1
|
Arab Firozjae A, Shiran MR, Ajami A, Farzin D, Rashidi M. Lutein improves remyelination by reducing of neuroinflammation in C57BL/6 mouse models of multiple sclerosis. Heliyon 2024; 10:e39253. [PMID: 39640747 PMCID: PMC11620235 DOI: 10.1016/j.heliyon.2024.e39253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024] Open
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disorder characterized by demyelination. Lutein, a xanthophyll carotenoid, has well-known antioxidant and anti-inflammatory properties. In this experiment, we aimed to investigate the neuroprotective and remyelination potential of lutein in comparison with dimethyl fumarate (DMF) as a reference drug in post-cuprizone-intoxicated C57BL/6 mice. Lutein (50, 100, and 200 mg/kg/day; p.o.) and DMF (15 mg/kg/day, i.p.) were administered either alone or in combination for three weeks at the end of the six-week cuprizone (0.2 % w/w) feeding period. At the end of the study, behavioral tests, histopathological staining, immunohistochemistry (olig2), ELISA, and real-time PCR were performed to evaluate the target parameters. Lutein treatment significantly enhanced motor functions, reversed cuprizone-induced demyelination and increased serum TAC. In addition, treatment with lutein increased the number of Olig2+ cells in the corpus callosum, reduced the IL-1β and TNF-α and increased BDNF. Lutein administration significantly increased the expression levels of genes involved in myelin production (MBP, PLP, MOG, MAG, and OLIG-1) and notably reduced GFAP expression levels. In the present study, our results showed that lutein treatment could promote remyelination and neuroprotective effects by reducing neuroinflammation and upregulating the expression of the genes involved in myelin formation These findings suggest that lutein could serve as a potential adjuvant therapy for patients with multiple sclerosis. Further clinical trials are necessary to confirm its efficacy.
Collapse
Affiliation(s)
- Atefeh Arab Firozjae
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Mohammad Reza Shiran
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Abolghasem Ajami
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Davood Farzin
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Wu L, Liu Y, Zhou H, Cao Z, Yu J. Gastrodin Ameliorates Learning and Memory Impairments Caused by Long-Term Noise Exposure. Noise Health 2024; 26:396-402. [PMID: 39345083 PMCID: PMC11540004 DOI: 10.4103/nah.nah_76_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 10/01/2024] Open
Abstract
The developing brain is significantly affected by long-term exposure to noise at an early age, leading to functional disorders such as learning and memory impairments. Gastrodin (GAS), a natural organic compound, is an extraction of phenolic glycoside from the rhizome of Gastrodia elata. Clinically, GAS is extensively utilised for the treatment of neurological disorders. This study aimed to explore the effect and mechanism of GAS on noise exposure-induced learning and memory impairments. Rats aged 21 days were exposed to a 90 dB noise environment for 4 weeks and divided into the noise group, the noise + GAS group, and the control group to establish a noise exposure model. After noise exposure treatment, the improvement effect of GAS on the memory of rats was evaluated by Y-maze and Morris water maze. Enzyme-linked immunosorbent assay was utilised to determine the effect of GAS on neurotransmitter levels in the hippocampal tissue of noise-exposed rats. Western blot was applied for the detection of the protein levels of neurotrophic factors. The GAS treatment significantly improved spatial memory and increased the levels of key neurotransmitters (norepinephrine, dopamine and serotonin) and neurotrophic factors (neurotrophin-3 and brain-derived neurotrophic factor) in the hippocampal tissues of noise-exposed rats. These alterations correlate with enhanced cognitive functions, suggesting a neuroprotective effect of GAS against noise-induced cognitive impairments. This study supports the potential of GAS to treat noise-induced learning and memory impairments by modulating neurotransmitter secretion and enhancing the expression levels of neurotrophic factors. These findings offer potential therapeutic avenues for cognitive impairments induced by noise exposure.
Collapse
Affiliation(s)
- Lin Wu
- Department of Pathology, Peking University Cancer Hospital Yunnan/Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University Kunming, Yunnan 650118, China
- Department of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ying Liu
- Department of Pathology, Peking University Cancer Hospital Yunnan/Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University Kunming, Yunnan 650118, China
| | - Hu Zhou
- Department of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhenzhen Cao
- Department of Anatomy and Histology, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jianyun Yu
- Department of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
3
|
Araújo AM, Marques SI, Guedes de Pinho P, Carmo H, Carvalho F, Silva JP. Identification of key neuronal mechanisms triggered by dimethyl fumarate in SH-SY5Y human neuroblastoma cells through a metabolomic approach. Arch Toxicol 2024; 98:1151-1161. [PMID: 38368281 PMCID: PMC10944387 DOI: 10.1007/s00204-024-03683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
Dimethyl fumarate (DMF) is an old drug used for psoriasis treatment that has recently been repurposed to treat relapse-remitting multiple sclerosis, mostly due to its neuro- and immunomodulatory actions. However, mining of a pharmacovigilance database recently ranked DMF as the second pharmaceutical most associated with cognitive adverse events. To our best knowledge, the signaling mechanisms underlying its therapeutic and neurotoxic outcomes remain mostly undisclosed. This work thus represents the first-hand assessment of DMF-induced metabolic changes in undifferentiated SH-SY5Y human neuroblastoma cells, through an untargeted metabolomic approach using gas chromatography-mass spectrometry (GC-MS). The endometabolome was analyzed following 24 h and 96 h of exposure to two pharmacologically relevant DMF concentrations (0.1 and 10 μM). None of these conditions significantly reduced metabolic activity (MTT reduction assay). Our data showed that 24 h-exposure to DMF at both concentrations tested mainly affected metabolic pathways involved in mitochondrial activity (e.g., citric acid cycle, de novo triacylglycerol biosynthesis), and the synthesis of catecholamines and serotonin by changing the levels of their respective precursors, namely phenylalanine (0.68-fold decrease for 10 μM DMF vs vehicle), and tryptophan (1.36-fold increase for 0.1 μM DMF vs vehicle). Interestingly, taurine, whose levels can be modulated via Nrf2 signaling (DMF's primary target), emerged as a key mediator of DMF's neuronal action, displaying a 3.86-fold increase and 0.27-fold decrease for 10 μM DMF at 24 h and 96 h, respectively. A 96 h-exposure to DMF seemed to mainly trigger pathways associated with glucose production (e.g., gluconeogenesis, glucose-alanine cycle, malate-aspartate shuttle), possibly related to the metabolism of DMF into monomethyl fumarate and its further conversion into glucose via activation of the citric acid cycle. Overall, our data contribute to improving the understanding of the events associated with neuronal exposure to DMF.
Collapse
Affiliation(s)
- Ana Margarida Araújo
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Sandra I Marques
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Helena Carmo
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - João Pedro Silva
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
4
|
McCallum RT, Thériault RK, Manduca JD, Russell ISB, Culmer AM, Doost JS, Martino TA, Perreault ML. Nrf2 activation rescues stress-induced depression-like behaviour and inflammatory responses in male but not female rats. Biol Sex Differ 2024; 15:16. [PMID: 38350966 PMCID: PMC10863247 DOI: 10.1186/s13293-024-00589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a recurring affective disorder that is two times more prevalent in females than males. Evidence supports immune system dysfunction as a major contributing factor to MDD, notably in a sexually dimorphic manner. Nuclear factor erythroid 2-related factor 2 (Nrf2), a regulator of antioxidant signalling during inflammation, is dysregulated in many chronic inflammatory disorders; however, its role in depression and the associated sex differences have yet to be explored. Here, we investigated the sex-specific antidepressant and immunomodulatory effects of the potent Nrf2 activator dimethyl fumarate (DMF), as well as the associated gene expression profiles. METHODS Male and female rats were treated with vehicle or DMF (25 mg/kg) whilst subjected to 8 weeks of chronic unpredictable stress. The effect of DMF treatment on stress-induced depression- and anxiety-like behaviours, as well as deficits in recognition and spatial learning and memory were then assessed. Sex differences in hippocampal (HIP) microglial activation and gene expression response were also evaluated. RESULTS DMF treatment during stress exposure had antidepressant effects in male but not female rats, with no anxiolytic effects in either sex. Recognition learning and memory and spatial learning and memory were impaired in chronically stressed males and females, respectively, and DMF treatment rescued these deficits. DMF treatment also prevented stress-induced HIP microglial activation in males. Conversely, females displayed no HIP microglial activation associated with stress exposure. Last, chronic stress elicited sex-specific alterations in HIP gene expression, many of which were normalized in animals treated with DMF. Of note, most of the differentially expressed genes in males normalized by DMF were related to antioxidant, inflammatory or immune responses. CONCLUSIONS Collectively, these findings support a greater role of immune processes in males than females in a rodent model of depression. This suggests that pharmacotherapies that target Nrf2 have the potential to be an effective sex-specific treatment for depression.
Collapse
Affiliation(s)
- Ryan T McCallum
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Rachel-Karson Thériault
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Joshua D Manduca
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Isaac S B Russell
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Angel M Culmer
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Janan Shoja Doost
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Tami A Martino
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Melissa L Perreault
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
5
|
Vinnenberg L, Rychlik N, Oniani T, Williams B, White JA, Kovac S, Meuth SG, Budde T, Hundehege P. Assessing neuroprotective effects of diroximel fumarate and siponimod via modulation of pacemaker channels in an experimental model of remyelination. Exp Neurol 2024; 371:114572. [PMID: 37852467 DOI: 10.1016/j.expneurol.2023.114572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/04/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Cuprizone (CPZ)-induced alterations in axonal myelination are associated with a period of neuronal hyperexcitability and increased activity of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels in the thalamocortical (TC) system. Substances used for the treatment of multiple sclerosis (MS) have been shown to normalize neuronal excitability in CPZ-treated mice. Therefore, we aimed to examine the effects of diroximel fumarate (DRF) and the sphingosine 1-phospate receptor (S1PR) modulator siponimod on action potential firing and the inward current (Ih) carried by HCN ion channels in naive conditions and during different stages of de- and remyelination. Here, DRF application reduced Ih current density in ex vivo patch clamp recordings from TC neurons of the ventrobasal thalamic complex (VB), thereby counteracting the increase of Ih during early remyelination. Siponimod reduced Ih in VB neurons under control conditions but had no effect in neurons of the auditory cortex (AU). Furthermore, siponimod increased and decreased AP firing properties of neurons in VB and AU, respectively. Computational modeling revealed that both DRF and siponimod influenced thalamic bursting during early remyelination by delaying the onset and decreasing the interburst frequency. Thus, substances used in MS treatment normalize excitability in the TC system by influencing AP firing and Ih.
Collapse
Affiliation(s)
- Laura Vinnenberg
- Department of Neurology with Institute of Translational Neurology, Münster University, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany
| | - Nicole Rychlik
- Institute of Physiology I, Münster University, Robert-Koch-Str. 27a, D-48149 Münster, Germany.
| | - Tengiz Oniani
- Institute of Physiology I, Münster University, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Brandon Williams
- Department of Biomedical Engineering, Center for Systems Neuroscience, Neurophotonics Center, Boston University, 610 Commonwealth Ave, Boston MA-02215, USA
| | - John A White
- Department of Biomedical Engineering, Center for Systems Neuroscience, Neurophotonics Center, Boston University, 610 Commonwealth Ave, Boston MA-02215, USA
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, Münster University, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany
| | - Sven G Meuth
- Neurology Clinic, Medical Faculty, University Clinic Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Thomas Budde
- Institute of Physiology I, Münster University, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Petra Hundehege
- Department of Neurology with Institute of Translational Neurology, Münster University, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany
| |
Collapse
|
6
|
Piacentini C, Argento O, Nocentini U. Cognitive impairment in multiple sclerosis: "classic" knowledge and recent acquisitions. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:585-596. [PMID: 37379870 PMCID: PMC10658666 DOI: 10.1055/s-0043-1763485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/11/2022] [Indexed: 06/30/2023]
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) disease characterized by inflammation, axonal demyelination, and neurodegeneration, which can have a strong impact on all aspects of the life of the patient. Multiple sclerosis causes motor, sensory, cerebellar, and autonomic dysfunctions, as well as cognitive and psychoemotional impairment. The most frequently compromised cognitive domains are complex attention/information processing, memory, executive and visuospatial functions. Recently, alterations have also been evidenced in complex cognitive functions, such as social cognition, moral judgment, and decision-making. Cognitive impairment is characterized by high variability and can affect work skills, social interactions, coping strategies and more generally the quality of life of patients and their families. With the use of sensitive and easy-to-administer test batteries, an increasingly accurate and early diagnosis is feasible: this allows to determine the effectiveness of possible preventive measures, to predict the future progression of the disease and to improve the quality of life of patients. There is currently limited evidence regarding the efficacy, on cognitive impairment, of disease-modifying therapies. The most promising approach, which has received strong empirical support, is cognitive rehabilitation.
Collapse
Affiliation(s)
- Chiara Piacentini
- Institute of Hospitalization and Care of a Scientific Character “Santa Lucia”
Foundation, Behavioral Neuropsychology, Rome, Italy.
| | - Ornella Argento
- Institute of Hospitalization and Care of a Scientific Character “Santa Lucia”
Foundation, Behavioral Neuropsychology, Rome, Italy.
| | - Ugo Nocentini
- Institute of Hospitalization and Care of a Scientific Character “Santa Lucia”
Foundation, Behavioral Neuropsychology, Rome, Italy.
- University of Rome “Tor Vergata”, Department of Clinical Sciences and
Translational Medicine, Rome, Italy.
| |
Collapse
|
7
|
Hassab LY, Abbas SS, Mohammed RA, Abdallah DM. Dimethyl fumarate abrogates striatal endoplasmic reticulum stress in experimentally induced late-stage Huntington’s disease: Focus on the IRE1α/JNK and PERK/CHOP trajectories. Front Pharmacol 2023; 14:1133863. [PMID: 37056990 PMCID: PMC10088517 DOI: 10.3389/fphar.2023.1133863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction: Dimethyl fumarate (DMF) is FDA-approved for use in patients with relapsing multiple sclerosis, and it processes neuroprotection in several experimental settings; however, its impact on combating Huntington’s disease (HD) remains elusive. This study aimed to explore the role of DMF post-treatment on HD mediated endoplasmic reticulum (ER) stress response in a selective striatal degeneration HD model.Methods: Rats, exposed to 3-nitropropionic acid, were either left untreated or post-treated with DMF for 14 days.Results and Discussion: DMF reduced locomotion deficits in both the open field and beam walk paradigms, boosted the striatal dopamine (DA) content, improved its architecture at the microscopic level, and hindered astrogliosis. Mechanistically, DMF limited the activation of two of the ER stress arms in the striatum by reducing p-IRE1α, p-JNK, and p-PERK protein expressions besides the CHOP/GADD153 content. Downstream from both ER stress arms’ suppression, DMF inhibited the intrinsic apoptotic pathway, as shown by the decrease in Bax and active caspase-3 while raising Bcl-2. DMF also decreased oxidative stress markers indicated by a decline in both reactive oxygen species and malondialdehyde while boosting glutathione. Meanwhile, it enhanced p-AKT to activate /phosphorylate mTOR and stimulate the CREB/BDNF/TrkB trajectory, which, in a positive feedforward loop, activates AKT again. DMF also downregulated the expression of miRNA-634, which negatively regulates AKT, to foster survival kinase activation.Conclusion: This study features a focal novel point on the DMF therapeutic ability to reduce HD motor manifestations via its ability to enhance DA and suppress the IRE1α/JNK and PERK/CHOP/GADD153 hubs to inhibit the mitochondrial apoptotic pathway through activating the AKT/mTOR and BDNF/TrkB/AKT/CREB signaling pathways and abating miRNA-634 and oxidative stress.
Collapse
Affiliation(s)
- Lina Y. Hassab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Samah S. Abbas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Reham A. Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalaal M. Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- *Correspondence: Dalaal M. Abdallah,
| |
Collapse
|
8
|
Kurowska-Rucińska E, Ruciński J, Myślińska D, Grembecka B, Wrona D, Majkutewicz I. Dimethyl Fumarate Alleviates Adult Neurogenesis Disruption in Hippocampus and Olfactory Bulb and Spatial Cognitive Deficits Induced by Intracerebroventricular Streptozotocin Injection in Young and Aged Rats. Int J Mol Sci 2022; 23:ijms232415449. [PMID: 36555093 PMCID: PMC9779626 DOI: 10.3390/ijms232415449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The disorder of adult neurogenesis is considered an important mechanism underlying the learning and memory impairment observed in Alzheimer's disease (AD). The sporadic nonhereditary form of AD (sAD) affects over 95% of AD patients and is related to interactions between genetic and environmental factors. An intracerebroventricular injection of streptozotocin (STZ-ICV) is a representative and well-established method to induce sAD-like pathology. Dimethyl fumarate (DMF) has antioxidant and anti-inflammatory properties and is used for multiple sclerosis treatment. The present study determines whether a 26-day DMF therapy ameliorates the disruption of adult neurogenesis and BDNF-related neuroprotection in the hippocampus and olfactory bulb (OB) in an STZ-ICV rat model of sAD. Considering age as an important risk factor for developing AD, this study was performed using 3-month-old (the young group) and 22-month-old (the aged group) male Wistar rats. Spatial cognitive functions were evaluated with the Morris water maze task. Immunofluorescent labelling was used to assess the parameters of adult neurogenesis and BDNF-related neuroprotection in the hippocampus and OB. Our results showed that the STZ-ICV evoked spatial learning and memory impairment and disturbances in adult neurogenesis and BDNF expression in both examined brain structures. In the aged animals, the deficits were more severe. We found that the DMF treatment significantly alleviated STZ-ICV-induced behavioural and neuronal disorders in both age groups of the rats. Our findings suggest that DMF, due to its beneficial effect on the formation of new neurons and BDNF-related neuroprotection, may be considered as a promising new therapeutic agent in human sAD.
Collapse
|