1
|
Cui N, Ding F. Co-Expression Network Analysis and Molecular Docking Demonstrate That Diosgenin Inhibits Gastric Cancer Progression via SLC1A5/mTORC1 Pathway. Drug Des Devel Ther 2024; 18:3157-3173. [PMID: 39071813 PMCID: PMC11283265 DOI: 10.2147/dddt.s458613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024] Open
Abstract
Background Tumor-Node-Metastasis (TNM) stage of gastric cancer (GC) is one of the main factors affecting clinical outcome. The aim of this study was to explore the targets related to TNM stage of GC, and screening natural bioactive drug. Methods RNA sequencing data of the TCGA-STAD cohort were downloaded from UCSC database. Genes associated with TNM staging were identified by weighted gene co-expression network analysis (WGCNA). Univariate Cox regression, least absolute shrinkage and selection operator (LASSO), extreme gradient boosting (Xgboost), random forest (RF) and cytohubba plug-in of cytoscope were applied to screen hub genes. Natural bioactive ingredients were available from the HERB database. Molecular docking was used to evaluate the binding activity of active ingredients to the hub protein. CCK-8, flow cytometry, transwell and Western blot assays were used to analyze the effects of diosgenin on GC cells. Results 898 TNM-related genes were screened out through WGCNA. Three genes associated with GC progression/prognosis were identified, including nuclear receptor subfamily 3 group C member 2 (NR3C2), solute carrier family 1 member 5 (SLC1A5) and FAT atypical cadherin 1 (FAT1) based on the machine learning algorithms and hub co-expression network analysis. Diosgenin had good binding activity with SLC1A5. SLC1A5 was highly expressed in GC and was closely associated with tumor stage, overall survival and immune infiltration of GC patients. Diosgenin could inhibit cell viability and invasive ability, promote apoptosis and induce cell cycle arrest in G0/G1 phase. In addition, diosgenin promoted cleaved caspase 3 expression and inhibited Ki67, cyclin D1, p-S6K1, and SLC1A5 expression levels, while the mTORC1 activator (MHY1485) reversed this phenomenon. Conclusion For the first time, this work reports diosgenin may inhibit the activation of mTORC1 signaling through targeting SLC1A5, thereby inhibiting the malignant behaviors of GC cells.
Collapse
Affiliation(s)
- Ning Cui
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Feng Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
3
|
El Sayed SM. Al-Hijamah (Prophetic Wet Cupping Therapy) is a Novel Adjuvant Treatment for Viral Hepatitis That Excretes Viral Particles and Excess Ferritin Percutaneously, Synergizes Pharmacotherapy, Enhances Antiviral Immunity and Helps Better HCC Prevention and Treatment: A Novel Evidence-Based Combination with Prophetic Medicine Remedies. J Hepatocell Carcinoma 2023; 10:1527-1546. [PMID: 37727876 PMCID: PMC10505647 DOI: 10.2147/jhc.s409526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/12/2023] [Indexed: 09/21/2023] Open
Abstract
Viral hepatitis progresses to liver cirrhosis and HCC. Several challenges are facing Sovaldi treatment to viral C hepatitis, eg, viral resistance, difficulty to treat all genotypes, and inability to access treatments in low-income countries. Also, current treatments to Hepatitis B are still challenging. Ideal treatments to viral hepatitis should decrease the viral load, enhance antiviral immunity and repair the viruses-induced tissue damage. That is still beyond reach. High serum ferritin in viral hepatitis correlates with chronicity, increased necro-inflammation, hepatotoxicity, progression to cirrhosis, progression to HCC, unresponsiveness to treatments and viremia. Previously, Al-hijamah (wet cupping therapy of prophetic medicine) significantly cleared thalassemic children of causative pathological substances (CPS), eg, excess ferritin, free radicals and serum lipids. Moreover, Al-hijamah significantly increased the antioxidant power and potentiated the natural antiviral immunity, eg, increasing CD4 count, CD8 count and CD4/CD8 ratio. Prophet Muhammad peace be upon him said: "If there is a benenvolence (benefit) in any of your medicines, benefit will be in shrtat mihjam (Al-hijamah), honey drink, and a stinge of fire compatible with disease and I do not like to cauterize". Likewise, the author suggests Al-hijamah as a novel promising adjuvant treatment for viral hepatitis (B and C) for percutaneous excretion of CPS as hepatitis viral particles, excess ferritin, inflammatory mediators, free radicals, and antigen-antibody complexes. Published reports proved that Al-hijamah exerted tissue-protective effects, and cleared blood through the fenestrated skin capillaries in a pressure-dependent and size-dependent manner (a kidney-like manner). That collectively may decrease the viral load for better HCC prevention and supports the evidence-based Taibah theory (Taibah mechanism). Same therapeutic benefits apply to other viral illnesses as AIDS. Even after HCC development, Al-hijamah is quite mandatory for excretion and clearance of CPS that favor malignancy, eg, lactate (Warburg effect), growth factors, metalloproteinases, and others. Al-hijamah-induced immune potentiation benefits HCC patients. Combining Al-hijamah with other natural antioxidant remedies of prophetic medicine, eg, nigella sativa, costus, natural honey, Zamzam water and others will maximize the therapeutic benefits. In conclusion, Al-hijamah and other prophetic medicine remedies are recommended adjuvants to current pharmacological treatments to viral hepatitis and HCC.
Collapse
Affiliation(s)
- Salah Mohamed El Sayed
- Al-Hijamah Clinic, Medical University Center, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Clinical Biochemistry & Molecular Medicine, Taibah College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Sohag University, Sohag, Egypt
- Prophetic Medicine Course & Research, Taibah College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| |
Collapse
|
4
|
Alkafaas SS, Abdallah AM, Hussien AM, Bedair H, Abdo M, Ghosh S, Elkafas SS, Apollon W, Saki M, Loutfy SA, Onyeaka H, Hessien M. A study on the effect of natural products against the transmission of B.1.1.529 Omicron. Virol J 2023; 20:191. [PMID: 37626376 PMCID: PMC10464336 DOI: 10.1186/s12985-023-02160-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The recent outbreak of the Coronavirus pandemic resulted in a successful vaccination program launched by the World Health Organization. However, a large population is still unvaccinated, leading to the emergence of mutated strains like alpha, beta, delta, and B.1.1.529 (Omicron). Recent reports from the World Health Organization raised concerns about the Omicron variant, which emerged in South Africa during a surge in COVID-19 cases in November 2021. Vaccines are not proven completely effective or safe against Omicron, leading to clinical trials for combating infection by the mutated virus. The absence of suitable pharmaceuticals has led scientists and clinicians to search for alternative and supplementary therapies, including dietary patterns, to reduce the effect of mutated strains. MAIN BODY This review analyzed Coronavirus aetiology, epidemiology, and natural products for combating Omicron. Although the literature search did not include keywords related to in silico or computational research, in silico investigations were emphasized in this study. Molecular docking was implemented to compare the interaction between natural products and Chloroquine with the ACE2 receptor protein amino acid residues of Omicron. The global Omicron infection proceeding SARS-CoV-2 vaccination was also elucidated. The docking results suggest that DGCG may bind to the ACE2 receptor three times more effectively than standard chloroquine. CONCLUSION The emergence of the Omicron variant has highlighted the need for alternative therapies to reduce the impact of mutated strains. The current review suggests that natural products such as DGCG may be effective in binding to the ACE2 receptor and combating the Omicron variant, however, further research is required to validate the results of this study and explore the potential of natural products to mitigate COVID-19.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Heba Bedair
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mahmoud Abdo
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
| | - Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, 66050, General Escobedo, Nuevo León, Mexico
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
5
|
Michalak O, Krzeczyński P, Jaromin A, Cmoch P, Cybulski M, Trzcińska K, Miszta P, Mehta P, Gubernator J, Filipek S. Antioxidant activity of novel diosgenin derivatives: Synthesis, biological evaluation, and in silico ADME prediction. Steroids 2022; 188:109115. [PMID: 36154831 DOI: 10.1016/j.steroids.2022.109115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 01/11/2023]
Abstract
A series of novel diosgenin (DSG) derivatives has been synthesized and tested in vitro for their antioxidant activity. Initially, four analogues have been evaluated for their cytotoxicity using normal human skin fibroblast (NHDF) as model cells. As a result, 84% of NHDF cells were still alive at 5 µM, so these compounds can be considered as innoxious to fibroblasts at this concentration. Then, hemolytic activity against human erythrocytes was studied in order to evaluate the potential impact of tested compounds against normal host cells. The result < 5% of hemolysis rates suggest no lytic activity for most compounds. After that, the main test - evaluation the antioxidant effect of DSG and its new derivatives against lipid peroxidation in the o/w emulsion model - was performed. The most promising compound (8) exhibited the significant antioxidant activity and the biocompatibility towards normal human dermal fibroblasts and red bloods cells. This p-aminobenzoic derivative revealed 61.6% blocking of induced lipid oxidation. Furthermore, eleven predicted ADME properties were predicted for all tested compounds and revealed that they are in compliance with drug-likeness criteria.
Collapse
Affiliation(s)
- Olga Michalak
- Department of Pharmacy, Cosmetic Chemistry and Biotechnology, Team of Chemistry, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland.
| | - Piotr Krzeczyński
- Department of Pharmacy, Cosmetic Chemistry and Biotechnology, Team of Chemistry, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland.
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, 14a Joliot-Curie Street, 50-383 Wrocław, Poland.
| | - Piotr Cmoch
- Institute of Organic Chemistry Polish Academy of Sciences, 44/52 Kasprzaka Str., 01-224 Warsaw, Poland.
| | - Marcin Cybulski
- Department of Pharmacy, Cosmetic Chemistry and Biotechnology, Team of Chemistry, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland.
| | - Kinga Trzcińska
- Analytical Department, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland.
| | - Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland.
| | - Pakhuri Mehta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland.
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, 14a Joliot-Curie Street, 50-383 Wrocław, Poland.
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland.
| |
Collapse
|
6
|
The efficacy of applying some plants and herbs in cancer therapy for humans and animals – a comperhensive review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Cancer is a challenging ailment and represents the main reason for death worldwide for humans and animals. Although great developments have hindered cancer progression, several adverse effects are associated with modern chemotherapy. Natural remedies, such as the usage of medicinal plant or their products in cancer treatment, may decrease prejudicial side properties. Recently, the modern research scheme and innovative screening practices for herbs or plants have enabled phytochemical discovery for the prevention and treatment of cancer. This criticism highlights herbs such as acacia, basil, black seeds, cedar, castus, ficus, garlic, ginger, indigo, onion, pomegranate, quince, and thyme, promising anticancer effects. The present review also revealed the mode of action of each herb as anticancer effects at level in vitro and in vivo studies. The item also totalizes the vital mechanisms and signaling molecules involved in preventing cancer diseases. This will fill the investigate gap in the exploration of using natural molecules and encourage researchers in clinical trials of anticancer agents from herbs for humans and animals.
Collapse
|
7
|
El Gizawy HA, El-Haddad AE, Saadeldeen AM, Boshra SA. Tentatively Identified (UPLC/T-TOF-MS/MS) Compounds in the Extract of Saussurea costus Roots Exhibit In Vivo Hepatoprotection via Modulation of HNF-1α, Sirtuin-1, C/ebpα, miRNA-34a and miRNA-223. Molecules 2022; 27:molecules27092802. [PMID: 35566153 PMCID: PMC9104236 DOI: 10.3390/molecules27092802] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Saussurea costus is a plant traditionally used for the treatment of several ailments. Our study accomplished the UPLC/T-TOF-MS/MS analysis of a methanol extract of Saussurea costus roots (MESC), in addition to lipoidal matter determination and assessment of its in vivo hepatoprotective activity. In this study, we were able to identify the major metabolites in MESC rather than the previously known isolated compounds, improving our knowledge of its chemical constituents. The flavones apigenin, acacetin, baicalein, luteolin, and diosmetin, and the flavonol aglycones quercetin, kaempferol, isorhamnetin, gossypetin, and myricetin and/or their glycosides and glucuronic derivatives were the major identified compounds. The hepatoprotective activity of MESC was evaluated by measuring catalase activity using UV spectrophotometry, inflammatory cytokines and apoptotic markers using ELISA techniques, and genetic markers using PCR. Paracetamol toxicity caused a significant increase in plasma caspase 2, cytokeratin 18 (CK18), liver tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), miRNA-34a, and miRNA-223, as well as a significant decrease in liver catalase (CAT) activity and in the levels of liver nuclear factor 1α (HNF-1α), sirtuin-1, and C/ebpα. Oral pretreatment with MESC (200 mg/kg) showed a significant decrease in caspase 2, CK18, TNF-α, IL-6 and a significant increase in liver CAT activity. MESC decreased the levels of liver miRNA-34a and miRNA-223 and induced HNF-1α, sirtuin-1, and C/ebpα gene expression. The histological examination showed a significant normalization in rats pretreated with MESC. Our findings showed that Saussurea costus may exert a potent hepatoprotective activity through the modulation of the expression of cellular cytokines, miRNA-34a, and miRNA-223.
Collapse
Affiliation(s)
- Heba A. El Gizawy
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University (O6U), Giza 12585, Egypt;
| | - Alaadin E. El-Haddad
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University (O6U), Giza 12585, Egypt;
- Correspondence: or
| | - Amr M. Saadeldeen
- Department of Pharmacognosy, School of Pharmacy, Newgiza University (NGU), Newgiza, km 22 Cairo-Alexandria Desert Road, Giza 12577, Egypt;
| | - Sylvia A. Boshra
- Department of Biochemistry, Faculty of Pharmacy, October 6 University (O6U), Giza 12585, Egypt;
| |
Collapse
|
8
|
Shukla V, Bajpai V, Singh P, Rai P, Khandelwal N, Gaikwad AN, Singh B, Kumar B. Identification and quantification of phytochemicals of Chamaecostus cuspidatus (Nees & Mart.) C.D.Specht & D.W.Stev and Cheilocostus speciosus (J. Koenig) C.D.Specht by LC-MS techniques and their in- vitro anti-adipogenic screening. Nat Prod Res 2022:1-5. [DOI: 10.1080/14786419.2022.2050225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Vijaya Shukla
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vikas Bajpai
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pratibha Singh
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prashant Rai
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Nilesh Khandelwal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anil N. Gaikwad
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Bikarma Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Botanic Garden Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Brijesh Kumar
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
In Silico Screening of Potential Phytocompounds from Several Herbs against SARS-CoV-2 Indian Delta Variant B.1.617.2 to Inhibit the Spike Glycoprotein Trimer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In October 2020, the SARS-CoV-2 B.1.617 lineage was discovered in India. It has since become a prominent variant in several Indian regions and 156 countries, including the United States of America. The lineage B.1.617.2 is termed the delta variant, harboring diverse spike mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD), which may heighten its immune evasion potentiality and cause it to be more transmissible than other variants. As a result, it has sparked substantial scientific investigation into the development of effective vaccinations and anti-viral drugs. Several efforts have been made to examine ancient medicinal herbs known for their health benefits and immune-boosting action against SARS-CoV-2, including repurposing existing FDA-approved anti-viral drugs. No efficient anti-viral drugs are available against the SARS-CoV-2 Indian delta variant B.1.617.2. In this study, efforts were made to shed light on the potential of 603 phytocompounds from 22 plant species to inhibit the Indian delta variant B.1.617.2. We also compared these compounds with the standard drug ceftriaxone, which was already suggested as a beneficial drug in COVID-19 treatment; these compounds were compared with other FDA-approved drugs: remdesivir, chloroquine, hydroxy-chloroquine, lopinavir, and ritonavir. From the analysis, the identified phytocompounds acteoside (−7.3 kcal/mol) and verbascoside (−7.1 kcal/mol), from the plants Clerodendrum serratum and Houttuynia cordata, evidenced a strong inhibitory effect against the mutated NTD (MT-NTD). In addition, the phytocompounds kanzonol V (−6.8 kcal/mol), progeldanamycin (−6.4 kcal/mol), and rhodoxanthin (−7.5 kcal/mol), from the plant Houttuynia cordata, manifested significant prohibition against RBD. Nevertheless, the standard drug, ceftriaxone, signals less inhibitory effect against MT-NTD and RBD with binding affinities of −6.3 kcal/mol and −6.5 kcal/mol, respectively. In this study, we also emphasized the pharmacological properties of the plants, which contain the screened phytocompounds. Our research could be used as a lead for future drug design to develop anti-viral drugs, as well as for preening the Siddha formulation to control the Indian delta variant B.1.617.2 and other future SARS-CoV-2 variants.
Collapse
|
10
|
Stefanowicz-Hajduk J, Król-Kogus B, Sparzak-Stefanowska B, Kimel K, Ochocka JR, Krauze-Baranowska M. Cytotoxic activity of standardized extracts, a fraction, and individual secondary metabolites from fenugreek seeds against SKOV-3, HeLa and MOLT-4 cell lines. PHARMACEUTICAL BIOLOGY 2021; 59:424-437. [PMID: 33849376 PMCID: PMC8057092 DOI: 10.1080/13880209.2021.1903047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Trigonella foenum-graecum L. (Fabaceae) has many therapeutic properties and anticancer potential. OBJECTIVE The cytotoxic activities of standardized extracts and a fraction from fenugreek seeds and their compounds (sapogenins, flavone C-glycosides, alkaloid trigonelline) against human cancer SKOV-3, HeLa and MOLT-4 cells were evaluated. MATERIALS AND METHODS Fenugreek seeds were extracted with 70% methanol (A) or water (B). Furthermore, the seeds were purified with petroleum ether and chloroform and next extracted with methanol to obtain fraction (C). The quantitative analysis of saponins and flavonoids in the extracts was done with HPLC methods. The extracts (5-120 µg/mL) and compounds (1-50 µg/mL) were tested on the cells by MTT assay and RTCA system. The effect of a fraction on ROS production, mitochondrial membrane potential and caspase-3/7 activity in HeLa and SKOV-3 cells was also evaluated by flow cytometry. RESULTS The strongest cytotoxic activity on cancer cells showed the fraction C (IC50 was 3.91 ± 0.03 for HeLa, 3.97 ± 0.07 for SKOV-3, and 7.75 ± 0.37 for MOLT-4) with the highest content of steroidal saponins (163.18 ± 11.03 μg/mg) and flavone C-glycosides (820.18 ± 0.05 μg/mg). The fraction significantly increased ROS production (up to four times higher than in keratinocytes as control) and caspases activity in the cells. The examined flavonoids did not exhibit the cytotoxic activity in contrast to yamogenin, tigogenin, and diosgenin. CONCLUSIONS The obtained results complement the data on the cytotoxic activity of Foenugraeci Semen and synergistic effect of flavonoids and saponins complex contained in the plant.
Collapse
Affiliation(s)
| | - Barbara Król-Kogus
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Katarzyna Kimel
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Gdańsk, Gdańsk, Poland
| | - J. Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Mirosława Krauze-Baranowska
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Gdańsk, Gdańsk, Poland
- CONTACT Mirosława Krauze-Baranowska Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
11
|
Singla RK, He X, Chopra H, Tsagkaris C, Shen L, Kamal MA, Shen B. Natural Products for the Prevention and Control of the COVID-19 Pandemic: Sustainable Bioresources. Front Pharmacol 2021; 12:758159. [PMID: 34925017 PMCID: PMC8671886 DOI: 10.3389/fphar.2021.758159] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
Background: The world has been unprecedentedly hit by a global pandemic which broke the record of deadly pandemics that faced humanity ever since its existence. Even kids are well-versed in the terminologies and basics of the SARS-CoV-2 virus and COVID-19 now. The vaccination program has been successfully launched in various countries, given that the huge global population of concern is still far behind to be vaccinated. Furthermore, the scarcity of any potential drug against the COVID-19-causing virus forces scientists and clinicians to search for alternative and complementary medicines on a war-footing basis. Aims and Objectives: The present review aims to cover and analyze the etiology and epidemiology of COVID-19, the role of intestinal microbiota and pro-inflammatory markers, and most importantly, the natural products to combat this deadly SARS-CoV-2 virus. Methods: A primary literature search was conducted through PubMed and Google Scholar using relevant keywords. Natural products were searched from January 2020 to November 2020. No timeline limit has been imposed on the search for the biological sources of those phytochemicals. Interactive mapping has been done to analyze the multi-modal and multi-target sources. Results and Discussion: The intestinal microbiota and the pro-inflammatory markers that can serve the prognosis, diagnosis, and treatment of COVID-19 were discussed. The literature search resulted in yielding 70 phytochemicals and ten polyherbal formulations which were scientifically analyzed against the SARS-CoV-2 virus and its targets and found significant. Retrospective analyses led to provide information about 165 biological sources that can also be screened if not done earlier. Conclusion: The interactive analysis mapping of biological sources with phytochemicals and targets as well as that of phytochemical class with phytochemicals and COVID-19 targets yielded insights into the multitarget and multimodal evidence-based complementary medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | | | - Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Harmatha J, Buděšínský M, Zídek Z, Kmoníčková E. Spirostanol Saponins from Flowers of Allium Porrum and Related Compounds Indicating Cytotoxic Activity and Affecting Nitric Oxide Production Inhibitory Effect in Peritoneal Macrophages. Molecules 2021; 26:6533. [PMID: 34770942 PMCID: PMC8587756 DOI: 10.3390/molecules26216533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Saponins, a diverse group of natural compounds, offer an interesting pool of derivatives with biomedical application. In this study, three structurally related spirostanol saponins were isolated and identified from the leek flowers of Allium porrum L. (garden leek). Two of them were identical with the already known leek plant constituents: aginoside (1) and 6-deoxyaginoside (2). The third one was identified as new component of A. porrum; however, it was found identical with yayoisaponin A (3) obtained earlier from a mutant of elephant garlic Allium ampeloprasun L. It is a derivative of the aginoside (1) with additional glucose in its glycosidic chain, identified by MS and NMR analysis as (2α, 3β, 6β, 25R)-2,6-dihydroxyspirostan-3-yl β-D-glucopyranosyl-(1 → 3)-β-D-glucopranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl]-(1 → 4)-β-D-galactopyranoside, previously reported also under the name alliporin. The leek native saponins were tested together with other known and structurally related saponins (tomatonin and digitonin) and with their related aglycones (agigenin and diosgenin) for in vitro cytotoxicity and for effects on NO production in mouse peritoneal cells. The highest inhibitory effects were exhibited by 6-deoxyaginoside. The obtained toxicity data, however, closely correlated with the suppression of NO production. Therefore, an unambiguous linking of obtained bioactivities of saponins with their expected immunobiological properties remained uncertain.
Collapse
Affiliation(s)
- Juraj Harmatha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic;
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic;
| | - Zdeněk Zídek
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; (Z.Z.); (E.K.)
| | - Eva Kmoníčková
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; (Z.Z.); (E.K.)
- Department of Pharmacology, Second Faculty of Medicine, Charles University, 150 00 Prague, Czech Republic
| |
Collapse
|
13
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
14
|
Nazir R, Pandey DK, Pandey B, Kumar V, Dwivedi P, Khampariya A, Dey A, Malik T. Optimization of diosgenin extraction from Dioscorea deltoidea tubers using response surface methodology and artificial neural network modelling. PLoS One 2021; 16:e0253617. [PMID: 34288904 PMCID: PMC8294507 DOI: 10.1371/journal.pone.0253617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/08/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Dioscorea deltoidea var. deltoidea (Dioscoreaceae) is a valuable endangered plant of great medicinal and economic importance due to the presence of the bioactive compound diosgenin. In the present study, response surface methodology (RSM) and artificial neural network (ANN) modelling have been implemented to evaluate the diosgenin content from D. deltoidea. In addition, different extraction parameters have been also optimized and developed. MATERIALS AND METHODS Firstly, Plackett-Burman design (PBD) was applied for screening the significant variables among the selected extraction parameters i.e. solvent composition, solid: solvent ratio, particle size, time, temperature, pH and extraction cycles on diosgenin yield. Among seven tested parameters only four parameters (particle size, solid: solvent ratio, time and temperature) were found to exert significant effect on the diosgenin extraction. Moreover, Box-Behnken design (BBD) was employed to optimize the significant extraction parameters for maximum diosgenin yield. RESULTS The most suitable condition for diosgenin extraction was found to be solid: solvent ratio (1:45), particle size (1.25 mm), time (45 min) and temperature (45°C). The maximum experimental yield of diosgenin (1.204% dry weight) was observed close to the predicted value (1.202% dry weight) on the basis of the chosen optimal extraction factors. The developed mathematical model fitted well with experimental data for diosgenin extraction. CONCLUSIONS Experimental validation revealed that a well trained ANN model has superior performance compared to a RSM model.
Collapse
Affiliation(s)
- Romaan Nazir
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Babita Pandey
- Department of Computer Science and Information Technology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Vijay Kumar
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Aditya Khampariya
- School of Computer Science and Engineering, Lovely Professional University, Phagwara, Punjab, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Tabarak Malik
- Department of Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
15
|
Semwal P, Painuli S, Cruz-Martins N. Dioscorea deltoidea wall. Ex Griseb: A review of traditional uses, bioactive compounds and biological activities. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Rawat P, Kumar M, Srivastava A, Kumar B, Misra A, Pratap Singh S, Srivastava S. Influence of Soil Variation on Diosgenin Content Profile in Costus speciosus from Indo-Gangetic Plains. Chem Biodivers 2021; 18:e2000977. [PMID: 33837994 DOI: 10.1002/cbdv.202000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/09/2021] [Indexed: 11/08/2022]
Abstract
Costus speciosus is a rich source of commercially important compound Diosgenin, distributed in different regions of India. The present investigation was aimed to quantify diosgenin through High Performance Thin Layer Chromatography in 34 germplasms of Costus speciosus and also to identify the superior sources and to correlate the macronutrients of rhizospheric soil. The starch content varied in microscopic examination and correlated inversely (r=-0.266) with diosgenin content. Findings revealed that the extraction process with acid hydrolysis yielded higher diosgenin content (0.15-1.88 %) as compared to non-hydrolysis (0.009-0.368 %) procedure. Germplasms from Uttar Pradesh (NBCS-4), Jharkhand (NBCS-39) and Bihar (NBCS-2) were identified as elite chemotypes based on hierarchical clustering analysis. The phosphorous content of respective rhizospheric soil correlated positively (r=0.742) with diosgenin content. Findings of present study are useful to identify the new agrotechniques. The elite germplasms can also be used as quality planting material for large scale cultivation in order to assure a sustained supply to the herbal drug industry.
Collapse
Affiliation(s)
- Poonam Rawat
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, U.P., India
| | - Manish Kumar
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, U.P., India
| | - Akanksha Srivastava
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, U.P., India
| | - Bhanu Kumar
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, U.P., India
| | - Ankita Misra
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, U.P., India
| | - Satyendra Pratap Singh
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, U.P., India
| | - Sharad Srivastava
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, U.P., India
| |
Collapse
|
17
|
Synthesis and Characterization of Diosgenin Encapsulated Poly-ε-Caprolactone-Pluronic Nanoparticles and Its Effect on Brain Cancer Cells. Polymers (Basel) 2021; 13:polym13081322. [PMID: 33919483 PMCID: PMC8073865 DOI: 10.3390/polym13081322] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 01/21/2023] Open
Abstract
Diosgenin encapsulated PCL-Pluronic nanoparticles (PCL-F68-D-NPs) were developed using the nanoprecipitation method to improve performance in brain cancer (glioblastoma) therapy. The nanoparticles were characterized by dynamic light scattering (DLS)/Zeta potential, Fourier-transform infrared (FTIR) spectra, X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), and Transmission electron microscopy (TEM). The encapsulation efficiency, loading efficiency, and yield were calculated. The in vitro release rate was determined, and the kinetic model of diosgenin release was plotted and ascertained. The cytotoxicity was checked by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)assay against U87-MG cells (glioblastoma cell lines). The obtained nanoparticles demonstrated good size distribution, stability, morphology, chemical, and mechanical properties. The nanoparticles also possessed high encapsulation efficiency, loading efficiency, and yield. The release rate of Diosgenin was shown in a sustained manner. The in vitro cytotoxicity of PCL-F68-D-NPs showed higher toxicity against U87-MG cells than free Diosgenin.
Collapse
|
18
|
Martínez-García A, Odio OF, Coll F, Martínez R. A diosgenin-containing water-soluble polymer as model for the controlled release of brassinosteroids. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1865350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ariel Martínez-García
- Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana, Cuba
| | - Oscar F. Odio
- CONACyT-Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, CDMX, Mexico
| | - Francisco Coll
- Centro de Estudios de Productos Naturales, Facultad de Química, Universidad de La Habana, La Habana, Cuba
| | - Ricardo Martínez
- Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana, Cuba
| |
Collapse
|
19
|
Secondary Metabolites, Antioxidant, and Antiproliferative Activities of Dioscorea bulbifera Leaf Collected from Endau Rompin, Johor, Malaysia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8826986. [PMID: 33505506 PMCID: PMC7814937 DOI: 10.1155/2021/8826986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/26/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Breast cancer is among the most commonly diagnosed cancer and the leading cause of cancer-related death among women globally. Malaysia is a country that is rich in medicinal plant species. Hence, this research aims to explore the secondary metabolites, antioxidant, and antiproliferative activities of Dioscorea bulbifera leaf collected from Endau Rompin, Johor, Malaysia. Antioxidant activity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays, while the cytotoxicity of D. bulbifera on MDA-MB-231 and MCF-7 breast cancer cell lines was tested using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cell cycle analysis and apoptosis were assessed using flow cytometry analysis. Phytochemical profiling was conducted using gas chromatography-mass spectrometry (GC-MS). Results showed that methanol extract had the highest antioxidant activity in DPPH, FRAP, and ABTS assays, followed by ethyl acetate and hexane extracts. D. bulbifera tested against MDA-MB-231 and MCF-7 cell lines showed a pronounced cytotoxic effect with IC50 values of 8.96 μg/mL, 6.88 μg/mL, and 3.27 μg/mL in MCF-7 and 14.29 μg/mL, 11.86 μg/mL, and 7.23 μg/mL in MDA-MB-231, respectively. Cell cycle analysis also indicated that D. bulbifera prompted apoptosis at various stages, and a significant decrease in viable cells was detected within 24 h and substantially improved after 48 h and 72 h of treatment. Phytochemical profiling of methanol extract revealed the presence of 39 metabolites such as acetic acid, n-hexadecanoic acid, acetin, hexadecanoate, 7-tetradecenal, phytol, octadecanoic acid, cholesterol, palmitic acid, and linolenate. Hence, these findings concluded that D. bulbifera extract has promising anticancer and natural antioxidant agents. However, further study is needed to isolate the bioactive compounds and validate the effectiveness of this extract in the In in vivo model.
Collapse
|
20
|
Sun F, Yang X, Ma C, Zhang S, Yu L, Lu H, Yin G, Liang P, Feng Y, Zhang F. The Effects of Diosgenin on Hypolipidemia and Its Underlying Mechanism: A Review. Diabetes Metab Syndr Obes 2021; 14:4015-4030. [PMID: 34552341 PMCID: PMC8450287 DOI: 10.2147/dmso.s326054] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperlipidemia is a disorder of lipid metabolism, which is a major cause of coronary heart disease. Although there has been considerable progress in hyperlipidemia treatment, morbidity and risk associated with the condition continue to rise. The first-line treatment for hyperlipidemia, statins, has multiple side effects; therefore, development of safe and effective drugs from natural products to prevent and treat hyperlipidemia is necessary. Diosgenin is primarily derived from fenugreek (Trigonella foenum graecum) seeds, and is also abundant in medicinal herbs such as Dioscorea rhizome, Dioscorea septemloba, and Rhizoma polygonati, is a well-known steroidal sapogenin and the active ingredient in many drugs to treat cardiovascular conditions. There is abundant evidence that diosgenin has potential for application in correcting lipid metabolism disorders. In this review, we evaluated the latest evidence related to diosgenin and hyperlipidemia from clinical and animal studies. Additionally, we elaborate the pharmacological mechanism underlying the activity of diosgenin in treating hyperlipidemia in detail, including its role in inhibition of intestinal absorption of lipids, regulation of cholesterol transport, promotion of cholesterol conversion into bile acid and its excretion, inhibition of endogenous lipid biosynthesis, antioxidation and lipoprotein lipase activity, and regulation of transcription factors related to lipid metabolism. This review provides a deep exploration of the pharmacological mechanisms involved in diosgenin-hyperlipidemia interactions and suggests potential routes for the development of novel drug therapies for hyperlipidemia.
Collapse
Affiliation(s)
- Fengcui Sun
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Xiufen Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Chaoqun Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Shizhao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Lu Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Haifei Lu
- Hubei University of Traditional Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Pengpeng Liang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Yanan Feng
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
- Correspondence: Fengxia Zhang Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of ChinaTel +8653168616011 Email
| |
Collapse
|
21
|
Sharma N, Singhal M, Kumari RM, Gupta N, Manchanda R, Syed A, Bahkali AH, Nimesh S. Diosgenin Loaded Polymeric Nanoparticles with Potential Anticancer Efficacy. Biomolecules 2020; 10:E1679. [PMID: 33339083 PMCID: PMC7765552 DOI: 10.3390/biom10121679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
This study aims to determine the anticancer efficacy of diosgenin encapsulated poly-glycerol malate co-dodecanedioate (PGMD) nanoparticles. Diosgenin loaded PGMD nanoparticles (variants 7:3 and 6:4) were synthesized by the nanoprecipitation method. The synthesis of PGMD nanoparticles was systematically optimized employing the Box-Behnken design and taking into account the influence of various independent variables such as concentrations of each PGMD, diosgenin and PF-68 on the responses such as size and PDI of the particles. Mathematical modeling was done using the Quadratic second order modeling method and response surface analysis was undertaken to elucidate the factor-response relationship. The obtained size of PGMD 7:3 and PGMD 6:4 nanoparticles were 133.6 nm and 121.4 nm, respectively, as measured through dynamic light scattering (DLS). The entrapment efficiency was in the range of 77-83%. The in vitro drug release studies showed diffusion and dissolution controlled drug release pattern following Korsmeyer-Peppas kinetic model. Furthermore, in vitro morphological and cytotoxic studies were performed to evaluate the toxicity of synthesized drug loaded nanoparticles in model cell lines. The IC50 after 48 h was observed to be 27.14 µM, 15.15 µM and 13.91 µM for free diosgenin, PGMD 7:3 and PGMD 6:4 nanoparticles, respectively, when administered in A549 lung carcinoma cell lines.
Collapse
Affiliation(s)
- Nikita Sharma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India; (N.S.); (R.M.K.)
| | - Monisha Singhal
- Department of Biotechnology, IIS (Deemed to be University), Jaipur 302020, India; (M.S.); (N.G.)
| | - R. Mankamna Kumari
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India; (N.S.); (R.M.K.)
| | - Nidhi Gupta
- Department of Biotechnology, IIS (Deemed to be University), Jaipur 302020, India; (M.S.); (N.G.)
| | - Romila Manchanda
- School of Basic and Applied Sciences, K.R. Mangalam University, Gurugram 122103, India;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.)
| | - Surendra Nimesh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India; (N.S.); (R.M.K.)
| |
Collapse
|
22
|
El-Sayed A, Enan G, Al-Mohammadi AR, H. Moustafa A, El-Gazzar N. Detection, Purification and Elucidation of Chemical Structure and Antiproliferative Activity of Taxol Produced by Penicillium chrysogenum. Molecules 2020; 25:E4822. [PMID: 33092293 PMCID: PMC7588014 DOI: 10.3390/molecules25204822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 01/18/2023] Open
Abstract
Penicillium chrysogenum has been reported as a potent taxol producer based on quantitative analysis by TLC and HPLC. The biosynthetic potency of taxol has been validated from PCR detection of rate-limiting genes of taxol synthesis such as taxadienesynthase and 10-de-acetylbaccatin III-O-acetyltransferase (DBAT), which catalyzes the immediate diterpenoid precursor of the taxol substance, as detected by PCR. Taxol production by P. chrysogenum was assessed by growing the fungus on different media. Potato dextrose broth (PDB) was shown to be the best medium for obtaining the higher amount of taxol (170 µg/L). A stepwise optimization of culture conditions necessary for production of higher amounts of taxol was investigated. The substance taxol was produced optimally after 18 d of incubation at 30 °C in PDB adjusted initially at pH 8.0 with shaking (120 rpm) (250 µg/L). The P. chrysogenum taxol was purified successfully by HPLC. Instrumental analyzes such as Fourier transform infrared spectroscopy (FTIR), ultraviolet (UV) spectroscopy, 1HNMR and 13C NMR approved the structural formula of taxol (C47H51NO14), as constructed by ChemDraw. The P. chrysogenum taxol showed promising anticancer activity.
Collapse
Affiliation(s)
- Ashraf El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (G.E.); (N.E.-G.)
| | - Gamal Enan
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (G.E.); (N.E.-G.)
| | | | - Ahmed H. Moustafa
- Department of Sciences, King Khalid Military Academy, Riyadh 11495, Saudi Arabia;
| | - Nashwa El-Gazzar
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (G.E.); (N.E.-G.)
| |
Collapse
|
23
|
Gong N, Yu H, Wang Y, Xing C, Hu K, Du G, Lu Y. Crystal Structures, Stability, and Solubility Evaluation of a 2:1 Diosgenin-Piperazine Cocrystal. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:261-267. [PMID: 32632767 PMCID: PMC7367958 DOI: 10.1007/s13659-020-00256-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/17/2020] [Indexed: 05/03/2023]
Abstract
A cocrystal of diosgenin with piperazine in 2:1 stoichiometry was successfully synthesized. The solid form was prepared by liquid assisted grinding, slurry and crystallization methods. The cocrystal was characterized by powder X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared spectroscopy, and structure determined by single crystal X-ray diffraction, the hydrogen bonds formed into fish bone structure along the [010] direction and all the molecules packed into 3D layer structure along a axis. After formation of cocrystal, the solubility of diosgenin was improved, and the solubility value in 0.2% SDS solution was approximately 1.5 times as large as that of the parent material.
Collapse
Affiliation(s)
- Ningbo Gong
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hongmei Yu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Wang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Cheng Xing
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kun Hu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guanhua Du
- Beijing City Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
24
|
Shaikh S, Shriram V, Khare T, Kumar V. Biotic elicitors enhance diosgenin production in Helicteres isora L. suspension cultures via up-regulation of CAS and HMGR genes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:593-604. [PMID: 32205933 PMCID: PMC7078398 DOI: 10.1007/s12298-020-00774-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/23/2020] [Accepted: 02/13/2020] [Indexed: 05/10/2023]
Abstract
In an attempt to find an alternative and potent source of diosgenin, a steroidal saponin in great demand for its pharmaceutical importance, Helicteres isora suspension cultures were explored for diosgenin extraction. The effect of biotic elicitors on the biosynthesis of diosgenin, in suspension cultures of H. isora was studied. Bacterial as well as fungal elicitors such as Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus niger were applied at varying concentrations to investigate their effects on diosgenin content. The HPLC based quantification of the treated samples proved that amongst the biotic elicitors, E. coli (1.5%) proved best with a 9.1-fold increase in diosgenin content over respective control cultures. Further, the scaling-up of the suspension culture to shake-flask and ultimately to bioreactor level were carried out for production of diosgenin. During all the scaling-up stages, diosgenin yield obtained was in the range between 7.91 and 8.64 mg l-1, where diosgenin content was increased with volume of the medium. The quantitative real-time PCR (qRT-PCR) analysis showed biotic elicitors induced the expression levels of regulatory genes in diosgenin biosynthetic pathway, the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and cycloartenol synthase (CAS), which can be positively correlated with elicited diosgenin contents in those cultures. The study holds significance as H. isora represents a cleaner and easy source of diosgenin where unlike other traditional sources, it is not admixed with other steroidal saponins, and the scaled-up levels of diosgenin achieved herein have the potential to be explored commercially.
Collapse
Affiliation(s)
- Samrin Shaikh
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016 India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College (Savitribai Phule Pune University), Akurdi, Pune, 411044 India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016 India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016 India
| |
Collapse
|
25
|
Mao XM, Zhou P, Li SY, Zhang XY, Shen JX, Chen QX, Zhuang JX, Shen DY. Diosgenin Suppresses Cholangiocarcinoma Cells Via Inducing Cell Cycle Arrest And Mitochondria-Mediated Apoptosis. Onco Targets Ther 2019; 12:9093-9104. [PMID: 31806994 PMCID: PMC6839585 DOI: 10.2147/ott.s226261] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/16/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose Diosgenin (DSG) is the precursor of steroid hormones and plays a crucial part in the proliferation of various carcinomas including human colorectal cancer and gastric carcinoma. Nevertheless, its specific features and mechanisms in human cholangiocarcinoma (CCA) remain unknown. Methods MTS assay, colony-forming assay, and EdU assay were performed to determine the role of DSG on the progression of human CCA cells. The distributions of cell cycle, the ratio of apoptosis, and the mitochondrial membrane potential (ΔΨm) were studied by flow cytometry (FCM). AO/EB and Hoechst 33258 staining were performed to observe the morphological features of cell apoptosis. TEM was performed to observe the ultrastructures of QBC939 and HuCCT1 cells. The mRNA and protein expression of mitochondrial apoptotic pathway and GSK3β/β-catenin pathway were further confirmed by qPCR and Western blotting. The xenograft tumor model of HuCCT1 cells was built. Immunohistochemistry of tumor tissues was performed. Results Our results indicated that DSG inhibited the progression of six CCA cell lines. In vivo tumor studies also indicated that DSG significantly inhibited tumor growth in xenografts in nude mice. The expression of mitosis-promoting factor cyclinB1 was decreased along with the elevating level of cell cycle inhibitor p21, resulting in arresting CCA cell cycles at G2/M phase. Furthermore, DSG induced apoptosis with the increased expressions of cytosol cytochrome C, cleaved-caspase-3, cleaved-PARP1 and the Bax/Bcl-2 ratio. Mechanistically, our study showed that GSK3β/β-catenin pathway was involved in the apoptosis of CCA cells. Thus, DSG might provide a new clue for the drug therapy of CCA. Conclusion In our data, DSG was found to have efficient antitumor potential of human CCA cells in vitro and in vivo.
Collapse
Affiliation(s)
- Xiao-Mei Mao
- School of Life Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Pan Zhou
- School of Life Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Si-Yang Li
- Biobank, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen 361003, People's Republic of China
| | - Xiao-Yun Zhang
- Biobank, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen 361003, People's Republic of China
| | - Jin-Xing Shen
- Biobank, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen 361003, People's Republic of China
| | - Qing-Xi Chen
- School of Life Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Jiang-Xing Zhuang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Dong-Yan Shen
- Biobank, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen 361003, People's Republic of China
| |
Collapse
|
26
|
Hajizadeh MR, Parvaz N, Barani M, Khoshdel A, Fahmidehkar MA, Mahmoodi M, Torkzadeh-Mahani M. Diosgenin-loaded niosome as an effective phytochemical nanocarrier: physicochemical characterization, loading efficiency, and cytotoxicity assay. ACTA ACUST UNITED AC 2019; 27:329-339. [PMID: 31134490 DOI: 10.1007/s40199-019-00277-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The use of phytochemicals to prevent or suppress tumours is known as chemoprevention. Numerous plant-derived agents have been reported to have anticancer potentials. As one such anticancer phytochemical, diosgenin has several applications which are nevertheless limited due to its low solubility in water. METHODS We loaded diosgenin into niosome to increase its solubility and hence efficiency. Diosgenin-niosome (diosgenin loaded into niosome) was prepared by thin-film hydration method and characterised by optical microscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), and UV-visible spectrophotometry. Also, loading efficiency, in vitro drug release, and cytotoxicity assay were performed on HepG2 cell line. RESULTS AND DISCUSSION Diosgenin-niosome has a nanometric size with a normal size distribution and spherical morphology. The loading efficiency of diosgenin was about 89% with a sustainable and controllable release rate. Finally, the viability of free diosgenin was 61.25%, and after loading into niosomes, it was improved to 28.32%. CONCLUSION The results demonstrated that niosomes increase the solubility of naturally derived hydrophobic chemicals and thus enhance their anticancer effect. Graphical abstract.
Collapse
Affiliation(s)
- Mohammad Reza Hajizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Najmeh Parvaz
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Alireza Khoshdel
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Ali Fahmidehkar
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
27
|
Sethi A, Singh P, Yadav N, Yadav P, Banerjee M, Singh RP. Greener approach for synthesis of novel steroidal prodrugs using ionic liquid, their DFT study and apoptosis activity in prostate cancer cell line. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Ilkar Erdagi S, Uyanik C. Biological evaluation of bioavailable amphiphilic polymeric conjugate based-on natural products: diosgenin and curcumin. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1539989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Cavit Uyanik
- Department of Chemistry, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
29
|
Manatunga DC, de Silva RM, de Silva KMN, Wijeratne DT, Malavige GN, Williams G. Fabrication of 6-gingerol, doxorubicin and alginate hydroxyapatite into a bio-compatible formulation: enhanced anti-proliferative effect on breast and liver cancer cells. Chem Cent J 2018; 12:119. [PMID: 30470922 PMCID: PMC6768026 DOI: 10.1186/s13065-018-0482-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Ample attention has been devoted to the construction of anti-cancer drug delivery systems with increased stability, and controlled and targeted delivery, minimizing toxic effects. In this study we have designed a magnetically attractive hydroxyapatite (m-HAP) based alginate polymer bound nanocarrier to perform targeted, controlled and pH sensitive drug release of 6-gingerol, doxorubicin, and their combination, preferably at low pH environments (pH 5.3). They have exhibited higher encapsulation efficiency which is in the range of 97.4-98.9% for both 6-gingerol and doxorubicin molecules whereas the co-loading has accounted for a value of 81.87 ± 0.32%. Cell proliferation assays, fluorescence imaging and flow cytometric analysis, demonstrated the remarkable time and dose responsive anti-proliferative effect of drug loaded nanoparticles on MCF-7 cells and HEpG2 cells compared with their neat counter parts. Also, these systems have exhibited significantly reduced toxic effects on non-targeted, non-cancerous cells in contrast to the excellent ability to selectively kill cancerous cells. This study has suggested that this HAP based system is a versatile carrier capable of loading various drug molecules, ultimately producing a profound anti-proliferative effect.
Collapse
Affiliation(s)
| | - Rohini M. de Silva
- Department of Chemistry, University of Colombo, Colombo, 00300 Sri Lanka
| | - K. M. Nalin de Silva
- Department of Chemistry, University of Colombo, Colombo, 00300 Sri Lanka
- Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology & Science Park, Mahenwatte, Pitipana, Homagama, 10206 Sri Lanka
| | - Dulharie T. Wijeratne
- Centre for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250 Sri Lanka
| | - Gathsaurie Neelika Malavige
- Centre for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250 Sri Lanka
| | - Gareth Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX UK
| |
Collapse
|
30
|
Complex formation equilibria between cholesterol and diosgenin analogues in monolayers determined by the Langmuir method. Biointerphases 2018; 13:061001. [PMID: 30408964 DOI: 10.1116/1.5054064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to investigate the interaction between diosgenin analogues [DioA: diosgenin acetate (DAc) and (25R)-5α,6β-dihydroxyspirostan-3β-ol acetate (DSol)] and cholesterol (Ch) monolayers at the air/water interface. The surface tension of pure and mixed lipid monolayers at 22 °C was measured by using the Langmuir method with a Teflon trough and a Nima 9002 tensiometer. The surface tension values were used to calculate the π-A isotherms and to determine the molecular surface areas. The interactions between Ch and each DioA resulted in significant deviations from the additivity rule. The theory described in this work was used to determine the stability constants, the areas occupied by one molecule of Ch-DAc or Ch-DSol, and the complex formation energy (Gibbs free energy) values.
Collapse
|
31
|
Induction of Taxol biosynthesis by Aspergillus terreus, endophyte of Podocarpus gracilior Pilger, upon intimate interaction with the plant endogenous microbes. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Manatunga DC, de Silva RM, de Silva KMN, Malavige GN, Wijeratne DT, Williams GR, Jayasinghe CD, Udagama PV. Effective delivery of hydrophobic drugs to breast and liver cancer cells using a hybrid inorganic nanocarrier: A detailed investigation using cytotoxicity assays, fluorescence imaging and flow cytometry. Eur J Pharm Biopharm 2018; 128:18-26. [PMID: 29625162 DOI: 10.1016/j.ejpb.2018.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023]
Abstract
This study was focused on developing a drug carrier system composed of a polymer containing hydroxyapatite (HAp) shell and a magnetic core of iron oxide nanoparticles. Doxorubicin and/or curcumin were loaded into the carrier via a simple diffusion deposition approach, with encapsulation efficiencies (EE) for curcumin and doxorubicin of 93.03 ± 0.3% and 97.37 ± 0.12% respectively. The co-loading of curcumin and doxorubicin led to a total EE of 76.02 ± 0.48%. Release studies were carried out at pH 7.4 and 5.3, and revealed a greater extent of release at pH 5.3, showing the formulations to have potential applications in tumor microenvironments. Cytotoxicity assays, fluorescence imaging and flow cytometry demonstrated that the formulations could effectively inhibit the growth of MCF-7 (breast) and HEpG2 (liver) cancer cells, being more potent than the free drug molecules both in terms of dose and duration of action. Additionally, hemolysis tests and cytotoxicity evaluations determined the drug-loaded carriers to be non-toxic towards non-cancerous cells. These formulations thus have great potential in the development of new cancer therapeutics.
Collapse
Affiliation(s)
| | - Rohini M de Silva
- Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka.
| | - K M Nalin de Silva
- Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka; Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology & Science Park, Mahenwatte, Pitipana, Homagama 10206, Sri Lanka
| | - Gathsaurie Neelika Malavige
- Center for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, 10250, Sri Lanka
| | - Dulharie T Wijeratne
- Center for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, 10250, Sri Lanka
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | | | - Preethi V Udagama
- Department of Zoology, University of Colombo, Colombo 00300, Sri Lanka
| |
Collapse
|
33
|
Kim JK, Park SU. An update on the biological and pharmacological activities of diosgenin. EXCLI JOURNAL 2018; 17:24-28. [PMID: 29383016 PMCID: PMC5780621 DOI: 10.17179/excli2017-894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/13/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|
34
|
Soto-Castro D, Lara Contreras RC, Pina-Canseco MDS, Santillán R, Hernández-Huerta MT, Negrón Silva GE, Pérez-Campos E, Rincón S. Solvent-free synthesis of 6β-phenylamino-cholestan-3β,5α-diol and (25R)-6β-phenylaminospirostan-3β,5α-diol as potential antiproliferative agents. Steroids 2017; 126:92-100. [PMID: 28827069 DOI: 10.1016/j.steroids.2017.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/30/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
In this paper is described a synthetic route to 6β-phenylamino-cholestan-3β,5α-diol and (25R)-6β-phenylaminospirostan-3β,5α-diol, starting from cholesterol and diosgenin, respectively. The products were obtained in two steps by epoxidation followed by aminolysis, through an environmentally friendly and solvent-free method mediated by SZ (sulfated zirconia) as catalyst. The use of SZ allows chemo- and regioselective ring opening of the 5,6α-epoxide during the aminolysis reaction eliminating the required separation of the epoxide mixture. The products obtained were spectroscopically characterized by 1H, PENDANT 13C NMR and HETCOR experiments, and complemented with FTIR-ATR and HRMS. The antiproliferative effect of the β-aminoalcohols was evaluated on MCF-7 cells after 48h of incubation, by MTT and CVS assays. These methodologies showed that both compounds have antiproliferative activity, being more active the cholesterol analogue. Additionally, the cell images obtained by Harris' Hematoxylin and Eosin (H&E) staining protocol, evidenced formation of apoptotic bodies due to the presence of the obtained β-aminoalcohols in a dose-dependent manner.
Collapse
Affiliation(s)
- Delia Soto-Castro
- CONACyT-Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Hornos 1003, Santa Cruz Xoxocotlán, Oaxaca C.P. 771230, Mexico
| | - Roberto Carlos Lara Contreras
- Departamento de Ingeniería Química-Bioquímica, Instituto Tecnológico de Mérida, Av. Tecnológico S/N, 97118 Mérida, Yucatán, Mexico
| | - Maria Del Socorro Pina-Canseco
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Ex Hacienda de Aguilera S/N, Carretera a San Felipe del Agua, C.P. 68020 Oaxaca, Mexico
| | - Rosa Santillán
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F, Apdo. Postal 14-740, 07000, Mexico
| | - María Teresa Hernández-Huerta
- Unidad de Bioquímica e Inmunología, División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Oaxaca, Av. Ing. Víctor Bravo Ahuja #125 esq, Clz. Tecnológico, C.P. 68030 Oaxaca, Mexico
| | - Guillermo E Negrón Silva
- Departamento de Ciencias Básicas y Departamento de Química, UAM, Av. San Pablo No 180, C.P. 02200 México D.F., Mexico
| | - Eduardo Pérez-Campos
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Ex Hacienda de Aguilera S/N, Carretera a San Felipe del Agua, C.P. 68020 Oaxaca, Mexico; Unidad de Bioquímica e Inmunología, División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Oaxaca, Av. Ing. Víctor Bravo Ahuja #125 esq, Clz. Tecnológico, C.P. 68030 Oaxaca, Mexico
| | - Susana Rincón
- Departamento de Ingeniería Química-Bioquímica, Instituto Tecnológico de Mérida, Av. Tecnológico S/N, 97118 Mérida, Yucatán, Mexico.
| |
Collapse
|
35
|
Quiñones JP, Brüggemann O, Covas CP, Ossipov DA. Self-assembled hyaluronic acid nanoparticles for controlled release of agrochemicals and diosgenin. Carbohydr Polym 2017; 173:157-169. [DOI: 10.1016/j.carbpol.2017.05.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|
36
|
|
37
|
Liu J, Zhang Y, Chen L, Yu F, Li X, Zhao J, Zhou S. Polyphyllin I induces G2/M phase arrest and apoptosis in U251 human glioma cells via mitochondrial dysfunction and the JNK signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2017; 49:479-486. [PMID: 28449039 DOI: 10.1093/abbs/gmx033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/24/2017] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma is the most aggressive brain tumor, and its prognosis remains poor. Therefore, novel therapeutic strategies are needed for glioma therapy. Polyphyllin I (PPI), a bioactive constituent extracted from Paris polyphylla, was reported to have anti-tumor activity. However, the detailed mechanism for this activity remains unclear. Here, we investigated the inhibitory effects of PPI on glioma cells and its mechanisms in vitro. U251 cells were treated with various concentrations of PPI (2-9 μM) for 24 to 72 h. The inhibition of U251 cell proliferation by PPI was assessed by MTT assay. The effects on cell cycle and apoptosis were examined by flow cytometry with PI and annexin V-FITC/PI dual staining, and the cell mitochondrial membrane potential level was evaluated by fluorescence microscopy with JC-1 staining. The expression levels of apoptosis-related proteins and JNK signal pathway proteins were evaluated by western blot analysis. Results showed that PPI significantly inhibited the proliferation of U251 cells in a concentration-dependent manner. PPI induced G2/M phase arrest and apoptosis, and it upregulated the expressions of Bax, cytochrome c, and p-JNK, but downregulated the expression of the anti-apoptotic protein Bcl-2 in U251 cells. Moreover, PPI provoked the depolarization of the mitochondrial membrane potential. In addition, apoptosis induced by the PPI was remarkably suppressed by the JNK inhibitor SP600125. Our data provide evidence that PPI inhibits proliferation and induces apoptotic cell death in U251 cells. This effect may be associated with the JNK pathway. These results suggest that PPI is an activator of the JNK signaling pathway with a potential anti-glioma effect.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Yueting Zhang
- VIP Ward, the Second Affiliated Hospital of Kunming Medical College, Kunming650032, China
| | - Li Chen
- Department of Neurosurgery, The First Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Fei Yu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Xiaojin Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Jianhua Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Shuai Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| |
Collapse
|
38
|
Jesus M, Martins APJ, Gallardo E, Silvestre S. Diosgenin: Recent Highlights on Pharmacology and Analytical Methodology. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2016; 2016:4156293. [PMID: 28116217 PMCID: PMC5225340 DOI: 10.1155/2016/4156293] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 05/24/2023]
Abstract
Diosgenin, a steroidal sapogenin, occurs abundantly in plants such as Dioscorea alata, Smilax China, and Trigonella foenum graecum. This bioactive phytochemical not only is used as an important starting material for the preparation of several steroidal drugs in the pharmaceutical industry, but has revealed also high potential and interest in the treatment of various types of disorders such as cancer, hypercholesterolemia, inflammation, and several types of infections. Due to its pharmacological and industrial importance, several extraction and analytical procedures have been developed and applied over the years to isolate, detect, and quantify diosgenin, not only in its natural sources and pharmaceutical compositions, but also in animal matrices for pharmacodynamic, pharmacokinetic, and toxicological studies. Within these, HPLC technique coupled to different detectors is the most commonly analytical procedure described for this compound. However, other alternative methods were also published. Thus, the present review aims to provide collective information on the most recent pharmacological data on diosgenin and on the most relevant analytical techniques used to isolate, detect, and quantify this compound as well.
Collapse
Affiliation(s)
- Mafalda Jesus
- CICS-UBI, Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana P. J. Martins
- CICS-UBI, Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Eugenia Gallardo
- CICS-UBI, Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
| | - Samuel Silvestre
- CICS-UBI, Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
39
|
Farooqi AA, Gadaleta CD, Ranieri G, Fayyaz S, Marech I. New Frontiers in Promoting TRAIL-Mediated Cell Death: Focus on Natural Sensitizers, miRNAs, and Nanotechnological Advancements. Cell Biochem Biophys 2016; 74:3-10. [PMID: 26972296 DOI: 10.1007/s12013-015-0712-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is a multifaceted and genomically complex disease, and rapidly emerging scientific evidence is emphasizing on intra-tumor heterogeneity within subpopulations of tumor cells and rapidly developing resistance against different molecular therapeutics. There is an overwhelmingly increasing list of agents currently being tested for efficacy against cancer. In accordance with the concept that therapeutic agents must have fewer off target effects and considerable efficacy, TRAIL has emerged as one among the most deeply investigated proteins reportedly involved in differential killing of tumor cells. Considerable killing activity of TRAIL against different cancers advocated its entry into clinical trials. However, data obtained through preclinical and cell culture studies are deepening our understanding of wide-ranging mechanisms which induce resistance against TRAIL-based therapeutics. These include downregulation of death receptors, overexpression of oncogenes, inactivation of tumor suppressor genes, imbalance of pro- and anti-apoptotic proteins, and inactivation of intrinsic and extrinsic pathways. Substantial fraction of information has been added into existing pool of knowledge related to TRAIL biology and recently accumulating evidence is adding new layers to regulation of TRAIL-induced apoptosis. Certain hints have emerged underscoring miR135a-3p- and miR-143-mediated regulation of TRAIL-induced apoptosis, and natural agents have shown remarkable efficacy in improving TRAIL-based therapeutics by increasing expression of tumor suppressor miRNAs. In this review, we summarize most recent breakthroughs related to naturopathy and strategies to nanotechnologically deliver TRAIL to the target site in xenografted mice. We also set spotlight on positive and negative regulators of TRAIL-mediated signaling. Comprehensive knowledge of genetics and proteomics of TRAIL-based signaling network obtained from cancer patients of different populations will be helpful in getting a step closer to personalized medicine.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Cosmo Damiano Gadaleta
- Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Girolamo Ranieri
- Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Sundas Fayyaz
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Ilaria Marech
- Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
40
|
Sethi A, Singh RP, Shukla D, Singh P. Synthesis of novel pregnane-diosgenin prodrugs via Ring A and Ring A connection: A combined experimental and theoretical studies. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Janicka K, Jastrzebska I, Petelska AD. The Equilibria of Diosgenin-Phosphatidylcholine and Diosgenin-Cholesterol in Monolayers at the Air/Water Interface. J Membr Biol 2016; 249:585-90. [PMID: 27350149 PMCID: PMC4942497 DOI: 10.1007/s00232-016-9914-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/15/2016] [Indexed: 11/29/2022]
Abstract
Diosgenin (Dio) has shown many treatment properties, but the most important property is cytotoxic activity in cancer cells. In this study, we investigated monolayers of Dio, cholesterol (Ch), and phosphatidylcholine (PC) at the air/water interface. The measurements were carried with a Langmuir Teflon trough and a Nima 9000 tensiometer program. The surface tension values of pure and mixed monolayers were used to calculate π-A isotherms and determine molecular surface areas. We were able to demonstrate the formation of complexes between Dio and PC and Dio and Ch molecules also. We considered the equilibrium between individual components and the formed complexes. In addition, we established that diosgenin and the lipids formed highly stable 1:1 complexes.
Collapse
Affiliation(s)
- Katarzyna Janicka
- Institute of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Izabella Jastrzebska
- Institute of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Aneta Dorota Petelska
- Institute of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
42
|
Zhang C, Jia X, Bao J, Chen S, Wang K, Zhang Y, Li P, Wan JB, Su H, Wang Y, Mei Z, He C. Polyphyllin VII induces apoptosis in HepG2 cells through ROS-mediated mitochondrial dysfunction and MAPK pathways. Altern Ther Health Med 2016; 16:58. [PMID: 26861252 PMCID: PMC4746894 DOI: 10.1186/s12906-016-1036-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/02/2016] [Indexed: 01/15/2023]
Abstract
Background Paris polyphylla is an oriental folk medicine that has anticancer activities both in vivo and in vitro. Polyphyllin VII (PP7), a pennogenyl saponin from P. polyphylla has been found to exert strong anticancer activity. However, the underlying mechanisms are poorly understood. In the present study, the anticancer effect of polyphyllin VII against human liver cancer cells and the molecular mechanisms were investigated. Methods Cellular viability was measured by MTT assay. Apoptosis, intracellular reactive oxygen species (ROS) and mitochondrial membrane potential levels were evaluated using the InCell 2000 confocal microscope. The expression levels of apoptotic-related proteins were evaluated by Western blotting. Results PP7 strongly inhibited the cell growth and induced apoptosis and necrosis in hepatocellular carcinoma HepG2 cells. Meanwhile, PP7 up-regulated the levels of Bax/Bcl-2, cytochrome c, the cleaved forms of caspases-3, -8, -9, and poly (ADP-ribose) polymerase in a dose- and time-dependent manner, indicating that PP7 induced apoptosis in HepG2 cells through both intrinsic and extrinsic pathways. Moreover, PP7 provoked the production of intracellular ROS and the depolarization of mitochondrial membrane potential. Further analysis showed that PP7 significantly augmented the phosphorylation of JNK, ERK and p38, the major components of mitogen-activated protein kinase (MAPK) pathways, and the expressions of tumor suppressor proteins p53 and PTEN. In addition, PP7-induced apoptosis was remarkably attenuated by MAPK inhibitors and ROS inhibitor. Conclusions These results demonstrated that PP7 induced apoptotic cell death in HepG2 cells through both intrinsic and extrinsic pathways by promoting the generation of mitochondrial-mediated ROS and activating MAPK and PTEN/p53 pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1036-x) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
El-Far AH, Badria FA, Shaheen HM. Possible Anticancer Mechanisms of Some Costus speciosus Active Ingredients Concerning Drug Discovery. Curr Drug Discov Technol 2016; 13:123-143. [PMID: 27515456 PMCID: PMC5086671 DOI: 10.2174/1570163813666160802154403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/18/2016] [Accepted: 07/26/2016] [Indexed: 04/23/2023]
Abstract
Costus speciosus is native to South East Asia, especially found in India, Srilanka, Indonesia and Malaysia. C. speciosus have numerous therapeutic potentials against a wide variety of complains. The therapeutic properties of C. speciosus are attributed to the presence of various ingredients such as alkaloids, flavonoids, glycosides, phenols, saponins, sterols and sesquiterpenes. This review presented the past, present, and the future status of C. speciosus active ingredients to propose a future use as a potential anticancer agent. All possible up-regulation of cellular apoptotic molecules as p53, p21, p27, caspases, reactive oxygen species (ROS) generation and others attribute to the anticancer activity of C. speciosus along the down-regulation of anti-apoptotic agents such as Akt, Bcl2, NFKB, STAT3, JAK, MMPs, actin, surviving and vimentin. Eventually, we recommend further investigation of different C. speciosus extracts, using some active ingredients and evaluate the anticancer effect of these chemicals against different cancers.
Collapse
Affiliation(s)
- Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, Egypt
| | - Faried A. Badria
- Departments of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Egypt
| | - Hazem M. Shaheen
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, Egypt
| |
Collapse
|
44
|
Singh G, Passsari AK, Leo VV, Mishra VK, Subbarayan S, Singh BP, Kumar B, Kumar S, Gupta VK, Lalhlenmawia H, Nachimuthu SK. Evaluation of Phenolic Content Variability along with Antioxidant, Antimicrobial, and Cytotoxic Potential of Selected Traditional Medicinal Plants from India. FRONTIERS IN PLANT SCIENCE 2016; 7:407. [PMID: 27066046 PMCID: PMC4815358 DOI: 10.3389/fpls.2016.00407] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/16/2016] [Indexed: 05/21/2023]
Abstract
Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics), antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma) cancer cell lines, and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 μg of Gallic Acid equivalent per milligram DW (GAE/mg DW) and 3.17 to 102.2 μg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 μg/mL), ABTS (IC50 values ranges from 24.08 to 513.4 μg/mL), and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus), gram negative (Escherichia coli, Pseudomonas aeruginosa), and yeast (Candida albicans) demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2) cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica, and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09, and 29.66 μg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health.
Collapse
Affiliation(s)
- Garima Singh
- Department of Biotechnology, Mizoram UniversityAizawl, India
| | | | - Vincent V. Leo
- Department of Biotechnology, Mizoram UniversityAizawl, India
| | | | | | - Bhim P. Singh
- Department of Biotechnology, Mizoram UniversityAizawl, India
- *Correspondence: Bhim P. Singh
| | - Brijesh Kumar
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research InstituteLucknow, India
| | - Sunil Kumar
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research InstituteLucknow, India
| | - Vijai K. Gupta
- Molecular Glyco-Biotechnology Group, Discipline of Biochemistry, National University of Ireland GalwayGalway, Ireland
- Vijai K. Gupta
| | - Hauzel Lalhlenmawia
- Department of Pharmacy, Regional Institute of Paramedical and Nursing Sciences ZemabawkAizawl, India
| | | |
Collapse
|