previous studies highlighted X. laevis tadpole growth inhibitions together with metabolic disturbances and genotoxic effects following GO exposure. As GO is known to exert bactericidal effects whereas the gut microbiota constitutes a compartment involved in host homeostasis regulation, it is important to determine if this microbial compartment constitutes a toxicological pathway involved in known GO-induced host physiological impairments. This study investigates the potential link between gut microbial communities and host physiological alterations. For this purpose, X. laevis tadpoles were exposed during 12 days to GO. Growth rate was monitored every 2 days and genotoxicity was assessed through enumeration of micronucleated erythrocytes. Genomic DNA was also extracted from the whole intestine to quantify gut bacteria and to analyze the community composition. GO exposure led to a dose dependent growth inhibition and genotoxic effects were detected following exposure to low doses. A transient decrease of the total bacteria was noticed with a persistent shift in the gut microbiota structure in exposed animals. Genotoxic effects were associated to gut microbiota remodeling characterized by an increase of the relative abundance of Bacteroides fragilis. The growth inhibitory effects would be associated to a shift in the Firmicutes/Bacteroidetes ratio while metagenome inference suggested changes in metabolic pathways and upregulation of detoxification processes. This work indicates that the gut microbiota compartment is a biological compartment of interest as it is integrative of host physiological alterations and should be considered for ecotoxicological studies as structural or functional impairments could lead to later life host fitness loss.
Collapse
Affiliation(s)
- Lauris Evariste
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Florence Mouchet
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Eric Pinelli
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Laury Gauthier
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maialen Barret
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
18
|
Robinson CE, Elvidge CK, Frank RA, Headley JV, Hewitt LM, Little AG, Robinson SA, Trudeau VL, Vander Meulen IJ, Orihel DM. Naphthenic acid fraction compounds reduce the reproductive success of wood frogs (Rana sylvatica) by affecting offspring viability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120455. [PMID: 36270565 DOI: 10.1016/j.envpol.2022.120455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Understanding the toxicity of organic compounds in oil sands process-affected water (OSPW) is necessary to inform the development of environmental guidelines related to wastewater management in Canada's oil sands region. In the present study, we investigated the effects of naphthenic acid fraction compounds (NAFCs), one of the most toxic components of OSPW, on mating behaviour, fertility, and offspring viability in the wood frog (Rana sylvatica). Wild adult wood frogs were exposed separately from the opposite sex to 0, 5, or 10 mg/L of OSPW-derived NAFCs for 24 h and then combined in outdoor lake water mesocosms containing the same NAFC concentrations (n = 2 males and 1 female per mesocosm, n = 3 mesocosms per treatment). Mating events were recorded for 48 h and egg masses were measured to determine adult fertility. NAFC exposure had no significant effect on mating behaviour (probability of amplexus and oviposition, amplexus and oviposition latency, total duration of amplexus and number of amplectic events) or fertility (fertilization success and clutch size). Tadpoles (50 individuals per mesocosm at hatching, and 15 individuals per mesocosm from 42 d post-hatch) were reared in the same mesocosms under chronic NAFC exposure until metamorphic climax (61-85 d after hatching). Offspring exposed to 10 mg/L NAFCs during development were less likely to survive and complete metamorphosis, grew at a reduced rate, and displayed more frequent morphological abnormalities. These abnormalities included limb anomalies at metamorphosis, described for the first time after NAFC exposure. The results of this study suggest that NAFCs reduce wood frog reproductive success through declines in offspring viability and therefore raise the concern that exposure to NAFCs during reproduction and development may affect the recruitment of native amphibian populations in the oil sands region.
Collapse
Affiliation(s)
- C E Robinson
- Department of Biology, Queen's University; Kingston, Ontario, K7L 3N6, Canada
| | - C K Elvidge
- Department of Biology, Queen's University; Kingston, Ontario, K7L 3N6, Canada
| | - R A Frank
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, L7S 1A1, Canada
| | - J V Headley
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, Saskatchewan, S7N 3H5, Canada
| | - L M Hewitt
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, L7S 1A1, Canada
| | - A G Little
- Department of Biology, Queen's University; Kingston, Ontario, K7L 3N6, Canada
| | - S A Robinson
- Ecotoxicoloy and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, K1A 0H3, Ontario, Canada
| | - V L Trudeau
- Department of Biology, University of Ottawa; Ottawa, Ontario, K1N 6N5, Canada
| | - I J Vander Meulen
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, Saskatchewan, S7N 3H5, Canada; Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A9, Canada
| | - D M Orihel
- Department of Biology, Queen's University; Kingston, Ontario, K7L 3N6, Canada; School of Environmental Studies, Queen's University; Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
19
|
Okura Y, Kuraishi R, Kaneko H. Size adjustment occurs during the larval growth of the separated blastomeres of the starfish, Patiria Pectinifera. Dev Growth Differ 2022; 64:517-526. [PMID: 36221193 DOI: 10.1111/dgd.12817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 12/31/2022]
Abstract
Starfish embryos derived from blastomeres separated at the early cleavage stage exhibit morphogenesis to form normally shaped, but smaller-sized dwarf bipinnaria larvae. To further understand this developmental capacity, we primarily characterized the morphogenetic processes of separated 2-cell and 4-cell stage blastomeres during the embryonic and larval periods of the starfish, Patiria Pectinifera. Using non-separated blastomeres as the control, we subjected the separated blastomeres to morphological analyses in conjunction with quantitative measurements of the changes in their body sizes with time post-fertilization. Our results were as follows: (i) Blastomeres separated at 2-cell and 4-cell stages synchronously developed into dwarf-sized bipinnaria larvae. (ii) Upon reaching a body size of 500-700 μm, all the bipinnaria larvae originating from the separated blastomeres and controls began to undergo a series of similar organ formation events in preparation for metamorphosis-recognized as the demarcation between the early and late substages of the bipinnaria larval period. (iii) The separated blastomeres became brachiolaria larvae capable of undergoing metamorphosis at differing rates after reaching approximately 1000-1200 μm body sizes, with adult rudiment and sensory organ forming functionally. (iv) The unfed controls and dwarf bipinnaria larvae derived from blastomeres separated at the 4-cell stage arrested their development synchronously without reaching the threshold size required for the latter half of the bipinnaria stage. These results, taken together, suggested that separated blastomeres possess the developmental capacity to become brachiolaria larvae through a shift in morphogenetic regulation from a synchronous growth to size adjustment during the larval period.
Collapse
Affiliation(s)
- Yamato Okura
- The American School in Japan, Chofu-shi, Tokyo, Japan
| | - Ritsu Kuraishi
- Department of Biology, Research, and Education Center for Natural Sciences, Keio University, Yokohama, Kanagawa, Japan
| | - Hiroyuki Kaneko
- Department of Biology, Research, and Education Center for Natural Sciences, Keio University, Yokohama, Kanagawa, Japan
| |
Collapse
|
20
|
Venâncio C, Gabriel A, Oliveira M, Lopes I. Feeding exposure and feeding behaviour as relevant approaches in the assessment of the effects of micro(nano)plastics to early life stages of amphibians. ENVIRONMENTAL RESEARCH 2022; 212:113476. [PMID: 35613634 DOI: 10.1016/j.envres.2022.113476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The sedimentation of micro and nanosized plastics is of considerable environmental relevance and the need to assess its sublethal effects to biota increasingly recognized. In their majority, as bottom, non-selective grazers, independent-feeding young life stages of amphibians, an already severely endangered worldwide group, may be particularly vulnerable to sedimented plastics. Alongside, they may be good model organisms for the assessment of the effects of micro(nano)plastics (MNPs) through ingestion. However, to our knowledge, few studies have assessed amphibians' exposure to MNPs through contaminated food or its effects in feeding behaviour assays. The available studies reveal a lack of consistent methodology: organisms, food type, media of exposure, or exposure conditions (temperature and light) in the assessment of effects. This perspective article, will address major differences found in the available studies, identifying type, size and concentrations of the polymers tested, species, and observed effects, aiming to highlight the importance of feeding exposure assays when attempting to evaluate the effect of MNPs in amphibians.
Collapse
Affiliation(s)
- Cátia Venâncio
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Antonieta Gabriel
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Isabel Lopes
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
21
|
Chen A, Deng H, Song X, Liu X, Chai L. Effects of Separate and Combined Exposure of Cadmium and Lead on the Endochondral Ossification in Bufo gargarizans. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1228-1245. [PMID: 35040517 DOI: 10.1002/etc.5296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) and lead (Pb) are ubiquitous in aquatic environments and most studies have examined the potential effects of Cd or Pb alone on aquatic organisms. In the present study, chronic effects of Cd and Pb, alone and in combination, on Bufo gargarizans were investigated by exposing embryos to these contaminants throughout metamorphosis. Significant reductions in body mass and snout-to-vent length were observed in B. gargarizans at Gosner stage 42 (Gs 42) and Gs 46 exposed to a Cd/Pb mixture. Single and combined exposure with Cd and Pb induced histological alterations of the thyroid gland characterized by reduced colloid area and thickness of epithelial cells. There was a significant decrease in the maximum jump distance of froglets exposed to Cd alone and the Cd/Pb mixture, and the jumping capacity showed a positive correlation with hind limb length and tibia/fibula. Moreover, single metals and their mixture induced reduction of endochondral bone formation in B. gargarizans. Transcriptomic and real-time quantitative polymerase chain reaction results showed that genes involved in skeletal ossification (TRα, TRβ, Dio2, Dio3, MMP9, MMP13, Runx1, Runx2, and Runx3) were transcriptionally dysregulated by Cd and Pb exposure alone or in combination. Our results suggested that despite the low concentration tested, the Cd/Pb mixture induced more severe impacts on B. gargarizans. In addition, the Cd/Pb mixture might reduce chances of survival for B. gargarizans froglets by decreasing size at metamorphosis, impaired skeletal ossification, and reduction in jumping ability, which might result from dysregulation of genes involved in thyroid hormone action and endochondral ossification. The findings obtained could add a new dimension to understanding of the mechanisms underpinning skeletal ossification response to heavy metals in amphibians. Environ Toxicol Chem 2022;41:1228-1245. © 2022 SETAC.
Collapse
Affiliation(s)
- Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Xiuling Song
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Xiaoli Liu
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| |
Collapse
|
22
|
Bryant AR, Gabor CR, Swartz LK, Wagner R, Cochrane MM, Lowe WH. Differences in Corticosterone Release Rates of Larval Spring Salamanders ( Gyrinophilus porphyriticus) in Response to Native Fish Presence. BIOLOGY 2022; 11:484. [PMID: 35453684 PMCID: PMC9030379 DOI: 10.3390/biology11040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Invasive fish predators are an important factor causing amphibian declines and may have direct and indirect effects on amphibian survival. For example, early non-lethal exposure to these stressors may reduce survival in later life stages, especially in biphasic species. In amphibians, the glucocorticoid hormone corticosterone is released by the hypothalamo-pituitary-interrenal axis (HPI), as an adaptive physiological response to environmental stressors. The corticosterone response (baseline and response to acute stressors) is highly flexible and context dependent, and this variation can allow individuals to alter their phenotype and behavior with environmental changes, ultimately increasing survival. We sampled larvae of the spring salamander (Gyrinophilus porphyriticus) from two streams that each contained predatory brook trout (Slavelinus fontinalis) in the lower reaches and no predatory brook trout in the upper reaches. We measured baseline and stress-induced corticosterone release rates of larvae from the lower and upper reaches using a non-invasive water-borne hormone assay. We hypothesized that corticosterone release rates would differ between larvae from fish-present reaches and larvae from fish-free reaches. We found that baseline and stressor-induced corticosterone release rates were downregulated in larvae from reaches with fish predators. These results indicate that individuals from reaches with predatory trout are responding to fish predators by downregulating corticosterone while maintaining an active HPI axis. This may allow larvae more time to grow before metamorphosing, while also allowing them to physiologically respond to novel stressors. However, prolonged downregulation of corticosterone release rates can impact growth in post-metamorphic individuals.
Collapse
Affiliation(s)
- Amanda R. Bryant
- Department of Biology, Texas State University, San Marcos, TX 78666, USA;
| | - Caitlin R. Gabor
- Department of Biology, Texas State University, San Marcos, TX 78666, USA;
| | | | - Ryan Wagner
- School of Environment and Natural Resources, The Ohio State University Columbus, Columbus, OH 43210, USA;
| | - Madaline M. Cochrane
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (M.M.C.); (W.H.L.)
| | - Winsor H. Lowe
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (M.M.C.); (W.H.L.)
| |
Collapse
|
23
|
Calsbeek R, Zamora-Camacho FJ, Symes LB. Individual contributions to group chorus dynamics influence access to mating opportunities in wood frogs. Ecol Lett 2022; 25:1401-1409. [PMID: 35305074 DOI: 10.1111/ele.14002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
A limitation in bioacoustic studies has been the inability to differentiate individual sonic contributions from group-level dynamics. We present a novel application of acoustic camera technology to investigate how individual wood frogs' calls influence chorus properties, and how variation influences mating opportunities. We recorded mating calls and used playback trials to gauge preference for different chorus types in the laboratory. Males and females preferred chorus playbacks with low variance in dominant frequency. Females preferred choruses with low mean peak frequency. Field studies revealed more egg masses laid in ponds where males chorused with low variance in dominant frequency. We also noted a trend towards more egg masses laid in ponds where males called with low mean frequency. Nearest-neighbour distances influenced call timing (neighbours called in succession) and distances increased with variance in chorus frequency. Results highlight the potential fitness implications of individual-level contributions to a bioacoustic signal produced by groups.
Collapse
Affiliation(s)
- Ryan Calsbeek
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Francisco Javier Zamora-Camacho
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA.,Department of Biogeography and Global Change, Spanish National Research Council, Madrid, Spain
| | - Laurel B Symes
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell lab of Ornithology, Ithaca, New York, USA
| |
Collapse
|
24
|
Tasker BR, Honebein KN, Erickson AM, Misslin JE, Hurst P, Cooney S, Riley S, Griffith SA, Bancroft BA. Effects of elevated temperature, reduced hydroperiod, and invasive bullfrog larvae on pacific chorus frog larvae. PLoS One 2022; 17:e0265345. [PMID: 35290408 PMCID: PMC8923472 DOI: 10.1371/journal.pone.0265345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
Climate change and invasive species threaten many ecosystems, including surface freshwater systems. Increasing temperatures and reduced hydroperiod due to climate change may promote the persistence of invasive species and facilitate new invasions due to potentially higher tolerance to environmental stress in successful invaders. Amphibians demonstrate high levels of plasticity in life history characteristics, particularly those species which inhabit both ephemeral and permanent water bodies. We tested the influence of two projected effects of climate change (increased temperature and reduced hydroperiod) on Pacific chorus frog (Pseudacris regilla) tadpoles alone and in combination with the presence of tadpoles of a wide-spread invasive amphibian, the American bullfrog (Lithobates catesbeianus). Specifically, we explored the effects of projected climate change and invasion on survival, growth, mass at stage 42, and development rate of Pacific chorus frogs. Direct and indirect interactions between the invasive tadpole and the native tadpole were controlled via a cage treatment and were included to account for differences in presence of the bullfrog compared to competition for food resources and other direct effects. Overall, bullfrogs had larger negative effects on Pacific chorus frogs than climate conditions. Under future climate conditions, Pacific chorus frogs developed faster and emerged heavier. Pacific chorus frog tadpoles developing in the presence of American bullfrogs, regardless of cage treatment, emerged lighter. When future climate conditions and presence of invasive American bullfrog tadpoles were combined, tadpoles grew less. However, no interaction was detected between climate conditions and bullfrog presence for mass, suggesting that tadpoles allocated energy towards mass rather than length under the combined stress treatment. The maintenance of overall body condition (smaller but heavier metamorphs) when future climate conditions overlap with bullfrog presence suggests that Pacific chorus frogs may be partially compensating for the negative effects of bullfrogs via increased allocation of energy towards mass. Strong plasticity, as demonstrated by Pacific chorus frog larvae in our study, may allow species to match the demands of new environments, including under future climate change.
Collapse
Affiliation(s)
- Bailey R. Tasker
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
- Department of Environmental Studies and Sciences, Gonzaga University, Spokane, Washington, United States of America
| | - Karli N. Honebein
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
- Department of Environmental Studies and Sciences, Gonzaga University, Spokane, Washington, United States of America
| | - Allie M. Erickson
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
- Department of Environmental Studies and Sciences, Gonzaga University, Spokane, Washington, United States of America
| | - Julia E. Misslin
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
| | - Paul Hurst
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
- Department of Environmental Studies and Sciences, Gonzaga University, Spokane, Washington, United States of America
| | - Sarah Cooney
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
| | - Skylar Riley
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
| | - Scott A. Griffith
- Department of Mathematics and Computer Science, Whitworth University, Spokane, Washington, United States of America
| | - Betsy A. Bancroft
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
- Department of Environmental Studies and Sciences, Gonzaga University, Spokane, Washington, United States of America
- * E-mail:
| |
Collapse
|
25
|
Prokić MD, Petrović TG, Gavrilović BR, Despotović SG, Gavrić JP, Kijanović A, Tomašević Kolarov N, Vukov T, Radovanović TB. Carry-Over Effects of Desiccation Stress on the Oxidative Status of Fasting Anuran Juveniles. Front Physiol 2021; 12:783288. [PMID: 34925072 PMCID: PMC8674722 DOI: 10.3389/fphys.2021.783288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022] Open
Abstract
Amphibians are sensitive to deteriorating environmental conditions, especially during transition to a terrestrial environment which is full of uncertainties. Harsh conditions, such as desiccation during earlier stages, affect different larval traits with possible carry-over effects on juvenile and adult life histories. The first consequences of the effects can be seen in juveniles in the challenges to find food and the ability to survive without it in a terrestrial habitat. Body size and the internal energy reserves acquired during the larval phase play an important role in this period. Herein, we tested how different water regimes (low water availability, desiccation and constant high-water availability) during larval development reflect on the oxidative status and ability of yellow belly toad (Bombina variegata) juveniles to endure short-term fasting. The desiccation regime significantly reduced the body size of metamorphs. The same was observed after 2 weeks of fasting, while the feeding treatment reduced differences mostly in the body mass of individuals from different water regimes. This was the result of a greater gain in mass in juveniles pre-exposed to desiccation. Pre-exposure to desiccation also modified the parameters of the antioxidant system (AOS) under feeding conditions, leading to higher values of superoxide dismutase, glutathione reductase and glutathione S-transferase, glutathione and sulfhydryl group concentrations, and lower glutathione peroxidase in comparison to juveniles reared under constant water. The increase in the AOS of juveniles can be considered as a physiological carry-over effect of desiccation, probably as the result of compensatory growth and/or earlier exposure to chronic stress. However, water levels during larval development did not exert significant effects on the oxidative status of juveniles subjected to food unavailability. Fasting juveniles, both control and desiccated, were exposed to oxidative stress, significantly higher lipid peroxide concentrations, lower superoxide dismutase, glutathione peroxidase, glutathione S-transferase, glutathione and sulfhydryl group values in comparison to feeding individuals. The lack of food in juvenile anurans activated the AOS response in the same manner, regardless of body size and stress pre-exposure, suggesting that the generally accepted hypothesis about the influence of metamorphic body size on the fitness of the postmetamorphic stage should be tested further.
Collapse
Affiliation(s)
- Marko D. Prokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara G. Petrović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka R. Gavrilović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Svetlana G. Despotović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena P. Gavrić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Kijanović
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Tomašević Kolarov
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tanja Vukov
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tijana B. Radovanović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
26
|
Oh D, Kim Y, Yoo S, Kang C. Habitat ephemerality affects the evolution of contrasting growth strategies and cannibalism in anuran larvae. PeerJ 2021; 9:e12172. [PMID: 34603854 PMCID: PMC8445080 DOI: 10.7717/peerj.12172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
Ephemeral streams are challenging environments for tadpoles; thus, adaptive features that increase the survival of these larvae should be favored by natural selection. In this study, we compared the adaptive growth strategies of Bombina orientalis (the oriental fire-bellied toad) tadpoles from ephemeral streams with those of such tadpoles from non-ephemeral streams. Using a common garden experiment, we tested the interactive effects of location (ephemeral vs. non-ephemeral), food availability, and growing density on larval period, weight at metamorphosis, and cannibalism. We found that tadpoles from ephemeral streams underwent a shorter larval period compared with those from non-ephemeral streams but that this difference was contingent on food availability. The observed faster growth is likely to be an adaptive response because tadpoles in ephemeral streams experience more biotic/abiotic stressors, such as desiccation risk and limited resources, compared with those in non-ephemeral streams, with their earlier metamorphosis potentially resulting in survival benefits. As a trade-off for their faster growth, tadpoles from ephemeral streams generally had a lower body weight at metamorphosis compared with those from non-ephemeral streams. We also found lower cannibalism rates among tadpoles from ephemeral streams, which can be attributed to the indirect fitness costs of cannibalizing their kin. Our study demonstrates how ephemeral habitats have affected the evolutionary change in cannibalistic behaviors in anurans and provides additional evidence that natural selection has mediated the evolution of growth strategies of tadpoles in ephemeral streams.
Collapse
Affiliation(s)
- Dogeun Oh
- Department of Biosciences, Mokpo National University, Muan, Jeollanamdo, South Korea
| | - Yongsu Kim
- Department of Biosciences, Mokpo National University, Muan, Jeollanamdo, South Korea
| | - Sohee Yoo
- Department of Biosciences, Mokpo National University, Muan, Jeollanamdo, South Korea
| | - Changku Kang
- Department of Biosciences, Mokpo National University, Muan, Jeollanamdo, South Korea
| |
Collapse
|
27
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|
28
|
Cogălniceanu D, Stănescu F, Székely D, Topliceanu TS, Iosif R, Székely P. Age, size and body condition do not equally reflect population response to habitat change in the common spadefoot toad Pelobates fuscus. PeerJ 2021; 9:e11678. [PMID: 34316392 PMCID: PMC8286710 DOI: 10.7717/peerj.11678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Urbanization impacts biodiversity both directly through physical expansion over land, and indirectly due to land use conversion and human behaviors associated with urban areas. We assessed the response of a common spadefoot toad population (Pelobates fuscus) to habitat loss and fragmentation resulting from urban development by studying changes in size, body condition and age parameters. We compared samples collected in the early 2000s (sample A) and later on during 2012-2014 (sample B). The terrestrial habitats in the study area were severely reduced and fragmented due to the expansion of the human settlement. We found no significant differences in the age parameters between the two sampling periods; the median lifespan shortened from 3.5 (sample A) to 3.0 years (sample B), while the other age parameters were similar in both samples. In contrast, snout-vent length, body mass and body condition experienced a significant decrease over time. Our results suggest that changes in body size and body condition, rather than age parameters, better reflect the response of the common spadefoot toad population to declining habitat quality. Therefore, body measurements can provide reliable estimates of the impact of habitat degradation in amphibian populations.
Collapse
Affiliation(s)
- Dan Cogălniceanu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Asociația Chelonia Romania, Bucharest, Romania
| | - Florina Stănescu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Black Sea Institute for Development and Security Studies, Ovidius University Constanța, Constanța, Romania.,CEDMOG-Center for Morphological and Genetic Studies of Malignant Pathology, Ovidius University Constanța, Constanța, Romania
| | - Diana Székely
- Asociația Chelonia Romania, Bucharest, Romania.,Departamento de Ciencias Biológicas y Agropecuarias, Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs Lab), Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Theodor-Sebastian Topliceanu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Black Sea Institute for Development and Security Studies, Ovidius University Constanța, Constanța, Romania.,CEDMOG-Center for Morphological and Genetic Studies of Malignant Pathology, Ovidius University Constanța, Constanța, Romania
| | - Ruben Iosif
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Asociația Chelonia Romania, Bucharest, Romania
| | - Paul Székely
- Asociația Chelonia Romania, Bucharest, Romania.,Departamento de Ciencias Biológicas y Agropecuarias, Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs Lab), Universidad Técnica Particular de Loja, Loja, Ecuador
| |
Collapse
|
29
|
Zeitler EF, Cecala KK, McGrath DA. Carryover effects minimized the positive effects of treated wastewater on anuran development. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112571. [PMID: 33866133 DOI: 10.1016/j.jenvman.2021.112571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetlands (CWs) are a potential solution for wastewater treatment due to their capacity to support native species and provide tertiary wastewater treatment. However, CWs can expose wildlife communities to excess nutrients and harmful contaminants, affecting their development, morphology, and behavior. To examine how wastewater CWs may affect wildlife, we raised Southern leopard frogs, Lithobates sphenocephalus, in wastewater from conventional secondary lagoon and tertiary CW treatments for comparison with pondwater along with the presence and absence of a common plant invader to these systems - common duckweed (Lemna minor) - and monitored their juvenile development for potential carryover effects into the terrestrial environment. The tertiary CW treatment did not change demographic or morphological outcomes relative to conventional wastewater treatment in our study. Individuals emerging from both wastewater treatments demonstrated lower terrestrial survival rates than those emerging from pondwater throughout the experiment though experiment-wide survival rates were equivalent among treatments. Individuals from wastewater treatments transformed at larger sizes relative to those in pondwater, but this advantage was minimized in the terrestrial environment. Individuals that developed with duckweed had consistent but marginally better performance in both environments. Our results suggest a potential trade-off between short-term benefits of development in treated effluent and long-term consequences on overall fitness. Overall, we demonstrate that CWs for the purpose of wastewater treatment may not be suitable replicates for wildlife habitat and could have consequences for local population dynamics.
Collapse
Affiliation(s)
- Emma F Zeitler
- Department of Biology, University of the South, Sewanee, TN, 37383, USA
| | - Kristen K Cecala
- Department of Biology, University of the South, Sewanee, TN, 37383, USA.
| | - Deborah A McGrath
- Department of Biology, University of the South, Sewanee, TN, 37383, USA
| |
Collapse
|
30
|
Marangoni F, Tejedo M, Cogălniceanu D. Can age and growth patterns explain the geographical variation in the body size of two toad species? AN ACAD BRAS CIENC 2021; 93:e20190470. [PMID: 34105609 DOI: 10.1590/0001-3765202120190470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/15/2019] [Indexed: 11/22/2022] Open
Abstract
Determining both the age structure and growth pattern allows to establish the causal factors, environmental and/or genetic, that eventually may be responsible for the observed pattern of divergence. We examined the variation in age structure and growth pattern across populations of two toad species, Pelobates cultripes and Epidalea calamita that exhibit a geographic variation in body size in southern Spain. For both species, populations differed in mean age but age structure did not correlate with body size variation across populations. Although the population with the youngest females found for E. calamita was the smallest in body size, the oldest males for both species were found in a small body size population. The growth pattern fit well to a von Bertalanffy growth model and interdemic divergence were found for both the asymptotic body size (Sm ) and the growth coefficients (k). As expected, Large-Bodied populations of both species attained higher Sm but, Small-Bodied population had higher, although non significantly different, k growth coefficients. Also, the Small-Bodied population attained sexual maturity sooner but had also high longevity. The observed pattern may reflect both environmental variations in resources availability affecting body size observed across populations, but also different growth and maturity pathways that may respond to contrasting selective pressures.
Collapse
Affiliation(s)
- Federico Marangoni
- Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Avda. Américo Vespucio s/n, 41092 Sevilla, Spain.,Chelonia Argentina, Virasoro 2804, 3400 Corrientes, Argentina
| | - Miguel Tejedo
- Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Avda. Américo Vespucio s/n, 41092 Sevilla, Spain
| | - Dan Cogălniceanu
- Chelonia Romania, Pascani 5, sector 6, Bucharest, Romania.,Faculty of Natural and Agricultural Sciences, Ovidius University, Constanta, Romania Al. Universităţii 1, corp B, Constanţa 900470, Romania
| |
Collapse
|
31
|
Lu H, Hu Y, Kang C, Meng Q, Lin Z. Cadmium-induced toxicity to amphibian tadpoles might be exacerbated by alkaline not acidic pH level. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112288. [PMID: 33940440 DOI: 10.1016/j.ecoenv.2021.112288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Heavy metal pollution in natural water bodies generally interacting with other environmental stressors produces toxic effects on aquatic organisms. However, toxicological studies exploring interactive effects of these stressors are still limited. Here, tadpoles of the Zhenhai brown frog (Rana zhenhaiensis) were exposed to a 3 × 3 factorial combination, with three cadmium (Cd) concentrations (0, 10 and 100 μg/L) and three pH levels (5.0, 7.23 and 9.0) throughout the developmental period to assess combined toxic effects of Cd × pH on tadpole growth, development and physiology. Nearly all measured traits [including survival, metamorphosis and abnormality rate, metamorphosis time, post-metamorphic size, hepatic metal content, locomotor performance, antioxidant enzyme activity, and erythrocytic nuclear abnormality (ENA) frequency] were affected by Cd exposure, indicating notable Cd-induced toxicity to R. zhenhaiensis tadpoles. The pH level and its interaction with Cd also had significant impacts on most measured traits, such as survival rate, metamorphosis time, froglet jumping distance, hepatic Cd content, ENA frequency. Acidic (or alkaline) environment itself was toxic to tadpoles. However, high pH (but not low pH) level appeared to exacerbate Cd-induced toxicity to tadpoles. Excess free hydrogen ions under acidic environments might inhibit Cd2+ ions binding to cell surface, which reduced Cd accumulation in tissues. Under alkaline environments, other forms of Cd complexes in the aqueous phase probably contributed to promoting Cd accumulation. Our results indicated that Cd exposure could interact with different pH levels, producing diverse combined toxicities to amphibian larvae.
Collapse
Affiliation(s)
- Hongliang Lu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Yingchao Hu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Chunquan Kang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Qinyuan Meng
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Zhihua Lin
- College of Ecology, Lishui University, Lishui 323000, Zhejiang, China
| |
Collapse
|
32
|
Rueda-Zozaya P, Plasman M, Reynoso VH. Good alimentation can overcome the negative effects of climate change on growth in reptiles. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Climate change may lead to higher nest temperatures, which may increase embryo development rate but reduce hatchling size and growth. Larger body size permits better performance, making growth an important fitness trait. In ectotherms, growth is affected by temperature and food quality. To segregate the effects of incubation temperature vs. alimentation on the growth of the Mexican black spiny-tailed iguana, Ctenosaura pectinata, we incubated eggs at 29 or 32 °C, and hatchlings were kept at 30 °C and fed either high- or low-quality food for 1 year, with body size and mass being recorded every 2 weeks. Iguanas incubated at 29 °C grew faster than those incubated at 32 °C. However, food quality had a larger effect on growth than incubation temperature; iguanas fed with high-quality food reached larger body sizes. Growth models suggested that differences in growth between incubation temperatures and food types remain throughout their lives. We found that incubation temperature had long-lasting effects on an ectotherm, and higher incubation temperatures might lead to reduced growth and maturation at a later age. However, food might transcend the effect of increased incubation temperature; therefore, good alimentation might mitigate effects of climate change on growth.
Collapse
Affiliation(s)
- Pilar Rueda-Zozaya
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, Mexico
| | - Melissa Plasman
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, Mexico
| | - Víctor Hugo Reynoso
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, Mexico
| |
Collapse
|
33
|
Zheng R, Wu M, Wang H, Chai L, Peng J. Copper-induced sublethal effects in Bufo gargarizans tadpoles: growth, intestinal histology and microbial alternations. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:502-513. [PMID: 33587250 DOI: 10.1007/s10646-021-02356-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Copper (Cu) is one of the environmental contaminations which can pose significant risks for organisms. The current study explores the effects of Cu exposure on the growth, intestinal histology and microbial ecology in Bufo gargarizans. The results revealed that 0.5-1 μM Cu exposure induced growth retardation (including reduction of total body length and wet weight) and intestinal histological injury (including disordered enterocyte, changes in the villi and vacuoles) of tadpoles. Also, high-throughput sequencing analysis showed that Cu exposure caused changes in richness, diversity and structure of intestinal microbiota. Moreover, the composition of intestinal microbiota was altered in tadpoles exposed to different concentrations of Cu. At the phylum level, we observed the abundance of proteobacteria was increased, while the abundance of fusobacteria was decreased in the intestinal microbiota of tadpoles exposed to 1 μM Cu. At the genus level, a reduced abundance of kluyvera and aeromonas was observed in the intestinal microbiota of tadpoles under the exposure of 0-0.5 μM Cu. Finally, functional predictions revealed that tadpoles exposed to copper may be at a higher risk of developing metabolic disorders or diseases. Above all, our results will develop a comprehensive view of the Cu exposure in amphibians and will yield a new consideration for sublethal effects of Cu on aquatic organisms.
Collapse
Affiliation(s)
- Rui Zheng
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, 710062, People's Republic of China
| | - Jufang Peng
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
- Basic Experimental Teaching Center, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
| |
Collapse
|
34
|
Petrović TG, Kijanović A, Kolarov Tomašević N, Gavrić JP, Despotović SG, Gavrilović BR, Radovanović TB, Vukov T, Faggio C, Prokić MD. Effects of Desiccation on Metamorphic Climax in Bombina variegata: Changes in Levels and Patterns of Oxidative Stress Parameters. Animals (Basel) 2021; 11:ani11040953. [PMID: 33805554 PMCID: PMC8066544 DOI: 10.3390/ani11040953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Global warming alters patterns of precipitation and drought, which are important factors in the survival of amphibian populations. Metamorphosis is affected by environmental changes; this is especially true of metamorphic climax, the crucial stage of amphibian development that is accompanied by significant morphological, physiological and behavioral adaptations necessary for the transition to a terrestrial habitat. This study investigated naturally occurring changes in the cellular oxidative status (antioxidant system and oxidative damage) of yellow-bellied toad larvae during this phase, and how exposure to exogenous factors such as desiccation affected them. Our results revealed clear changes in the antioxidant system’s (AOS) response and the levels of oxidative damage during metamorphic climax, with the highest response and damage observed at the end stage. Decreasing water levels during larval development altered the components of the AOS and increased oxidative damage, resulting in increased oxidative stress. The knowledge gained from this study could contribute to a better understanding of the oxidative stress that larvae experience during this critical stage of development, and the consequences of global warming—such as water loss—on amphibians. Abstract In this paper, we examined how the oxidative status (antioxidant system and oxidative damage) of Bombina variegata larvae changed during the metamorphic climax (Gosner stages: 42—beginning, 44—middle and 46—end) and compared the patterns and levels of oxidative stress parameters between individuals developing under constant water availability (control) and those developing under decreasing water availability (desiccation group). Our results revealed that larvae developing under decreasing water availability exhibited increased oxidative damage in the middle and end stages. This was followed by lower levels of glutathione in stages 44 and 46, as well as lower values of catalase, glutathione peroxidase, glutathione S-transferase and sulfhydryl groups in stage 46 (all in relation to control animals). Comparison between stages 42, 44 and 46 within treatments showed that individuals in the last stage demonstrated the highest intensities of lipid oxidative damage in both the control and desiccation groups. As for the parameters of the antioxidant system, control individuals displayed greater variety in response to changes induced by metamorphic climax than individuals exposed to desiccation treatment. The overall decrease in water availability during development led to increased oxidative stress and modifications in the pattern of AOS response to changes induced by metamorphic climax in larvae of B. variegata.
Collapse
Affiliation(s)
- Tamara G. Petrović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (T.G.P.); (J.P.G.); (S.G.D.); (B.R.G.); (T.B.R.); (M.D.P.)
| | - Ana Kijanović
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (A.K.); (N.K.T.); (T.V.)
| | - Nataša Kolarov Tomašević
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (A.K.); (N.K.T.); (T.V.)
| | - Jelena P. Gavrić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (T.G.P.); (J.P.G.); (S.G.D.); (B.R.G.); (T.B.R.); (M.D.P.)
| | - Svetlana G. Despotović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (T.G.P.); (J.P.G.); (S.G.D.); (B.R.G.); (T.B.R.); (M.D.P.)
| | - Branka R. Gavrilović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (T.G.P.); (J.P.G.); (S.G.D.); (B.R.G.); (T.B.R.); (M.D.P.)
| | - Tijana B. Radovanović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (T.G.P.); (J.P.G.); (S.G.D.); (B.R.G.); (T.B.R.); (M.D.P.)
| | - Tanja Vukov
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (A.K.); (N.K.T.); (T.V.)
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence:
| | - Marko D. Prokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (T.G.P.); (J.P.G.); (S.G.D.); (B.R.G.); (T.B.R.); (M.D.P.)
| |
Collapse
|
35
|
Chen X, Ren C, Teng Y, Shen Y, Wu M, Xiao H, Wang H. Effects of temperature on growth, development and the leptin signaling pathway of Bufo gargarizans. J Therm Biol 2020; 96:102822. [PMID: 33627262 DOI: 10.1016/j.jtherbio.2020.102822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/27/2022]
Abstract
Climate change is one of the most important causes of the decline in amphibians. Changes in temperature have an important effect on the growth and development and energy metabolism of amphibians. The aim of this study is to unravel the effects of temperature on the leptin signaling pathway of Bufo gargarizans and its molecular mechanisms. Our results showed that high temperature accelerated the development rate of tadpoles, but reduced body size and mass, while low temperature deferred the development of tadpoles, but increased size and mass. Both high temperature and low temperature exposure caused pathological damage of the liver in B. gargarizans. The results of RT-qPCR revealed that the high temperature treatment significantly upregulated the transcript levels of genes related to thyroid hormone (DIO2 (D2), Thyroid Hormone Receptor-α (TRα)) and the leptin signaling pathway (Leptin Receptor (LepR), Janus kinase 1 (JAK1), Janus kinase 2 (JAK2), Tyrosine kinase 2 (TYK2), Signal Transducer And Activator Of Transcription 3 (STAT3), Signal Transducer And Activator Of Transcription 3.1 (STAT3.1), and Signal Transducer And Activator Of Transcription 6 (STAT6)), while there was a decrease of mRNA expression of these genes (TRα, Thyroid Hormone Receptor-Beta (TRβ), LepR, JAK1, and TYK2) in the liver of tadpoles exposed to high temperature compared with the intermediate temperature treatment. Therefore, our results suggested that temperature extremes might interfere with the thyroid and leptin signaling pathways and affect the growth and development of B. gargarizans. Furthermore, tissue injury of the liver could occur due to exposure to temperature extremes. This work promotes public awareness of environmental protection and species conservation needs, also provides valuable experimental data and a theoretical basis for the protection of amphibians.
Collapse
Affiliation(s)
- Xiaoyan Chen
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Chaolu Ren
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yiran Teng
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yujia Shen
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hui Xiao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
36
|
Zheng R, Liu R, Wu M, Wang H, Xie L. Effects of sodium perchlorate and exogenous L-thyroxine on growth, development and leptin signaling pathway of Bufo gargarizans tadpoles during metamorphosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111410. [PMID: 33007540 DOI: 10.1016/j.ecoenv.2020.111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Sodium perchlorate (NaClO4) and exogenous L-thyroxine (T4), two kinds of endocrine-disrupting chemicals (EDCs), mainly affect the circulating thyroid hormones, which regulate the initiation and rate of metamorphosis in amphibian. The aim of this study is to evaluate the potential role of EDCs in regulating the development of tadpoles and leptin signaling pathway of liver during the metamorphosis of Bufo gargarizans. There was completely opposite result of average development stage of tadpoles and morphological parameters between the NaClO4 and T4 exposure groups. Histological analysis revealed that NaClO4 and T4 exposure both caused liver injury, such as the decreased size of hepatocytes, atrophy of nucleus, increased melanomacrophage centres and disappearance of hepatocyte membranes. In addition, the results of RT-qPCR revealed that NaClO4 treatment significantly inhibited the transcript levels of genes related to thyroid hormone (D2, TRα and TRβ) and leptin signaling pathway (LepR, JAK1, JAK2, and TYK2), while there was an increase of mRNA expression of these genes in the liver of tadpoles administrated with T4 compared with control. This work lays an important foundation for assessing the risk of EDCs in relation to amphibian development during metamorphosis.
Collapse
Affiliation(s)
- Rui Zheng
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Rong Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Lei Xie
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, 325035, Wenzhou, China; College of Life and Environmental Science, Wenzhou University, 325035, Wenzhou, China.
| |
Collapse
|
37
|
Prokić MD, Petrović TG, Despotović SG, Vučić T, Gavrić JP, Radovanović TB, Gavrilović BR. The effect of short-term fasting on the oxidative status of larvae of crested newt species and their hybrids. Comp Biochem Physiol A Mol Integr Physiol 2020; 251:110819. [PMID: 33022409 DOI: 10.1016/j.cbpa.2020.110819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022]
Abstract
In nature, animals often face periods without food caused by seasonal fluctuations and/or prey scarcity. An organism's physiological response to imposed energetic limitations is followed by changes in mitochondrial functioning (adjustment of energy metabolism) and a reduction of non-essential processes. However, this energy-saving strategy can have its costs. In this study, we examined oxidative stress as one of the possible physiological costs of short-term, two-week-long food deprivation on developing amphibian larvae of the crested newts Triturus macedonicus and Triturus ivanbureschi and their hybrids. We investigated whether this exogenous factor additionally affected the oxidative status (fitness-related trait) of hybrid individuals. The fasting treatment led to lower growth and a lower body mass and body condition index of individuals. The results revealed that the antioxidant system (AOS) of food-deprived larvae could not cope in a proper manner with reactive oxygen species production under limited energy availability, leading to higher lipid oxidative damage. The lowest AOS response was observed for H2O2 scavenging parameters (catalase, glutathione peroxidase, and total glutathione), which together with the elevated activity of superoxide dismutase suggested increased H2O2 concentrations. Comparison between parental species and their hybrids showed that hybrid individuals suffered greater oxidative damage (as demonstrated by higher concentrations of lipid peroxides), indicating that they were more susceptible to fasting-induced oxidative stress. Overall, this study illustrates that: (i) an oxidative event is one of the costs amphibian larvae face during short-term periods of fasting, (ii) hybrids are less capable of dealing with this stressful condition, which can lower their chances of survival in a changing environment.
Collapse
Affiliation(s)
- Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana Vučić
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia; Faculty of Biology, Institute for Zoology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
38
|
Melotto A, Manenti R, Ficetola GF. Rapid adaptation to invasive predators overwhelms natural gradients of intraspecific variation. Nat Commun 2020; 11:3608. [PMID: 32681028 PMCID: PMC7368066 DOI: 10.1038/s41467-020-17406-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/29/2020] [Indexed: 11/08/2022] Open
Abstract
Invasive predators can exert strong selection on native populations. If selection is strong enough, populations could lose the phenotypic variation caused by adaptation to heterogeneous environments. We compare frog tadpoles prior to and 14 years following invasion by crayfish. Prior to the invasion, populations differed in their intrinsic developmental rate, with tadpoles from cold areas reaching metamorphosis sooner than those from warm areas. Following the invasion, tadpoles from invaded populations develop faster than those from non-invaded populations. This ontogenetic shift overwhelmed the intraspecific variation between populations in a few generations, to the point where invaded populations develop at a similar rate regardless of climate. Rapid development can have costs, as fast-developing froglets have a smaller body size and poorer jumping performance, but compensatory growth counteracts some costs of development acceleration. Strong selection by invasive species can disrupt local adaptations by dampening intraspecific phenotypic variation, with complex consequences on lifetime fitness.
Collapse
Affiliation(s)
- Andrea Melotto
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy.
- Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape, South Africa.
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy.
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA - Laboratoire d'Écologie Alpine, F-38000, Grenoble, France
| |
Collapse
|