1
|
Luo Y, Safabakhsh S, Palumbo A, Fiset C, Shen C, Parker J, Foster LJ, Laksman Z. Sex-Based Mechanisms of Cardiac Development and Function: Applications for Induced-Pluripotent Stem Cell Derived-Cardiomyocytes. Int J Mol Sci 2024; 25:5964. [PMID: 38892161 PMCID: PMC11172775 DOI: 10.3390/ijms25115964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Males and females exhibit intrinsic differences in the structure and function of the heart, while the prevalence and severity of cardiovascular disease vary in the two sexes. However, the mechanisms of this sex-based dimorphism are yet to be elucidated. Sex chromosomes and sex hormones are the main contributors to sex-based differences in cardiac physiology and pathophysiology. In recent years, the advances in induced pluripotent stem cell-derived cardiac models and multi-omic approaches have enabled a more comprehensive understanding of the sex-specific differences in the human heart. Here, we provide an overview of the roles of these two factors throughout cardiac development and explore the sex hormone signaling pathways involved. We will also discuss how the employment of stem cell-based cardiac models and single-cell RNA sequencing help us further investigate sex differences in healthy and diseased hearts.
Collapse
Affiliation(s)
- Yinhan Luo
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; (Y.L.); (J.P.)
| | - Sina Safabakhsh
- Centre for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, BC V6T 2A1, Canada;
| | - Alessia Palumbo
- Michael Smith Laboratories, Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.P.); (L.J.F.)
| | - Céline Fiset
- Research Centre, Montreal Heart Institute, Faculty of Pharmacy, Université de Montréal, Montréal, QC H1T 1C8, Canada;
| | - Carol Shen
- Department of Integrated Sciences, University of British Columbia, Vancouver, BC V6T 1Z2, Canada;
| | - Jeremy Parker
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; (Y.L.); (J.P.)
| | - Leonard J. Foster
- Michael Smith Laboratories, Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.P.); (L.J.F.)
| | - Zachary Laksman
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; (Y.L.); (J.P.)
- Centre for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, BC V6T 2A1, Canada;
| |
Collapse
|
2
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
3
|
Xia S, Ou K, Zhang S, Huang J, Fang L, Wang C, Wang Q. EGCG exposure during pregnancy affects uterine histomorphology in F1 female mice and the underlying mechanisms. Food Chem Toxicol 2022; 167:113306. [PMID: 35863485 DOI: 10.1016/j.fct.2022.113306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Although epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been shown to have many benefits, the effect of EGCG exposure in utero on adult uterine development is unclear. In this study, pregnant C57BL/6 mice were exposed to 1 mg/kg body weight (bw) EGCG dissolved in drinking water from gestational days 0.5-16.5. A significant decrease in uterine weight was observed in the adult female mice, accompanied by uterine atrophy, inflammation, and fibrosis in the endometrium. Uterine atrophy was attributed to the thinning of the endometrial stromal layer and a significant reduction in endometrial cell proliferation. The expression levels of related proteins in the NF-κB and RAF/MEK/ERK signaling pathways were significantly increased, which might be responsible for the occurrence of inflammation. Activation of the transforming growth factor beta (TGF-β1)/Smad signaling pathway might be involved in the development of endometrial fibrosis. The changes in the expression of estrogen receptor α, β (ERα, ERβ), progesterone receptor (PGR), and androgen receptor (AR) might lead to changes in the aforementioned signaling pathways. The promoter region methylation level of Esr2 was increased, and the expression of DNMT3A was evaluated. Our study indicates a risk of EGCG intake during pregnancy affecting uterine development in offspring.
Collapse
Affiliation(s)
- Siyu Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Shenli Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Jie Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
4
|
Zhu WZ, Ledee D, Olson AK. Temporal regulation of protein O-GlcNAc levels during pressure-overload cardiac hypertrophy. Physiol Rep 2021; 9:e14965. [PMID: 34337900 PMCID: PMC8326887 DOI: 10.14814/phy2.14965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/03/2022] Open
Abstract
Protein posttranslational modifications (PTMs) by O-linked β-N-acetylglucosamine (O-GlcNAc) rise during pressure-overload hypertrophy (POH) to affect hypertrophic growth. The hexosamine biosynthesis pathway (HBP) branches from glycolysis to make the moiety for O-GlcNAcylation. It is speculated that greater glucose utilization during POH augments HBP flux to increase O-GlcNAc levels; however, recent results suggest glucose availability does not primarily regulate cardiac O-GlcNAc levels. We hypothesize that induction of key enzymes augment protein O-GlcNAc levels primarily during active myocardial hypertrophic growth and remodeling with early pressure overload. We further speculate that downregulation of protein O-GlcNAcylation inhibits ongoing hypertrophic growth during prolonged pressure overload with established hypertrophy. We used transverse aortic constriction (TAC) to create POH in C57/Bl6 mice. Experimental groups were sham, 1-week TAC (1wTAC) for early hypertrophy, or 6-week TAC (6wTAC) for established hypertrophy. We used western blots to determine O-GlcNAc regulation. To assess the effect of increased protein O-GlcNAcylation with established hypertrophy, mice received thiamet-g (TG) starting 4 weeks after TAC. Protein O-GlcNAc levels were significantly elevated in 1wTAC versus Sham with a fall in 6wTAC. OGA, which removes O-GlcNAc from proteins, fell in 1wTAC versus sham. GFAT is the rate-limiting HBP enzyme and the isoform GFAT1 substantially rose in 1wTAC. With established hypertrophy, TG increased protein O-GlcNAc levels but did not affect cardiac mass. In summary, protein O-GlcNAc levels vary during POH with elevations occurring during active hypertrophic growth early after TAC. O-GlcNAc levels appear to be regulated by changes in key enzyme levels. Increasing O-GlcNAc levels during established hypertrophy did not restart hypertrophic growth.
Collapse
Affiliation(s)
| | - Dolena Ledee
- Seattle Children’s Research InstituteSeattleWAUSA
- Division of CardiologyDepartment of PediatricsUniversity of WashingtonSeattleWAUSA
| | - Aaron K. Olson
- Seattle Children’s Research InstituteSeattleWAUSA
- Division of CardiologyDepartment of PediatricsUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
5
|
Lynch S, Boyett JE, Smith MR, Giordano-Mooga S. Sex Hormone Regulation of Proteins Modulating Mitochondrial Metabolism, Dynamics and Inter-Organellar Cross Talk in Cardiovascular Disease. Front Cell Dev Biol 2021; 8:610516. [PMID: 33644031 PMCID: PMC7905018 DOI: 10.3389/fcell.2020.610516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the U.S. and worldwide. Sex-related disparities have been identified in the presentation and incidence rate of CVD. Mitochondrial dysfunction plays a role in both the etiology and pathology of CVD. Recent work has suggested that the sex hormones play a role in regulating mitochondrial dynamics, metabolism, and cross talk with other organelles. Specifically, the female sex hormone, estrogen, has both a direct and an indirect role in regulating mitochondrial biogenesis via PGC-1α, dynamics through Opa1, Mfn1, Mfn2, and Drp1, as well as metabolism and redox signaling through the antioxidant response element. Furthermore, data suggests that testosterone is cardioprotective in males and may regulate mitochondrial biogenesis through PGC-1α and dynamics via Mfn1 and Drp1. These cell-signaling hubs are essential in maintaining mitochondrial integrity and cell viability, ultimately impacting CVD survival. PGC-1α also plays a crucial role in inter-organellar cross talk between the mitochondria and other organelles such as the peroxisome. This inter-organellar signaling is an avenue for ameliorating rampant ROS produced by dysregulated mitochondria and for regulating intrinsic apoptosis by modulating intracellular Ca2+ levels through interactions with the endoplasmic reticulum. There is a need for future research on the regulatory role of the sex hormones, particularly testosterone, and their cardioprotective effects. This review hopes to highlight the regulatory role of sex hormones on mitochondrial signaling and their function in the underlying disparities between men and women in CVD.
Collapse
Affiliation(s)
- Shannon Lynch
- Biomedical Sciences Program, Graduate School, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James E Boyett
- Biomedical Sciences Program, Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - M Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, United States
| | - Samantha Giordano-Mooga
- Biomedical Sciences Program, Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Cruz-Topete D, Dominic P, Stokes KY. Uncovering sex-specific mechanisms of action of testosterone and redox balance. Redox Biol 2020; 31:101490. [PMID: 32169396 PMCID: PMC7212492 DOI: 10.1016/j.redox.2020.101490] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/17/2020] [Accepted: 03/01/2020] [Indexed: 12/11/2022] Open
Abstract
The molecular and pharmacological manipulation of the endogenous redox system is a promising therapy to limit myocardial damage after a heart attack; however, antioxidant therapies have failed to fully establish their cardioprotective effects, suggesting that additional factors, including antioxidant system interactions with other molecular pathways, may alter the pharmacological effects of antioxidants. Since gender differences in cardiovascular disease (CVD) are prevalent, and sex is an essential determinant of the response to oxidative stress, it is of particular interest to understand the effects of sex hormone signaling on the activity and expression of cellular antioxidants and the pharmacological actions of antioxidant therapies. In the present review, we briefly summarize the current understanding of testosterone effects on the modulation of the endogenous antioxidant systems in the CV system, cardiomyocytes, and the heart. We also review the latest research on redox balance and sexual dimorphism, with particular emphasis on the role of the natural antioxidant system glutathione (GSH) in the context of myocardial infarction, and the pro- and antioxidant effects of testosterone signaling via the androgen receptor (AR) on the heart. Finally, we discuss future perspectives regarding the potential of using combing antioxidant and testosterone replacement therapies to protect the aging myocardium.
Collapse
Affiliation(s)
- Diana Cruz-Topete
- Department of Molecular and Cellular Physiology, Shreveport, LA, USA; Center for Cardiovascular Diseases and Sciences, Shreveport, LA, USA.
| | - Paari Dominic
- Center for Cardiovascular Diseases and Sciences, Shreveport, LA, USA; Department of Cardiology, LSU Health Sciences Center, Shreveport, LA, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, Shreveport, LA, USA; Center for Cardiovascular Diseases and Sciences, Shreveport, LA, USA
| |
Collapse
|
7
|
Groothuis TGG, Hsu BY, Kumar N, Tschirren B. Revisiting mechanisms and functions of prenatal hormone-mediated maternal effects using avian species as a model. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180115. [PMID: 30966885 PMCID: PMC6460091 DOI: 10.1098/rstb.2018.0115] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
Maternal effects can adaptively modulate offspring developmental trajectories in variable but predictable environments. Hormone synthesis is sensitive to environmental factors, and maternal hormones are thus a powerful mechanism to transfer environmental cues to the next generation. Birds have become a key model for the study of hormone-mediated maternal effects because the embryo develops outside the mother's body, facilitating the measurement and manipulation of prenatal hormone exposure. At the same time, birds are excellent models for the integration of both proximate and ultimate approaches, which is key to a better understanding of the evolution of hormone-mediated maternal effects. Over the past two decades, a surge of studies on hormone-mediated maternal effects has revealed an increasing number of discrepancies. In this review, we discuss the role of the environment, genetic factors and social interactions in causing these discrepancies and provide a framework to resolve them. We also explore the largely neglected role of the embryo in modulating the maternal signal, as well as costs and benefits of hormone transfer and expression for the different family members. We conclude by highlighting fruitful avenues for future research that have opened up thanks to new theoretical insights and technical advances in the field. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.
Collapse
Affiliation(s)
- Ton G. G. Groothuis
- Behavioural Biology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Bin-Yan Hsu
- Behavioural Biology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
- Department of Biology, University of Turku, Turku, Finland
| | - Neeraj Kumar
- Behavioural Biology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
8
|
Bernasochi GB, Boon WC, Delbridge LMD, Bell JR. The myocardium and sex steroid hormone influences. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Jonker SS, Louey S, Roselli CE. Cardiac myocyte proliferation and maturation near term is inhibited by early gestation maternal testosterone exposure. Am J Physiol Heart Circ Physiol 2018; 315:H1393-H1401. [PMID: 30095996 PMCID: PMC6297822 DOI: 10.1152/ajpheart.00314.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022]
Abstract
Polycystic ovary syndrome is a complex and common disorder in women, and those affected experience an increased burden of cardiovascular disease. It is an intergenerational syndrome, as affected women with high androgen levels during pregnancy "program" fetal development, leading to a similar phenotype in their female offspring. The effect of excess maternal testosterone exposure on fetal cardiomyocyte growth and maturation is unknown. Pregnant ewes received biweekly injections of vehicle (control) or 100 mg testosterone propionate between 30 and 59 days of gestation (early T) or between 60 and 90 days of gestation (late T). Fetuses were delivered at ~135 days of gestation, and their hearts were enzymatically dissociated to measure cardiomyocyte growth (dimensional measurements), maturation (proportion binucleate), and proliferation (nuclear Ki-67 protein). Early T depressed serum insulin-like growth factor 1 and caused intrauterine growth restriction (IUGR; P < 0.0005). Hearts were smaller with early T ( P < 0.001) due to reduced cardiac myocyte maturation ( P < 0.0005) and proliferation ( P = 0.017). Maturation was also lower in male than female fetuses ( P = 0.004) independent of treatment. Late T did not affect cardiac growth. Early excess maternal testosterone exposure depresses circulating insulin-like growth factor 1 near term and causes IUGR in both female and male offspring. These fetuses have small, immature hearts with reduced proliferation, which may reduce cardiac myocyte endowment and predispose to adverse cardiac growth in postnatal life. While excess maternal testosterone exposure leads to polycystic ovary syndrome and cardiovascular disease in female offspring, it may also predispose to complications of IUGR and cardiovascular disease in male offspring. NEW & NOTEWORTHY Using measurements of cardiac myocyte growth and maturation in an ovine model of polycystic ovary syndrome, this study demonstrates that early gestation excess maternal testosterone exposure reduces near-term cardiomyocyte proliferation and maturation in intrauterine growth-restricted female and male fetuses. The effect of testosterone is restricted to exposure during a specific period early in pregnancy, and the effects appear mediated through reduced insulin-like growth factor 1 signaling. Furthermore, male fetuses, regardless of treatment, had fewer mature cardiomyocytes than female fetuses.
Collapse
Affiliation(s)
- Sonnet S Jonker
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon
- Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Samantha Louey
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon
- Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Charles E Roselli
- Department of Physiology and Pharmacology, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
10
|
Nandrolone alter left ventricular contractility and promotes remodelling involving calcium-handling proteins and renin-angiotensin system in male SHR. Life Sci 2018; 208:239-245. [PMID: 30040952 DOI: 10.1016/j.lfs.2018.07.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 11/24/2022]
Abstract
AIMS Hypertension is a highly prevalent disease that has been correlated to severe organ damage and mortality. However, the role of androgens in hypertension is controversial. The aim of this study was to evaluate the cardiac effects of the nandrolone decanoate (NDL) in male SHR. MAIN METHODS At 12 weeks of age, male SHR rats were separated into three groups: Control (CON), Nandrolone 10 mg/kg twice weekly (NDL), and NDL plus Enalapril 10 mg/kg/day (NDL-E) groups. The animals were treated for 4 weeks. Haemodynamic parameters were acquired through ventricular catheter implantation. The left ventricle was stained with haematoxylin/eosin or picrosirius red. Western blot analysis of TNF-α, ACE, AT1R, β1-AR, PLB, p-PLBser16 and SERCA2a was performed. KEY FINDINGS Nandrolone increased hypertension in SHR rats and enalapril reduced blood pressure to values below those of the control. NDL increased +dP/dtmax, -dP/dtmax and cardiac hypertrophy, which were prevented in the NDL-E group. Cardiac collagen deposition was increased in the NDL group, with this effect being attenuated by enalapril in NDL-E animals. TNF-α, ACE, AT1R and β1-AR proteins were increased in the NDL, and enalapril decreased them, except for TNF-α. The ratio p-PLBser16/PLB revealed an increase after nandrolone, which was prevented in the NDL-E group. The SERCA2a expression protein and SERCA2a/PLB were increased in NDL animals, which did not occur in the NDL-E group. SIGNIFICANCE Nandrolone has distinct effects on cardiac function and remodelling in male SHR, altering the hypertension development process in the heart through modulation of calcium handling proteins and the renin-angiotensin system.
Collapse
|