1
|
Mackova V, Raudenska M, Polanska HH, Jakubek M, Masarik M. Navigating the redox landscape: reactive oxygen species in regulation of cell cycle. Redox Rep 2024; 29:2371173. [PMID: 38972297 DOI: 10.1080/13510002.2024.2371173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Objectives: To advance our knowledge of disease mechanisms and therapeutic options, understanding cell cycle regulation is critical. Recent research has highlighted the importance of reactive oxygen species (ROS) in cell cycle regulation. Although excessive ROS levels can lead to age-related pathologies, ROS also play an essential role in normal cellular functions. Many cell cycle regulatory proteins are affected by their redox status, but the precise mechanisms and conditions under which ROS promote or inhibit cell proliferation are not fully understood.Methods: This review presents data from the scientific literature and publicly available databases on changes in redox state during the cell cycle and their effects on key regulatory proteins.Results: We identified redox-sensitive targets within the cell cycle machinery and analysed different effects of ROS (type, concentration, duration of exposure) on cell cycle phases. For example, moderate levels of ROS can promote cell proliferation by activating signalling pathways involved in cell cycle progression, whereas excessive ROS levels can induce DNA damage and trigger cell cycle arrest or cell death.Discussion: Our findings encourage future research focused on identifying redox-sensitive targets in the cell cycle machinery, potentially leading to new treatments for diseases with dysregulated cell proliferation.
Collapse
Affiliation(s)
- Viktoria Mackova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Holcova Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Institute of Pathophysiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Silveira FM, Schuch LF, Schimidt TR, Lopes MP, Wagner VP, Só BB, Palo RM, Martins MD. Potentially carcinogenic effects of hydrogen peroxide for tooth bleaching on the oral mucosa: A systematic review and meta-analysis. J Prosthet Dent 2024; 131:375-383. [PMID: 35282937 DOI: 10.1016/j.prosdent.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/30/2022]
Abstract
STATEMENT OF PROBLEM Little is known about the extent to which hydrogen peroxide as used for tooth bleaching could be carcinogenic to the oral mucosa. PURPOSE The purpose of this systematic review and meta-analysis was to evaluate whether hydrogen peroxide as used for tooth bleaching has carcinogenic effects on the oral mucosa. MATERIAL AND METHODS PubMed, Web of Science, Scopus, and Embase electronic databases were searched. Studies evaluating different outcomes potentially related to the carcinogenic effects of hydrogen peroxide for tooth bleaching on the oral mucosa were included. Risk of bias was assessed by the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE), Risk Of Bias in Non-randomized Studies of Interventions (ROBINS-I), or Risk of Bias 2 (RoB 2) tools. The strength of the evidence was assessed by using the Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) protocol. The quantitative analysis was performed with means, standard deviations, and 95% confidence intervals (CIs). Heterogeneity was analyzed by using I-squared statistics. RESULTS Thirteen articles comprising 5 animal and 8 clinical studies met the inclusion criteria. Three of the 5 animal studies associated the bleaching agents with a carcinogen and demonstrated an enhancement of the carcinogenic effect, but probably with the bleaching agent acting only as a promoter. Five clinical studies concluded that the bleaching agents did not cause mutagenic stress on the oral mucosa by using the micronucleus test. The meta-analysis demonstrated that the frequency of micronuclei did not differ significantly between baseline and 30 days after bleaching (mean difference: 0.48; 95% CI, -1.49, 2.46; P=.63). CONCLUSIONS This systematic review indicated that hydrogen peroxide does not appear to have carcinogenic effects on the oral mucosa.
Collapse
Affiliation(s)
- Felipe Martins Silveira
- Adjunct Professor, Molecular Pathology Area, School of Dentistry, Universidad de la República (UDELAR), Montevideo, Uruguay; Post-dotoral Fellowship, Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lauren Frenzel Schuch
- PhD student, Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Tuany Rafaeli Schimidt
- PhD student, Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina Paparotto Lopes
- Undergraduate student, Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Vivian Petersen Wagner
- Post-doctoral Fellowship, Oral and Maxillofacial Pathology, Department of Clinical Dentistry, University of Sheffield (UoS), Sheffield, United Kingdom
| | - Bruna Barcelos Só
- PhD student, Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Renato Miotto Palo
- PhD in Endodontics, Institute of Science and Technology, Department of Restorative Dentistry, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | - Manoela Domingues Martins
- Associate Professor, Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Postgraduation Professor, Department of Oral Diagnosis, Piracicaba Dental School, Campinas State University (UNICAMP), Piracicaba, São Paulo, Brazil.
| |
Collapse
|
3
|
Baima G, Minoli M, Michaud DS, Aimetti M, Sanz M, Loos BG, Romandini M. Periodontitis and risk of cancer: Mechanistic evidence. Periodontol 2000 2023. [PMID: 38102837 DOI: 10.1111/prd.12540] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
This review aims to critically analyze the pathways of interaction and the pathogenic mechanisms linking periodontitis and oral bacteria with the initiation/progression of cancer at different body compartments. A higher risk of head and neck cancer has been consistently associated with periodontitis. This relationship has been explained by the local promotion of dysbiosis, chronic inflammation, immune evasion, and direct (epi)genetic damage to epithelial cells by periodontal pathobionts and their toxins. Epidemiological reports have also studied a possible link between periodontitis and the incidence of other malignancies at distant sites, such as lung, breast, prostate, and digestive tract cancers. Mechanistically, different pathways have been involved, including the induction of a chronic systemic inflammatory state and the spreading of oral pathobionts with carcinogenic potential. Indeed, periodontitis may promote low-grade systemic inflammation and phenotypic changes in the mononuclear cells, leading to the release of free radicals and cytokines, as well as extracellular matrix degradation, which are all mechanisms involved in carcinogenic and metastatic processes. Moreover, the transient hematogenous spill out or micro-aspiration/swallowing of periodontal bacteria and their virulence factors (i.e., lipopolysaccharides, fimbriae), may lead to non-indigenous bacterial colonization of multiple microenvironments. These events may in turn replenish the tumor-associated microbiome and thus influence the molecular hallmarks of cancer. Particularly, specific strains of oral pathobionts (e.g., Porphyromonas gingivalis and Fusobacterium nucleatum) may translocate through the hematogenous and enteral routes, being implicated in esophageal, gastric, pancreatic, and colorectal tumorigenesis through the modulation of the gastrointestinal antitumor immune system (i.e., tumor-infiltrating T cells) and the increased expression of pro-inflammatory/oncogenic genes. Ultimately, the potential influence of common risk factors, relevant comorbidities, and upstream drivers, such as gerovulnerability to multiple diseases, in explaining the relationship cannot be disregarded. The evidence analyzed here emphasizes the possible relevance of periodontitis in cancer initiation/progression and stimulates future research endeavors.
Collapse
Affiliation(s)
- Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Margherita Minoli
- Department of Periodontology, Università Vita-Salute San Raffaele, Milan, Italy
| | - Dominique S Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Mariano Sanz
- Faculty of Odontology, University Complutense, Madrid, Spain
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Bruno G Loos
- Department of Periodontology, ACTA - Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mario Romandini
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Mohammed AI, Sangha S, Nguyen H, Shin DH, Pan M, Park H, McCullough MJ, Celentano A, Cirillo N. Assessment of Oxidative Stress-Induced Oral Epithelial Toxicity. Biomolecules 2023; 13:1239. [PMID: 37627304 PMCID: PMC10452318 DOI: 10.3390/biom13081239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Reactive oxygen species (ROS) are highly reactive molecules generated in living organisms and an excessive production of ROS culminates in oxidative stress and cellular damage. Notably, oxidative stress plays a critical role in the pathogenesis of a number of oral mucosal diseases, including oral mucositis, which remains one of cancer treatments' most common side effects. We have shown previously that oral keratinocytes are remarkably sensitive to oxidative stress, and this may hinder the development and reproducibility of epithelial cell-based models of oral disease. Here, we examined the oxidative stress signatures that parallel oral toxicity by reproducing the initial events taking place during cancer treatment-induced oral mucositis. We used three oral epithelial cell lines (an immortalized normal human oral keratinocyte cell line, OKF6, and malignant oral keratinocytes, H357 and H400), as well as a mouse model of mucositis. The cells were subjected to increasing oxidative stress by incubation with hydrogen peroxide (H2O2) at concentrations of 100 μM up to 1200 μM, for up to 24 h, and ROS production and real-time kinetics of oxidative stress were investigated using fluorescent dye-based probes. Cell viability was assessed using a trypan blue exclusion assay, a fluorescence-based live-dead assay, and a fluorometric cytotoxicity assay (FCA), while morphological changes were analyzed by means of a phase-contrast inverted microscope. Static and dynamic real-time detection of the redox changes in keratinocytes showed a time-dependent increase of ROS production during oxidative stress-induced epithelial injury. The survival rates of oral epithelial cells were significantly affected after exposure to oxidative stress in a dose- and cell line-dependent manner. Values of TC50 of 800 μM, 800 μM, and 400 μM were reported for H400 cells (54.21 ± 9.04, p < 0.01), H357 cells (53.48 ± 4.01, p < 0.01), and OKF6 cells (48.64 ± 3.09, p < 0.01), respectively. Oxidative stress markers (MPO and MDA) were also significantly increased in oral tissues in our dual mouse model of chemotherapy-induced mucositis. In summary, we characterized and validated an oxidative stress model in human oral keratinocytes and identified optimal experimental conditions for the study of oxidative stress-induced oral epithelial toxicity.
Collapse
Affiliation(s)
- Ali I. Mohammed
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
- College of Dentistry, The University of Tikrit, Tikrit 34001, Iraq
| | - Simran Sangha
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
| | - Huynh Nguyen
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
| | - Dong Ha Shin
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
| | - Michelle Pan
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
| | - Hayoung Park
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
| | - Michael J. McCullough
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (H.N.); (M.J.M.); (A.C.)
- College of Dentistry, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
5
|
Mohammed AI, Celentano A, Paolini R, Low JT, Silke J, O' Reilly LA, McCullough M, Cirillo N. High molecular weight hyaluronic acid drastically reduces chemotherapy-induced mucositis and apoptotic cell death. Cell Death Dis 2023; 14:453. [PMID: 37479691 PMCID: PMC10362044 DOI: 10.1038/s41419-023-05934-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
Oral and intestinal mucositis (OIM) are debilitating inflammatory diseases initiated by oxidative stress, resulting in epithelial cell death and are frequently observed in cancer patients undergoing chemo-radiotherapy. There are currently few preventative strategies for this debilitating condition. Therefore, the development of a safe and effective mucositis mitigating strategy is an unmet medical need. Hyaluronic acid (HA) preparations have been tentatively used in oral mucositis. However, the protective effects of HA in chemotherapy-induced mucositis and their underlying mechanisms remain to be fully elucidated. This study aimed to assess these mechanisms using multiple formulations of enriched HA (Mucosamin®), cross-linked (xl-), and non-crosslinked high molecular weight HA (H-MW-HA) in an oxidative stress-induced model of human oral mucosal injury in vitro and an in vivo murine model of 5-flurouracil (5-FU)-induced oral/intestinal mucositis. All tested HA formulations protected against oxidative stress-induced damage in vitro without inducing cytotoxicity, with H-MW-HA also significantly reducing ROS production. Daily supplementation with H-MW-HA in vivo drastically reduced the severity of 5-FU-induced OIM, prevented apoptotic damage and reduced COX-2 enzyme activity in both the oral and intestinal epithelium. In 5-FU-injected mice, HA supplementation also significantly reduced serum levels of IL-6 and the chemokine CXCL1/KC, while the serum antioxidant activity of superoxide dismutase was elevated. Our data suggest that H-MW-HA attenuates 5-FU-induced OIM, at least partly, by impeding apoptosis, inhibiting of oxidative stress and suppressing inflammatory cytokines. This study supports the development of H-MW-HA preparations for preventing OIM in patients receiving chemotherapy.
Collapse
Affiliation(s)
- Ali I Mohammed
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, 3053, Carlton, VIC, Australia.
- College of Dentistry, The University of Tikrit, Tikrit, Iraq.
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, 3053, Carlton, VIC, Australia
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, 3053, Carlton, VIC, Australia
| | - Jun T Low
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Lorraine A O' Reilly
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, 3053, Carlton, VIC, Australia
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, 3053, Carlton, VIC, Australia.
| |
Collapse
|
6
|
Gallegos-Alcalá P, Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Gonzalez-Curiel I, Salinas E. Glycomacropeptide Protects against Inflammation and Oxidative Stress, and Promotes Wound Healing in an Atopic Dermatitis Model of Human Keratinocytes. Foods 2023; 12:foods12101932. [PMID: 37238750 DOI: 10.3390/foods12101932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Keratinocytes are actively implicated in the physiopathology of atopic dermatitis (AD), a skin allergy condition widely distributed worldwide. Glycomacropeptide (GMP) is a milk-derived bioactive peptide generated during cheese making processes or gastric digestion. It has antiallergic and skin barrier restoring properties when it is orally administered in experimental AD. This study aimed to evaluate the effect of GMP on the inflammatory, oxidative, proliferative, and migratory responses of HaCaT keratinocytes in an in vitro AD model. GMP protected keratinocytes from death and apoptosis in a dose dependent manner. GMP at 6.3 and 25 mg/mL, respectively, reduced nitric oxide by 50% and 83.2% as well as lipid hydroperoxides by 27.5% and 45.18% in activated HaCaT cells. The gene expression of TSLP, IL33, TARC, MDC, and NGF was significantly downregulated comparably to control by GMP treatment in activated keratinocytes, while that of cGRP was enhanced. Finally, in an AD microenvironment, GMP at 25 mg/mL stimulated HaCaT cell proliferation, while concentrations of 0.01 and 0.1 mg/mL promoted the HaCaT cell migration. Therefore, we demonstrate that GMP has anti-inflammatory and antioxidative properties and stimulates wound closure on an AD model of keratinocytes, which could support its reported bioactivity in vivo.
Collapse
Affiliation(s)
- Pamela Gallegos-Alcalá
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
| | - Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
- National Council of Science and Technology, Av. de los Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México 03940, Mexico
| | - Laura Elena Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
| | - Irma Gonzalez-Curiel
- Laboratory of Immunotoxicology and Experimental Therapeutics, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Carr. Zac.-Gdl. Km 6, Zacatecas 98160, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
| |
Collapse
|
7
|
Satti MK, Nayyer M, Alshamrani M, Kaleem M, Salawi A, Safhi AY, Alsalhi A, Sabei FY, Khan AS, Muhammad N. Synthesis, Characterization, and Investigation of Novel Ionic Liquid-Based Tooth Bleaching Gels: A Step towards Safer and Cost-Effective Cosmetic Dentistry. Molecules 2023; 28:3131. [PMID: 37049892 PMCID: PMC10096067 DOI: 10.3390/molecules28073131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The objective of this study was to synthesize a novel choline hydroxide ionic liquid-based tooth bleaching gel. Ionic liquid-based gels were synthesized and characterized using FTIR along with pH testing. Tooth sample preparation was carried out in line with ISO 28399:2020. The effects of synthesized gels on tooth samples were tested. Tooth samples were stained and grouped into three experimental groups: EAI (22% choline hydroxide gel), EAII (44% choline hydroxide gel), and EB (choline citrate gel) and two control groups: CA (commercial at-home 16% carbamide peroxide gel) and CB (deionized water). The tooth color analysis, which included shade matching with the Vitapan shade guide (n = 2), and digital colorimetric analysis (n = 2) were evaluated. The surface characteristics and hardness were analyzed with 3D optical profilometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), and Microhardness testing (n = 3), respectively. The tooth color analysis (Vitapan shade guide) revealed that all the tooth samples treated with synthesized choline citrate gel (EB) showed an A1 shade as compared to the other four groups, giving a range of shades. An analysis of the ΔE values from digital colorimetry; EAI, EAII, CA, and CB showed ΔE values in a range that was clinically perceptible at a glance. However, EB showed the highest value of ΔE. The mean microhardness values for the five groups showed that the effects of three experimental gels i.e., 44% choline hydroxide, 22% choline hydroxide, and choline citrate, on the microhardness of the tooth samples were similar to that of the positive control, which comprised commercial at-home 16% carbamide peroxide gel. SEM with EDX of three tested subgroups was closely related in surface profile, elemental composition, and Ca/P ratio. The roughness average values from optical profilometry of four tested subgroups lie within approximately a similar range, showing a statistically insignificant difference (p > 0.05) between the tested subgroups. The synthesized novel experimental tooth bleaching gels displayed similar tooth bleaching actions without any deleterious effects on the surface characteristics and microhardness of the treated tooth samples when compared with the commercial at-home tooth bleaching gel.
Collapse
Affiliation(s)
- Memuna Kausar Satti
- Department of Dental Materials, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan
| | - Maleeha Nayyer
- Department of Dental Materials, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Muhammad Kaleem
- Department of Dental Materials, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| |
Collapse
|
8
|
Mukherjee S, Gupta P, Ghosh S, Choudhury S, Das A, Ahir M, Adhikary A, Chattopadhyay S. Targeted tumor killing by pomegranate polyphenols: Pro-oxidant role of a classical antioxidant. J Nutr Biochem 2023; 115:109283. [PMID: 36791995 DOI: 10.1016/j.jnutbio.2023.109283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/03/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
One of the key biochemical features that distinguish a cancer cell from normal cells is its persistent pro-oxidative state that leads to intrinsic oxidative stress. Malignant cells have evolved sophisticated adaptation systems that involve high dependency on antioxidant functions and upregulation of pro-survival molecules to counteract the deleterious effects of reactive species and to maintain dynamic redox balance. This situation renders them vulnerable to further oxidative challenges by exogenous agents. In the present study, we advocated that pomegranate polyphenols act as pro-oxidants and trigger ROS-mediated apoptosis in cancer cells. With the help of both in vitro and in vivo models, we have established that pomegranate fruit extract (PFE) can cause a significant reduction in tumor proliferation while leaving normal tissues and cells unharmed. Administration of PFE (0.2% v/v) in Erhlich's ascites carcinoma-bearing mice for 3 weeks, inhibited the nuclear factor (erythroid-derived 2)-like 2-antioxidant response element signaling cascade, increased intracellular reactive oxygen species content, altered glutathione cycle thereby activating reactive oxygen species-induced apoptotic pathway in Erhlich's ascites carcinoma cells. Moreover, PFE mitigated epithelial to mesenchymal transition and migration in triple negative breast cancer cells (MDA-MB 231 cells) by down-regulating nuclear factor kappa light-chain-enhancer of activated B cells. Pre-treatment of tumor cells with N-acetyl cysteine protected these cells from undergoing PFE-induced apoptosis while siRNA-mediated silencing of Nuclear factor (erythroid-derived 2)-like 2 and nuclear factor kappa light-chain-enhancer of activated B cells in tumor cells increased the cytotoxic potential and pro-oxidative activity of PFE, indicating a clear role of these transcription factors in orchestrating the anticancer/pro-oxidative properties of PFE. The seminal findings provided may be exploited to develop potential therapeutic targets for selective killing of malignant cells.
Collapse
Affiliation(s)
| | - Payal Gupta
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Sayan Ghosh
- Department of Physiology, University of Calcutta, Kolkata, India
| | | | - Ankur Das
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Manisha Ahir
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India
| | - Arghya Adhikary
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, Kolkata, India; Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India.
| |
Collapse
|
9
|
Rueda-Fernández M, Melguizo-Rodríguez L, Costela-Ruiz VJ, de Luna-Bertos E, Ruiz C, Ramos-Torrecillas J, Illescas-Montes R. Effect of the most common wound antiseptics on human skin fibroblasts. Clin Exp Dermatol 2022; 47:1543-1549. [PMID: 35466431 PMCID: PMC9545306 DOI: 10.1111/ced.15235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
Background Antiseptics are used for the cleansing of acute or chronic wounds to eliminate micro‐organisms from the wound bed. However, they have effects on the skin cells. Aim To determine the effects of hexetidine, povidone–iodine (PI), undecylenamidopropyl‐betaine/polyhexanide (UBP), chlorhexidine, disodium eosin and hydrogen peroxide on human skin fibroblasts. Methods CCD‐1064Sk cells were treated with hexetidine, PI, UBP, chlorhexidine, disodium eosin or hydrogen peroxide. Spectrophotometry was used to measure cell viability and flow cytometry was used to study apoptosis and necrosis after the treatment. In vitro wound scratch assays were performed to determine the gap closure. Results All antiseptics significantly reduced the viability of human skin fibroblasts compared with controls. The percentage wound closure was lower with hexetidine, PI and UBP. The scratch assay could not be measured after treatments with chlorhexidine, disodium eosin or hydrogen peroxide, owing to their cytotoxicity. The apoptosis/necrosis experiments evidenced a significant reduction in viable cells compared with controls. An increased percentage of apoptotic cells was observed after treatment with all antiseptics. Compared with controls, the percentage of necrotic cells was significantly increased with all antiseptics except for hexetidine. Conclusion The proliferation, migration and viability of human skin fibroblasts are reduced by treatment with hexetidine, PI, UBP, chlorhexidine, disodium eosin and hydrogen peroxide.
Collapse
Affiliation(s)
- Manuel Rueda-Fernández
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain.,Institute of Biosanitary Research, Ibs.Granada, C/ Doctor Azpitarte 4, 4a Planta, 18012, Granada, Spain
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain.,Institute of Biosanitary Research, Ibs.Granada, C/ Doctor Azpitarte 4, 4a Planta, 18012, Granada, Spain
| | - Víctor J Costela-Ruiz
- Institute of Biosanitary Research, Ibs.Granada, C/ Doctor Azpitarte 4, 4a Planta, 18012, Granada, Spain.,Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 1Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, C/ Cortadura del Valle, Sn, 51001, Ceuta, Spain
| | - Elvira de Luna-Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain.,Institute of Biosanitary Research, Ibs.Granada, C/ Doctor Azpitarte 4, 4a Planta, 18012, Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain.,Institute of Biosanitary Research, Ibs.Granada, C/ Doctor Azpitarte 4, 4a Planta, 18012, Granada, Spain.,Institute of Neuroscience, University of Granada, Centro de Investigación Biomédica (CIBM), Parque de Tecnológico de La Salud (PTS), Granada, Spain
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain.,Institute of Biosanitary Research, Ibs.Granada, C/ Doctor Azpitarte 4, 4a Planta, 18012, Granada, Spain
| | - Rebeca Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain.,Institute of Biosanitary Research, Ibs.Granada, C/ Doctor Azpitarte 4, 4a Planta, 18012, Granada, Spain
| |
Collapse
|
10
|
A Titanium Tetrafluoride Experimental Gel Combined with Highly Concentrated Hydrogen Peroxide as an Alternative Bleaching Agent: An In Vitro Study. Gels 2022; 8:gels8030178. [PMID: 35323291 PMCID: PMC8951146 DOI: 10.3390/gels8030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
This in vitro study evaluated color change, mineral content, and morphology of enamel, pH and cytotoxicity of experimental bleaching agents containing 35% hydrogen peroxide (HP), titanium tetrafluoride (TiF4), Natrosol, and Chemygel. Sixty enamel/dentin blocks were randomly treated with (n = 10) HP; HP+Natrosol+Chemygel with different TiF4 concentrations: 0.05 g HPT0.5, 0.1 g HPT1, 0.2 g HPT2, 0.3 g HPT3, 0.4 g HPT4. Bleaching was performed in three sessions (3 × 15 min application). Color change (CIELab-ΔEab, CIEDE2000-ΔE00, ΔWID) and Knoop microhardness (KHN) were evaluated. Enamel morphology and composition were observed under scanning electron microscopy and energy-dispersive spectrometry (EDS), respectively. Cell viability of keratinocyte cells was evaluated using MTT assay. Data were analyzed by one-way ANOVA and LSD and Tukey tests, and two-way repeated measures ANOVA and Bonferroni (α = 5%). The pH and EDS were analyzed descriptively. Lightness-L* increased, and a* and b* parameters decreased, except for HPT3 and HPT4 (b*). HPT0.5, HPT1, and HPT2 exhibited ΔEab and ΔWID similar to HP. ΔE00 did not present statistical difference. HP, HPT0.5, and HPT1 promoted higher KHN. HPT0.5 exhibited no changes on enamel surface. Keratinocyte cells were viable when treated with T0.5, and weak viable for T1. Experimental agents exhibited acidic pH and Ti elements. HPT0.5 exhibited bleaching efficacy, maintained KHN without enamel alterations, and did not increase cytotoxicity.
Collapse
|
11
|
Vinel A, Al Halabi A, Roumi S, Le Neindre H, Millavet P, Simon M, Cuny C, Barthet JS, Barthet P, Laurencin-Dalicieux S. Non-surgical Periodontal Treatment: SRP and Innovative Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:303-327. [DOI: 10.1007/978-3-030-96881-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Radaic A, Ganther S, Kamarajan P, Grandis J, Yom SS, Kapila YL. Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobial-based therapeutics. Periodontol 2000 2021; 87:76-93. [PMID: 34463982 PMCID: PMC8415008 DOI: 10.1111/prd.12388] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The oral microbiome is a community of microorganisms, comprised of bacteria, fungi, viruses, archaea, and protozoa, that form a complex ecosystem within the oral cavity. Although minor perturbations in the environment are frequent and compensable, major shifts in the oral microbiome can promote an unbalanced state, known as dysbiosis. Dysbiosis can promote oral diseases, including periodontitis. In addition, oral dysbiosis has been associated with other systemic diseases, including cancer. The objective of this review is to evaluate the epidemiologic evidence linking periodontitis to oral, gastrointestinal, lung, breast, prostate, and uterine cancers, as well as describe new evidence and insights into the role of oral dysbiosis in the etiology and pathogenesis of the cancer types discussed. Finally, we discuss how antimicrobials, antimicrobial peptides, and probiotics may be promising tools to prevent and treat these cancers, targeting both the microbes and associated carcinogenesis processes. These findings represent a novel paradigm in the pathogenesis and treatment of cancer focused on the oral microbiome and antimicrobial‐based therapies.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Jennifer Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
13
|
Pompeu DDS, de Paula BLF, Barros APO, Nunes SC, Carneiro AMP, Araújo JLN, Silva CM. Combination of strontium chloride and photobiomodulation in the control of tooth sensitivity post-bleaching: A split-mouth randomized clinical trial. PLoS One 2021; 16:e0250501. [PMID: 33909659 PMCID: PMC8081218 DOI: 10.1371/journal.pone.0250501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/06/2021] [Indexed: 01/10/2023] Open
Abstract
Objective This split-mouth randomized controlled clinical trial assessed the effect of 10% strontium chloride in combination with photobiomodulation (PBM) for the control of tooth sensitivity (TS) post-bleaching. Methods The upper/lower, right and left quadrants of fifty volunteers were randomized and allocated to four groups (n = 25): PLACEBO—placebo gel + simulation of PBM; Placebo + PBM; STRONTIUM—10% strontium chloride + simulation of PBM; and PBM + STRONTIUM—10% strontium chloride + PBM. All groups received tooth bleaching treatment with 35% hydrogen peroxide. For the PBM treatment, the laser tip was positioned in the apical and cervical regions of the teeth bleached in the respective hemi-arch. The laser system was operated in continuous mode, using 1.7 J of energy. A dose of 60 J/cm2 was applied to each point for 16 seconds under 808 nm near-infrared light (100mW of power), with a point area of 0.028 cm2. TS was assessed during a 21-day follow-up, using the modified visual analogue scale. Results In the intragroup assessment, the Friedman test indicated that PBM + STRONTIUM promoted the greatest reduction in TS after the second week of treatment (p ≤ 0.05). The Wilcoxon-Mann-Whitney test indicated that the groups Placebo + PBM, STRONTIUM, and STRONTIUM + PBM did not differ statistically (p ≥ 0.05) in the first and third weeks of treatment The group PLACEBO exhibited the greatest TS in the first three days after each bleaching session. Conclusion The combination of 10% strontium chloride with PBM was effective in reducing post-bleaching TS; however, the combination of 10% strontium chloride with PBM was effective in reducing post-bleaching TS; however, it did not differ from the individual use of Placebo + PBM or STRONTIUM groups assessed after 21 days of follow-up.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cecy Martins Silva
- Postgraduate Program in Dentistry of the Federal University of Pará, Belem, Brazil
- * E-mail:
| |
Collapse
|
14
|
da Mota Santana LA, Andrade Pinho JN, de Albuquerque HIM, de Almeida Souza LM. Virucidal potential of H 2 O 2 -based spray against SARS-CoV-2 and biosafety in a dental environment. Oral Dis 2021; 28 Suppl 2:2573-2574. [PMID: 33449395 PMCID: PMC8014290 DOI: 10.1111/odi.13778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Liane Maciel de Almeida Souza
- Department of Dentistry, Federal University of Sergipe, Aracaju, Brazil.,Division of Maxillofacial Surgery, Emergency Hospital of Sergipe, Aracaju, Brazil
| |
Collapse
|
15
|
Huang S, Zhao Q. Nanomedicine-Combined Immunotherapy for Cancer. Curr Med Chem 2020; 27:5716-5729. [PMID: 31250752 DOI: 10.2174/0929867326666190618161610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Immunotherapy for cancer includes Chimeric Antigen Receptor (CAR)-T cells, CAR-natural Killer (NK) cells, PD1, and the PD-L1 inhibitor. However, the proportion of patients who respond to cancer immunotherapy is not satisfactory. Concurrently, nanotechnology has experienced a revolution in cancer diagnosis and therapy. There are few clinically approved nanoparticles that can selectively bind and target cancer cells and incorporate molecules, although many therapeutic nanocarriers have been approved for clinical use. There are no systematic reviews outlining how nanomedicine and immunotherapy are used in combination to treat cancer. OBJECTIVE This review aims to illustrate how nanomedicine and immunotherapy can be used for cancer treatment to overcome the limitations of the low proportion of patients who respond to cancer immunotherapy and the rarity of nanomaterials in clinical use. METHODS A literature review of MEDLINE, PubMed / PubMed Central, and Google Scholar was performed. We performed a structured search of literature reviews on nanoparticle drug-delivery systems, which included photodynamic therapy, photothermal therapy, photoacoustic therapy, and immunotherapy for cancer. Moreover, we detailed the advantages and disadvantages of the various nanoparticles incorporated with molecules to discuss the challenges and solutions associated with cancer treatment. CONCLUSION This review identified the advantages and disadvantages associated with improving health care and outcomes. The findings of this review confirmed the importance of nanomedicinecombined immunotherapy for improving the efficacy of cancer treatment. It may become a new way to develop novel cancer therapeutics using nanomaterials to achieve synergistic anticancer immunity.
Collapse
Affiliation(s)
- Shigao Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, P.R. China
| | - Qi Zhao
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, P.R. China
| |
Collapse
|
16
|
Scroccarello A, Della Pelle F, Ferraro G, Fratini E, Tempera F, Dainese E, Compagnone D. Plasmonic active film integrating gold/silver nanostructures for H 2O 2 readout. Talanta 2020; 222:121682. [PMID: 33167288 DOI: 10.1016/j.talanta.2020.121682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
A nanostructured Ag/Au adhesive film for H2O2 reagentless determination is here proposed. The film has been realised onto ELISA polystyrene microplates. Microwells surface has been initially modified with a gold nanoparticles (AuNPs)/polydopamine thin-film. The pristine AuNPs-decorated film was later functionalized with catechin (Au-CT) allowing a uniform formation of a plasmonic active nanostructured silver network in presence of Ag+. Changes in localized surface plasmon resonance (LSPR) of the silver network upon addition of H2O2 has been used as analytical signal, taking advantage of the etching phenomenon. The Ag/Au nanocomposite-film is characterized by a well-defined (LSPRmax = 405 ± 5 nm), reproducible (intraplate RSD ≤ 9.8%, n = 96; inter-plate RSD ≤ 11.4%, n = 480) and stable LSPR signal. The film's analytical features have been tested for H2O2 and glucose (bio)sensing. Satisfactory analytical performances were obtained both for H2O2 (linear range 1-200 μM, R2 = 0.9992, RSD ≤ 6.3%, LOD = 0.2 μM) and glucose (linear range 2-250 μM, R2 = 0.9998, RSD ≤ 8.9%, LOD = 0.4 μM). As proof of applicability, the determination of the two analytes in soft drinks has been carried out achieving good and reproducible recoveries (84-111%; RSD ≤ 9%). The developed nanostructured film overcomes analytical drawbacks associated with the use of colloidal dispersions in plasmonic assays carried out in solution; the low cost, robustness, ease of use and possibility of coupling enzymatic reactions appears very promising for (bio)sensors based on the detection of H2O2.
Collapse
Affiliation(s)
- Annalisa Scroccarello
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Flavio Della Pelle
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy.
| | - Giovanni Ferraro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3-Sesto Fiorentino, I-50019, Florence, Italy
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3-Sesto Fiorentino, I-50019, Florence, Italy
| | - Francesco Tempera
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Enrico Dainese
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy.
| |
Collapse
|
17
|
Yiannis C, Huang K, Tran AN, Zeng C, Dao E, Baselyous O, Mithwani MA, Paolini R, Cirillo N, Yap T, McCullough M, Celentano A. Protective effect of kava constituents in an in vitro model of oral mucositis. J Cancer Res Clin Oncol 2020; 146:1801-1811. [DOI: 10.1007/s00432-020-03253-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022]
|
18
|
Ou-Yang F, Tsai IH, Tang JY, Yen CY, Cheng YB, Farooqi AA, Chen SR, Yu SY, Kao JK, Chang HW. Antiproliferation for Breast Cancer Cells by Ethyl Acetate Extract of Nepenthes thorellii x ( ventricosa x maxima). Int J Mol Sci 2019; 20:ijms20133238. [PMID: 31266224 PMCID: PMC6651324 DOI: 10.3390/ijms20133238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022] Open
Abstract
Extracts from the Nepenthes plant have anti-microorganism and anti-inflammation effects. However, the anticancer effect of the Nepenthes plant is rarely reported, especially for breast cancer cells. Here, we evaluate the antitumor effects of the ethyl acetate extract of Nepenthesthorellii x (ventricosa x maxima) (EANT) against breast cancer cells. Cell viability and flow cytometric analyses were used to analyze apoptosis, oxidative stress, and DNA damage. EANT exhibits a higher antiproliferation ability to two breast cancer cell lines (MCF7 and SKBR3) as compared to normal breast cells (M10). A mechanistic study demonstrates that EANT induces apoptosis in breast cancer cells with evidence of subG1 accumulation and annexin V increment. EANT also induces glutathione (GSH) depletion, resulting in dramatic accumulations of reactive oxygen species (ROS) and mitochondrial superoxide (MitoSOX), as well as the depletion of mitochondrial membrane potential (MMP). These oxidative stresses attack DNA, respectively leading to DNA double strand breaks and oxidative DNA damage in γH2AX and 8-oxo-2′deoxyguanosine (8-oxodG) assays. Overall these findings clearly revealed that EANT induced changes were suppressed by the ROS inhibitor. In conclusion, our results have shown that the ROS-modulating natural product (EANT) has antiproliferation activity against breast cancer cells through apoptosis, oxidative stress, and DNA damage.
Collapse
Affiliation(s)
- Fu Ou-Yang
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - I-Hsuan Tsai
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11050, Taiwan
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| | - Shu-Rong Chen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Szu-Yin Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Kai Kao
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Pediatric Department, Children's Hospital, Changhua Christian Hospital, Changhua 50006, Taiwan.
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
19
|
|
20
|
The Polyphenol-Rich Extract from Psiloxylon mauritianum, an Endemic Medicinal Plant from Reunion Island, Inhibits the Early Stages of Dengue and Zika Virus Infection. Int J Mol Sci 2019; 20:ijms20081860. [PMID: 30991717 PMCID: PMC6515236 DOI: 10.3390/ijms20081860] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
The recent emergence and re-emergence of viral infections transmitted by vectors, such as the Zika virus (ZIKV) and Dengue virus (DENV), is a cause for international concern. These highly pathogenic arboviruses represent a serious health burden in tropical and subtropical areas of the world. Despite the high morbidity and mortality associated with these viral infections, antiviral therapies are missing. Medicinal plants have been widely used to treat various infectious diseases since millenaries. Several compounds extracted from plants exhibit potent effects against viruses in vitro, calling for further investigations regarding their efficacy as antiviral drugs. Here, we demonstrate that an extract from Psiloxylon mauritianum, an endemic medicinal plant from Reunion Island, inhibits the infection of ZIKV in vitro without exhibiting cytotoxic effects. The extract was active against different ZIKV African and Asian strains, including an epidemic one. Time-of-drug-addition assays revealed that the P. mauritianum extract interfered with the attachment of the viral particles to the host cells. Importantly, the P. mauritianum extract was also able to prevent the infection of human cells by four dengue virus serotypes. Due to its potency and ability to target ZIKV and DENV particles, P. mauritianum may be of value for identifying and characterizing antiviral compounds to fight medically-important flaviviruses.
Collapse
|