1
|
Kwon TG, Kim YJ, Hong JY, Song JH, Park JY. A review of antidepressant and anxiolytic effects of Soyo-san (Xiaoyao-san) and modified Soyo-san in animal models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155387. [PMID: 39515106 DOI: 10.1016/j.phymed.2024.155387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Soyo-san (Xiaoyao-san; SYS), a traditional herbal medicine formula, has been used for treating mood disorders, especially depression and anxiety. Modified SYS (mSYS) is formulated by adding or removing herbs to SYS, and is mainly used in cases of mood disorders with comorbid diseases such as diabetes, digestive disorders, and anorexia. However, there has been no detailed comparative analysis of the differences in efficacy and underlying neurological mechanisms between SYS and mSYS. PURPOSE This review aimed to investigate the present scientific evidence regarding the effects of SYS and mSYS on depression and anxiety in animal models based on behavioral improvements and changes in biomarker levels. METHODS The PubMed, Embase, Scopus, and Medline databases were searched for all depression- and anxiety-model animal studies that used SYS and mSYS. The types of animals, methods for inducing depression or anxiety, publication trends, target diseases, types and proportions of herbs, and significant behavioral and biomolecular changes induced by SYS and mSYS treatment were analyzed. RESULTS A total of 1,120 studies were identified, of which 57 studies were finally included in this review. Behavioral or environmental stress was mainly used to induce depression or anxiety in rodent models. SYS treatment improved body weight, food intake, and depression- and anxiety-like behaviors. The proportions of the herbs in the original SYS formulation were mostly fixed, whereas the types and proportions of herbs used in mSYS formulations were quite diverse. mSYS had a wider range of target diseases than SYS, and it has been used not only for depression and anxiety, but also cancer and stroke. Changes in biomarker levels in the hippocampus of the brain have been studied most extensively for both SYS and mSYS. Both SYS and mSYS are reported to regulate 5-hydroxytryptamine, brain-derived neurotrophic factor, and hypothalamic-pituitary-adrenal axis-related biomolecules in the brain, as well as changes in micro-organisms and metabolite levels in the serum and intestinal environment. CONCLUSIONS SYS and mSYS improved depression- and anxiety-like behaviors by regulating neurotransmission, neuronal survival, and inflammation. Further research is needed to elucidate the clinical value of mSYS through various uses-related in-depth mechanistic studies.
Collapse
Affiliation(s)
- Tae-Gyeong Kwon
- College of Korean Medicine, Daejeon University, Daejeon, 34520, Republic of Korea; Dosol Korean Medicine Hospital, Pyeongtaek, 17854, Republic of Korea
| | - Yu-Jin Kim
- College of Korean Medicine, Daejeon University, Daejeon, 34520, Republic of Korea; Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea
| | - Ja-Young Hong
- College of Korean Medicine, Daejeon University, Daejeon, 34520, Republic of Korea; School of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Ji-Hye Song
- College of Korean Medicine, Daejeon University, Daejeon, 34520, Republic of Korea; Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon, 34520, Republic of Korea
| | - Ji-Yeun Park
- College of Korean Medicine, Daejeon University, Daejeon, 34520, Republic of Korea; Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon, 34520, Republic of Korea.
| |
Collapse
|
2
|
Zhang S, Hu Y, Zhao Y, Feng Y, Wang X, Miao M, Miao J. Molecular mechanism of Chang Shen Hua volatile oil modulating brain cAMP-PKA-CREB pathway to improve depression-like behavior in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155729. [PMID: 38772184 DOI: 10.1016/j.phymed.2024.155729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Depression is a common and complex mental illness that manifests as persistent episodes of sadness, loss of interest, and decreased energy, which might lead to self-harm and suicide in severe cases. Reportedly, depression affects 3.8 % of the world's population and has been listed as one of the major global public health concerns. In recent years, aromatherapy has been widely used as an alternative and complementary therapy in the prevention and treatment of depression; people can relieve anxiety and depression by sniffing plant aromatic essential oils. Acorus tatarinowii and Panax ginseng essential oils in Chang Shen Hua volatile oil (CSHVO) are derived from Acorus tatarinowii and Panax ginseng, respectively, the main medicines in the famous Chinese medicine prescription Kai Xin San (KXS), Then, these oils are combined with the essential oil of Albizia julibrissin flower to form a new Chinese medicine inhalation preparation, CSHVO. KXS has been widely used in the treatment of depression; however, whether CSHVO can ameliorate depression-like behavior, its pharmacological effects, and the underlying mechanisms of action are yet to be elucidated. STUDY DESIGN AND METHODS A rat model of chronic and unpredictable mild stimulation (CUMS) combined with orphan rearing was treated with CSHVO for 4 weeks. Using behavioral tests (sucrose preference, force swimming, tail suspension, and open field), the depression-like degree was evaluated. Concurrently, brain homogenate and serum biochemistry were analyzed to assess the changes in the neurotransmitters and inflammatory and neurotrophic factors. Furthermore, tissue samples were collected for histological and protein analyses. In addition, network pharmacology and molecular docking analyses of the major active compounds, potential therapeutic targets, and intervention pathways predicted a role of CSHVO in depression relief. Subsequently, these predictions were confirmed by in vitro experiments using a corticosterone (CORT)-induced PC12 cell damage model. RESULTS CSHVO inhalation can effectively improve the weight and depression-like behavior of depressed rats and regulate the expression of inflammatory factors and neurotransmitters. Hematoxylin-eosin, Nissl, and immunofluorescence staining indicated that compared to the model group, the pathological damage to the brain tissues of rats in the CSHVO groups was improved. The network pharmacological analysis revealed that 144 CSHVO active compounds mediate 71 targets relevant to depression treatment, most of which are rich in the cAMP signaling and inflammatory cytokine pathways. Protein-protein interaction analysis showed that TNF, IL6, and AKT are the core anti-depressive targets of CSHVO. Molecular docking analysis showed an adequate binding between the active ingredients and the key targets. In vitro experiments showed that compared to the model group, the survival rate of PC12 cells induced by CSHVO intervention was increased, the apoptosis rate was decreased, and the expression of inflammatory cytokines in the cell supernatant was improved. Western blot analysis and immunofluorescence staining confirmed that CSHVO regulates PC12 cells in the CORT model through the cAMP-PKA-CREB signaling pathway, and pretreatment with PKA blocker H89 eliminates the protective effect of CSHVO on CORT-induced PC12 cells. CONCLUSIONS CSHVO improves CORT-induced injury in the PC12 cell model and CUMS combined with orphan rearing-induced depression model in rats. The antidepressant mechanism of CSHVO is associated with the modulation of the cAMP-PKA-CREB signaling pathway.
Collapse
Affiliation(s)
- Shuangli Zhang
- Academy of Chinese Medicine Science, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yilong Hu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yinan Zhao
- Academy of Chinese Medicine Science, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yifan Feng
- Academy of Chinese Medicine Science, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiaoxue Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Mingsan Miao
- Academy of Chinese Medicine Science, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Jinxin Miao
- Academy of Chinese Medicine Science, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Désiré GNS, Simplice FH, Guillaume CW, Kamal FZ, Parfait B, Hermann TDS, Hervé NAH, Eglantine KW, Linda DKJ, Roland RN, Balbine KN, Blondelle KDL, Ciobica A, Romila L. Cashew ( Anacardium occidentale) Extract: Possible Effects on Hypothalamic-Pituitary-Adrenal (HPA) Axis in Modulating Chronic Stress. Brain Sci 2023; 13:1561. [PMID: 38002521 PMCID: PMC10670073 DOI: 10.3390/brainsci13111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Depression presents a significant global health burden, necessitating the search for effective and safe treatments. This investigation aims to assess the antidepressant effect of the hydroethanolic extract of Anacardium occidentale (AO) on depression-related behaviors in rats. The depression model involved 42 days of unpredictable chronic mild stress (UCMS) exposure and was assessed using the sucrose preference and the forced swimming (FST) test. Additionally, memory-related aspects were examined using the tests Y-maze and Morris water maze (MWM), following 21 days of treatment with varying doses of the AO extract (150, 300, and 450 mg/kg) and Imipramine (20 mg/kg), commencing on day 21. The monoamines (norepinephrine, serotonin, and dopamine), oxidative stress markers (MDA and SOD), and cytokines levels (IL-1β, IL-6, and TNF-α) within the brain were evaluated. Additionally, the concentration of blood corticosterone was measured. Treatment with AO significantly alleviated UCMS-induced and depressive-like behaviors in rats. This was evidenced by the ability of the extract to prevent further decreases in body mass, increase sucrose consumption, reduce immobility time in the test Forced Swimming, improve cognitive performance in both tests Y-maze and the Morris water maze by increasing the target quadrant dwelling time and spontaneous alternation percentage, and promote faster feeding behavior in the novelty-suppressed feeding test. It also decreased pro-inflammatory cytokines, corticosterone, and MDA levels, and increased monoamine levels and SOD activity. HPLC-MS analysis revealed the presence of triterpenoid compounds (ursolic acid, oleanolic acid, and lupane) and polyphenols (catechin quercetin and kaempferol). These results evidenced the antidepressant effects of the AO, which might involve corticosterone and monoaminergic regulation as antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Guedang Nyayi Simon Désiré
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Foyet Harquin Simplice
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Camdi Woumitna Guillaume
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Fatima Zahra Kamal
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, B.P. 539, Settat P.O. Box 26000, Morocco
- Preclinical Department, Apollonia University, Păcurari Street 11, 700511 Iași, Romania
| | - Bouvourné Parfait
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Tchinda Defo Serge Hermann
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Ngatanko Abaissou Hervé Hervé
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Keugong Wado Eglantine
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Damo Kamda Jorelle Linda
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Rebe Nhouma Roland
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Kamleu Nkwingwa Balbine
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Kenko Djoumessi Lea Blondelle
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon (F.H.S.); (C.W.G.); (B.P.); (T.D.S.H.); (K.W.E.); (K.D.L.B.)
| | - Alin Ciobica
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 11 Carol I Blvd., 700505 Iasi, Romania
| | - Laura Romila
- Preclinical Department, Apollonia University, Păcurari Street 11, 700511 Iași, Romania
| |
Collapse
|
4
|
Nkwingwa BK, Wado EK, Foyet HS, Bouvourne P, Jugha VT, Mambou AHMY, Bila RB, Taiwe GS. Ameliorative effects of Albizia adianthifolia aqueous extract against pentylenetetrazole-induced epilepsy and associated memory loss in mice: Role of GABAergic, antioxidant defense and anti-inflammatory systems. Biomed Pharmacother 2023; 165:115093. [PMID: 37392651 DOI: 10.1016/j.biopha.2023.115093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Albizia adianthifolia (Schumach.) (Fabaceae) is a medicinal herb used for the treatment of epilepsy and memory impairment. This study aims to investigate the anticonvulsant effects of Albizia adianthifolia aqueous extract against pentylenetetrazole (PTZ)-induced spontaneous convulsions in mice; and determine whether the extract could mitigate memory impairment, oxidative/nitrergic stress, GABA depletion and neuroinflammation. Ultra-high performance liquid chromatography/mass spectrometry analysis was done to identify active compounds from the extract. Mice were injected with PTZ once every 48 h until kindling was developed. Animals received distilled water for the normal group and negative control groups, doses of extract (40, 80, or 160 mg/kg) for the test groups and sodium valproate (300 mg/kg) for the positive control group. Memory was measured using Y maze, novel object recognition (NOR) and open field paradigms, while the oxidative/nitrosative stresses (MDA, GSH, CAT, SOD and NO), GABAergic transmission (GABA, GABA-T and GAD) and neuro-inflammation (TNF-α, IFN-γ, IL- 1β, and IL-6) were determined. Brain photomicrograph was also studied. Apigenin, murrayanine and safranal were identified in the extract. The extract (80-160 mg/kg) significantly protected mice against seizures and mortality induced by PTZ. The extract significantly increased the spontaneous alternation and the discrimination index in the Y maze and NOR tests, respectively. PTZ kindling induced oxidative/nitrosative stress, GABA depletion, neuroinflammation and neuronal cells death was strongly reversed by the extract. The results suggest that the anticonvulsant activity of Albizia adianthifolia extract is accompanied by its anti-amnesic property, and may be supported by the amelioration of oxidative stress, GABAergic transmission and neuroinflammation.
Collapse
Affiliation(s)
- Balbine Kamleu Nkwingwa
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Eglantine Keugong Wado
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Harquin Simplice Foyet
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Parfait Bouvourne
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Vanessa Tita Jugha
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Alain Hart Mann Youbi Mambou
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Raymond Bess Bila
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Germain Sotoing Taiwe
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| |
Collapse
|
5
|
Bonokwane MB, Lekhooa M, Struwig M, Aremu AO. Antidepressant Effects of South African Plants: An Appraisal of Ethnobotanical Surveys, Ethnopharmacological and Phytochemical Studies. Front Pharmacol 2022; 13:895286. [PMID: 35846999 PMCID: PMC9277359 DOI: 10.3389/fphar.2022.895286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022] Open
Abstract
Globally, the search for safe and potent natural-based treatment for depression is receiving renewed interest given the numerous side-effects associated with many existing drugs. In South Africa, the use of plants to manage depression and related symptoms is fairly documented among different ethnic groups. In the current study, we reviewed existing ethnobotanical, ethnopharmacological and phytochemical studies on South African medicinal plants used to manage depression. Electronic databases were accessed for scientific literature that meets the inclusion criteria. Plants with ethnobotanical evidence were subjected to a further pharmacological review to establish the extent (if any) of their effectiveness as antidepressants. Critical assessment resulted in 20 eligible ethnobotanical records, which generated an inventory of 186 plants from 63 plant families. Due to the cultural differences observed in the definition of depression, or lack of definition in some cultures, most plants are reported to treat a wide range of atypical symptoms related to depression. Boophone disticha, Leonotis leonurus and Mentha longifolia were identified as the three most popular plants, with over eight mentions each from the ethnobotanical records. The dominant families were Asteraceae (24), Fabaceae (16), Amaryllidaceae (10), and Apocynaceae (10) which accounted for about 32% of the 186 plants. Only 27 (≈14.5%) of the plants have been screened for antidepressant activity using in vitro and in vivo models. Agapanthus campanulatus, Boophone disticha, Hypericum perforatum, Mondia whitei and Xysmalobium undulatum, represent the most studied plants. Phytochemical investigation on nine out of the 27 plants revealed 24 compounds with antidepressant-like effects. Some of these included buphanidrine and buphanamine which were isolated from the leaves of Boophone disticha, Δ9-tetrahydrocannabinol, cannabidiol and cannabichromene obtained from the buds of Cannabis sativa and carnosic acid, rosmarinic acid and salvigenin from Rosmarinus officinalis, A significant portion (≈85%) of 186 plants with ethnobotanical records still require pharmacological studies to assess their potential antidepressant-like effects. This review remains a valuable reference material that may guide future ethnobotanical surveys to ensure their robustness and validity as well as database to identify promising plants to screen for pharmacology efficacy.
Collapse
Affiliation(s)
- Melia Bokaeng Bonokwane
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Makhotso Lekhooa
- Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- *Correspondence: Makhotso Lekhooa, ; Adeyemi Oladapo Aremu,
| | - Madeleen Struwig
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- *Correspondence: Makhotso Lekhooa, ; Adeyemi Oladapo Aremu,
| |
Collapse
|
6
|
Mou YK, Guan LN, Yao XY, Wang JH, Song XY, Ji YQ, Ren C, Wei SZ. Application of Neurotoxin-Induced Animal Models in the Study of Parkinson's Disease-Related Depression: Profile and Proposal. Front Aging Neurosci 2022; 14:890512. [PMID: 35645772 PMCID: PMC9136050 DOI: 10.3389/fnagi.2022.890512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/27/2022] [Indexed: 01/17/2023] Open
Abstract
Depression can be a non-motor symptom, a risk factor, and even a co-morbidity of Parkinson's disease (PD). In either case, depression seriously affects the quality of life of PD patients. Unfortunately, at present, a large number of clinical and basic studies focused on the pathophysiological mechanism of PD and the prevention and treatment of motor symptoms. Although there has been increasing attention to PD-related depression, it is difficult to achieve early detection and early intervention, because the clinical guidelines mostly refer to depression developed after or accompanied by motor impairments. Why is there such a dilemma? This is because there has been no suitable preclinical animal model for studying the relationship between depression and PD, and the assessment of depressive behavior in PD preclinical models is as well a very challenging task since it is not free from the confounding from the motor impairment. As a common method to simulate PD symptoms, neurotoxin-induced PD models have been widely used. Studies have found that neurotoxin-induced PD model animals could exhibit depression-like behaviors, which sometimes manifested earlier than motor impairments. Therefore, there have been attempts to establish the PD-related depression model by neurotoxin induction. However, due to a lack of unified protocol, the reported results were diverse. For the purpose of further promoting the improvement and optimization of the animal models and the study of PD-related depression, we reviewed the establishment and evaluation strategies of the current animal models of PD-related depression based on both the existing literature and our own research experience, and discussed the possible mechanism and interventions, in order to provide a reference for future research in this area.
Collapse
Affiliation(s)
- Ya-Kui Mou
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Li-Na Guan
- Department of Neurosurgical Intensive Care Unit, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiao-Yan Yao
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Jia-Hui Wang
- Department of Central Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiao-Yu Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yong-Qiang Ji
- Department of Nephrology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Chao Ren
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Shi-Zhuang Wei
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
7
|
Antioxidant and Anticholinesterase Properties of the Aqueous Extract of Balanites aegyptiaca L. Delile Fruit Pulp on Monosodium Glutamate-Induced Excitotoxicity in Swiss Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7576132. [PMID: 35449814 PMCID: PMC9017515 DOI: 10.1155/2022/7576132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/26/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022]
Abstract
Balanites aegyptiaca L. Delile (B. aegyptiaca) is used in traditional medicine for the treatment of memory impairment. This work aims to evaluate the antioxidant and anticholinesterase potential of BA fruit pulp extract on excitotoxicity induced by monosodium glutamate (MSG). MSG was administered 30 minutes after treatment with B. aegyptiaca aqueous fruit pulp extract (50, 125, 250, and 500 mg/kg) and vitamin C (100 mg/kg) for 30 days. The negative control group received only MSG, while the control group was given distilled water daily. Behavioral tests parameters (using the novel object recognition, Y-maze, and Barnes maze tests), oxidative stress biomarkers (malondialdehyde, superoxide dismutase, and catalase), nitric oxide, and acetylcholinesterase activity and hippocampal architecture were evaluated. Results obtained revealed that different doses of B. aegyptiaca significantly reversed the deleterious effect of MSG on memory. This was displayed by a significant (
) increment in the percentage of spontaneous alternation in the Y-maze test and a significant (
) increase in discrimination index in novel object recognition observed with 500 mg/kg extract dose. Moreover, the extract (250 and 500 mg/kg doses) significantly (
) increased direct search strategy and significantly decreased (
) the time taken to find the target hole in the Barnes maze. A modulation of hyperactivity was observed after administration of all extract doses compared to the negative control group in the open arena. Furthermore, the highest dose of the extract caused a significant (
) improvement in antioxidant enzymes activity, associated with a significant (
) decrement in nitric oxide and malondialdehyde concentrations and a significant (
) decrease in acetylcholinesterase activity. Treatment with the extract also restored normal hippocampal cell architecture. B. aegyptiaca fruit pulp extract could thus confer neuroprotection through its antioxidant and anticholinesterase potential.
Collapse
|
8
|
An P, Zhao XC, Liu MJ, You YQ, Li JY. Gender-based differences in neuroprotective effects of hydrogen gas against intracerebral hemorrhage-induced depression. Neurochem Int 2022; 153:105276. [PMID: 34995727 DOI: 10.1016/j.neuint.2022.105276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Post-stroke depression (PSD) severely affects recovery in patients with intracerebral hemorrhage (ICH). Although hydrogen gas (H2) exerts excellent neuroprotective effects in patients with ICH, there are sex-based differences in H2 efficacy in several diseases. Herein, we determined whether estrogen increases susceptibility to the neuroprotective effects of H2 in males with ICH-induced depression. METHODS A rodent model of ICH in the basal ganglia was established using autologous blood injection (30 μL). Mice were treated with 2.9% H2 for 2 h daily for 3 days post-ICH. Estrogen (1 mg/kg) was administered by subcutaneous injection daily for 3 days to male mice post-ICH. Thirty days post-ICH, PSD was evaluated by sucrose preference, forced swimming, and 3-chamber social tests. Following the completion of behavioral tests, levels of superoxide dismutase (SOD) and reactive oxygen species (ROS), astrocytic activation, phosphorylated (p)-NF-κB-positive astrocytes, p-NF-κB, p-IKKβ, IL-1β, and IL-6 expression were determined. RESULTS Compared with female mice, H2 administration post-ICH exhibited fewer neuroprotective effects, including decreased sucrose consumption and time spent sniffing a novel mouse, increased immobility time, downregulated total SOD content, upregulated ROS content and p-NF-κB levels, and elevated astrocyte branches, whereas estrogen enhanced the neuroprotective effects of H2 in male mice. A reduced number of p-NF-κB-positive astrocytes, downregulated expression of p-NF-κB, p-IKKβ, IL-1β, and IL-6 in the amygdala were demonstrated in ICH-males treated with estrogen plus H2. CONCLUSIONS Estrogen was responsible for increased H2 sensitivity in male mice with ICH. The underlying mechanism may be associated with the suppression of NF-κB signaling in astrocytes.
Collapse
Affiliation(s)
- Ping An
- Department of Neurobiology, School of Life Science, China Medical University, Shenyang, People's Republic of China.
| | - Xiao-Chun Zhao
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, People's Republic of China.
| | - Man-Jia Liu
- Department of Anesthesiology, ShengJing Hospital of China Medical University, Shenyang, People's Republic of China.
| | - Yu-Qing You
- Department of Anesthesiology, ShengJing Hospital of China Medical University, Shenyang, People's Republic of China.
| | - Jing-Ya Li
- Department of Anesthesiology, ShengJing Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
9
|
He Y, Wang Q, Ye Y, Liu Z, Sun H. The ethnopharmacology, phytochemistry, pharmacology and toxicology of genus Albizia: A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112677. [PMID: 32278761 DOI: 10.1016/j.jep.2020.112677] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Albizia (Leguminosae) comprises about 150 species and some species have been used for the treatment of rheumatism, stomachache, cough, diarrhea, and wounds in traditional and local medicine. The aim of the review: This review article documents and critically assesses the current status of the traditional uses, phytochemistry, pharmacology, and toxicology of the Albizia species. MATERIALS AND METHODS All provided literatures on the Albizia species were searched using the electronic databases (e.g. Web of Science, Elsevier, Springer, PubMed, ACS, CNKI, Google Scholar, and Baidu Scholar), books, and theses with keywords of 'Albizia' and 'Albizzia'. RESULTS Albizia species have been used for melancholia, insomnia, wounds, fever, abscesses, diabetes, headache, stomachache, diarrhea, cough, rheumatism, snake bite, malaria, and parasitic infection in traditional and local medicine. These plants mainly contain triterpenoid saponins, flavonoids, lignanoids, alkaloids, phenolic glycosides, etc. Albizia species have been demonstrated to possess various pharmacological activities. Among them, the antidiabetic, anti-inflammatory, antifertility, antianxiety, antidepressant, and anti-fever properties are consistent with the traditional and local applications of the Albizia species. CONCLUSIONS The traditional and local uses of Albizia species have been partially demonstrated by the pharmacological investigation. However, some traditional applications have not been assessed scientifically due to incomplete methodologies and ambiguous findings. Moreover, no clinical evidences support the health benefits of these plants. The systematic and comprehensive preclinical studies and clinical trials are still required to verify the pharmacological activities, clinical efficacy, and safety of Albizia species.
Collapse
Affiliation(s)
- Yanfei He
- Laboratory of Natural Drug, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qiaowen Wang
- Laboratory of Natural Drug, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yiping Ye
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Zhaoying Liu
- Laboratory of Natural Drug, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Hunan Engineering Research Center of Veterinary Drug, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Hongxiang Sun
- Laboratory of Natural Drug, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
10
|
Zhang LL, Hao WS, Xu M, Li C, Shi YY. Modified Tong Xie Yao Fang relieves solitary rectal ulcer syndrome: A case report. World J Clin Cases 2019; 7:2058-2064. [PMID: 31423438 PMCID: PMC6695551 DOI: 10.12998/wjcc.v7.i15.2058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Solitary rectal ulcer syndrome (SRUS) is a rare rectal disorder characterized by bloody mucus in the stool, difficulty in defecation, pain, and anal swelling. To date, the etiology of this syndrome remains not well understood and the diagnosis is frequently confused with other disorders, making treatment a clinical challenge.
CASE SUMMARY A 50-year-old woman presented to our hospital with a 40-d history of bloody mucus in the stool and anal swelling. SRUS was suspected. Rectoscopy revealed a large, severe ulcerous lesion. Histologically, the lesion was characterized as chronic ulcer without clear tumor cells, and the final diagnosis of SRUS was made. The patient was treated with Chinese medicine therapy, with administration of Tong Xie Yao Fang. After 3 wk of treatment, the symptoms improved significantly. At 2-mo follow-up, rectoscopy in a local hospital showed healed ulcer scars without obvious protrusion 3 cm from the anal verge.
CONCLUSION Chinese medicine therapy represents a potential treatment of SRUS with predominant rectal bleeding, mucinous discharge, and anal swelling pain.
Collapse
Affiliation(s)
- Li-Li Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wan-Shan Hao
- Teaching and Research Section of Shanghan, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Meng Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chang Li
- Traditional Chinese Medicine Department, Beijing Baicaoyuan Hospital of Traditional Chinese Medicine, Beijing 100107, China
| | - Yuan-Yuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
11
|
Maroyi A. Albizia Adianthifolia: Botany, Medicinal Uses, Phytochemistry, and Pharmacological Properties. ScientificWorldJournal 2018; 2018:7463584. [PMID: 30327583 PMCID: PMC6171211 DOI: 10.1155/2018/7463584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/29/2018] [Indexed: 01/29/2023] Open
Abstract
The bark, leaves, and roots of Albizia adianthifolia are highly sought after in tropical Africa as herbal medicines. Therefore, the aim of this study was to review the botany, medicinal uses, phytochemistry, and pharmacological properties of A. adianthifolia so as to provide baseline data required for evaluating the therapeutic potential of the species. Information on the botanical profile, medicinal uses, phytochemistry, and pharmacological properties of A. adianthifolia was undertaken using databases such as ScienceDirect, SciFinder, Pubmed, Google Scholar, Medline, SCOPUS, EThOS, ProQuest, OATD, and Open-thesis. Preelectronic literature search of conference papers, scientific articles, books, book chapters, dissertations, and theses was carried out at the University library. Literature search revealed that A. adianthifolia is used as purgative and herbal medicine for diabetes, eye problems, gastrointestinal problems, haemorrhoids, headache, neurodegenerative disorders, reproductive problems in women, respiratory problems, wounds and pain, skin diseases, sexually transmitted infections, and ethnoveterinary medicine. Phytochemical compounds identified from the species include apocarotenoids, chalcone, dipeptide, elliptosides, essential oils, fatty acids, flavonoids, histamine, imidazolyl carboxylic acid, prosapogenins, steroids, triterpene saponins, and triterpenoids. Pharmacological studies revealed that A. adianthifolia extracts and compounds have acetylcholinesterase enzyme inhibitory, anthelmintic, antiamoebic, antibacterial, antimycobacterial, anti-sexually transmitted infections, antifungal, anti-inflammatory, antioxidant, anxiolytic, and antidepressant, cognitive-enhancing, haemolytic, hypoglycemic and antihyperglycemic, immunomodulatory, and cytotoxicity activities. Detailed studies on the pharmacokinetics, in vivo, and clinical research involving compounds isolated from A. adianthifolia and extracts of the species are required.
Collapse
Affiliation(s)
- Alfred Maroyi
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
12
|
Noté OP, Kamto ELD, Toukea DD, Aouazou SA, Mbing JN, Muller CD, Guillaume D, Pegnyemb DE. Pro-apoptotic activity of new triterpenoid saponins from the roots of Albizia adianthifolia (Schumach.) W.Wight. Fitoterapia 2018; 129:34-41. [DOI: 10.1016/j.fitote.2018.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 11/16/2022]
|
13
|
A new piperazine derivative: 1-(4-(3,5-di-tert-butyl-4-hydroxybenzyl) piperazin-1-yl)-2-methoxyethan-1-one with antioxidant and central activity. Naunyn Schmiedebergs Arch Pharmacol 2017; 391:255-269. [DOI: 10.1007/s00210-017-1451-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/05/2017] [Indexed: 12/26/2022]
|
14
|
Depression in Parkinson's Disease: The Contribution from Animal Studies. PARKINSONS DISEASE 2017; 2017:9124160. [PMID: 29158943 PMCID: PMC5660814 DOI: 10.1155/2017/9124160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
Besides being better known for causing motor impairments, Parkinson's disease (PD) can also cause many nonmotor symptoms, like depression and anxiety, which can cause significant loss of life quality and may not respond to regular drugs treatment. In this review, we discuss the depression in PD, based on data from studies in humans and rodents. Depression frequency seems higher in PD patients than in general population, despite high variation in data due to diagnosis disparities. Development of depression in PD seems more likely to be caused by the nigrostriatal pathway degeneration than as a consequence of the awareness of disease prognostic, and it seems to be related to dopaminergic, noradrenergic, and serotoninergic synapses deficits. The dopaminergic role could be more significant, since it can modulate the release of the others, and its depletion is progressive, due to the degenerative feature of PD. Highly regarded in major depression, serotonin can be depleted in rats after nigrostriatal damage, but data from human patients are more conflicting. Animal studies can help in understanding the neurobiological mechanisms of depression in PD and the pursuit for more effective drugs for its treatment, but they lack the complexity of the disease progression, especially the nondopaminergic degeneration.
Collapse
|
15
|
Ganji A, Salehi I, Sarihi A, Shahidi S, Komaki A. Effects of Hypericum Scabrum extract on anxiety and oxidative stress biomarkers in rats fed a long-term high-fat diet. Metab Brain Dis 2017; 32:503-511. [PMID: 27981406 DOI: 10.1007/s11011-016-9940-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022]
Abstract
The continuous and long-term consumption of a high-fat diet (HFD) leads to weight gain and obesity. A HFD and obesity increase the risks of psychiatric disorders, such as anxiety and depression. In this study, we investigated the effects of a Hypericum Scabrum (H. scabrum) extract, which is an antioxidant, on anxiety in rats fed a long-term HFD. Sixty male Wistar rats were divided into the following six groups: (1) Control (standard diet), (2) Ext100 [standard diet supplemented with extract (100 mg/kg once/day)], (3) Ext300 [standard diet supplemented with extract (300 mg/kg once/day)], (4) HFD, (HFD), (5) HFD + Ext100, and (6) HFD + Ext300. The groups were fed their diet for 3 months. Anxiety was measured with the elevated plus-maze test. At the end of the study, blood samples were taken, and biochemical parameters and oxidative stress biomarker levels were determined in the plasma. Compared to the control group, the HFD group exhibited significant decreases in both the time in the open arms and number of entries into the open arms. H. scabrum extract supplementation significantly increased these parameters in the HFD-fed groups. The HFD significantly increased serum malondialdehyde levels and significantly decreased total glutathione levels, while H. scabrum extract supplementation significantly reversed these parameters. In conclusion, these results showed that a HFD increased anxiety behavior. In contrast, H. scabrum extract supplementation had anxiolytic effects and reversed the effects of the HFD, which suggested that the effects of H. scabrum extract supplementation were due to its strong antioxidant properties.
Collapse
Affiliation(s)
- Ahmad Ganji
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran, 65178/518.
| |
Collapse
|