1
|
Dou Y, Shu Y, Wang Y, Jia D, Han Z, Shi B, Chen J, Yang J, Qin Z, Huang S. Combination treatment of Danggui Buxue Decoction and endothelial progenitor cells can enhance angiogenesis in rats with focal cerebral ischemia and hyperlipidemia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116563. [PMID: 37121452 DOI: 10.1016/j.jep.2023.116563] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui Buxue Decoction (DBD) is a classic prescription of traditional Chinese medicine that is mainly used for treating clinical anemia for more than 800 years. This prescription has been utilized for nourishing "Qi" and enriching "Blood" for women suffering from menopausal symptoms. Meanwhile, DBD has the role of improving angiogenesis and promoting the neuroprotective functions. Bone marrow-derived endothelial progenitor cells (EPCs) was suboptimal to treat the focal cerebral ischemia (FCI). Thus, it's may be a novel strategy of DBD combined with EPCs transplantation for the FCI. AIM OF THE STUDY To investigate the mechanistic effects of DBD in combination with EPCs transplantation to improve behavioral function of the FCI and hyperlipidemia. MATERIALS AND METHODS We used rats with hyperlipidemia to develop a FCI model using photo-thrombosis, and treated the DBD in combination with EPCs transplantation. We adopted the Modified Neurological Severity Score to evaluate the neurological deficit, undertook the 2,3,5-triphenyltetrazolium chloride staining to calculate the total infarct volume. We carried out the RT-qPCR, Immunohistochemical analyses, TUNEL, ELISA, and Western blotting to measure the gene and protein levels which related to anti-apoptosis mechanisms and angiogenesis. RESULTS Administration of DBD in combination with EPCs transplantation was found to improve behavioral function, reducing the infarct volume and decrease the level of total-cholesterole (TC) and low-density lipoprotein-cholesterol (LDL-C). Treatment of DBD plus EPCs increased the mRNA and protein expression of vascular endothelial growth factor A, fibroblastic growth factor-2, and angiopoietin-1 and decreased the apoptosis of endothelial cells by activating the phosphoinositide 3-kinase/protein kinase B/Bcl-xL/Bcl-2 associated death promoter (PI3K/Akt/BAD) pathway and promoting activation of the extracellular signal-regulated kinase (ERK) pathway, which induced angiogenesis directly. CONCLUSIONS Our findings provided that DBD administration combined with EPCs transplantation promoted reconstruction of nervous function. This was achieved by enhancing expression of the growth factors related to anti-apoptosis mechanisms and angiogenesis thanks to regulation of the PI3K/Akt/BAD and ERK signaling pathways, and might be relate to the lowering of TC and LDL-C levels.
Collapse
Affiliation(s)
- Yonghui Dou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China
| | - Yue Shu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China
| | - Yaoyu Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China
| | - Dan Jia
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Zhengyun Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China
| | - Beiyin Shi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China
| | - Jieying Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China
| | - Jie Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China
| | - Zhen Qin
- School of Basic Medcine Science, Guizhou Medical University, Guiyang, 550025, PR China.
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China.
| |
Collapse
|
2
|
Song X, Xing W, Zhang X, Wang X, Ji J, Lu J, Yu B, Ruan M. Exploring the synergic mechanism of Ligusticum striatum DC. and borneol in attenuating BMECs injury and maintaining tight junctions against cerebral ischaemia based on the HIF-1α/VEGF signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115764. [PMID: 36183951 DOI: 10.1016/j.jep.2022.115764] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/11/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ligusticum striatum DC., also known as Ligusticum chuanxiong Hort. (LCH), is widely used in China for its excellent effect in ischaemic stroke (IS) patients, and borneol (BO) has been confirmed to maintain the blood‒brain barrier (BBB) after stroke. They are often used as a combination in the prescriptions of IS patients. Although the advantage of their combined treatment in improving brain ischaemia has been verified, their synergistic mechanism on BBB maintenance is still unclear. AIM OF THE STUDY This study was designed to evaluate the synergistic effect of maintaining the BBB between LCH and BO against IS and to further explore the potential mechanism. MATERIALS AND METHODS After primary mouse brain microvascular endothelial cells (BMECs) were extracted and identified, the duration of oxygen-glucose deprivation (OGD) and the doses of LCH and BO were optimized. Then, the cells were divided into five groups: control, model, LCH, BO, and LCH + BO. Cell viability, injury degree, proliferation and migration were detected by CCK-8, LDH, EdU and wound-healing assays, respectively. Hoechst 33342 staining was adopted to detect the apoptosis rate, and western blotting was employed to observe the expressions of Bax, Bcl-2, caspase-3 and cleaved caspase-3. The TEER value and NaF permeability were measured to assess tight junction (TJ) function, while ZO-1, occludin and claudin-5 were also probed by western blotting. Moreover, the HIF-1α/VEGF pathway was observed to explore the underlying mechanism of BBB maintenance. In vivo, global cerebral ischaemia/reperfusion (GCIR) surgery was performed to establish an IS model. After treatment with LCH (200 mg/kg) and/or BO (160 mg/kg), histopathological structure and BMECs repair were observed by HE staining and immunohistochemistry of vWF. Meanwhile, TJ-associated proteins in vivo were also detected by western blotting. RESULTS Basically, LCH and BO had different emphases. LCH significantly attenuated the vacuolar structure, nuclear pyknosis and neuronal loss of GCIR mice, while BO focused on promoting BMECs proliferation and angiogenesis and inhibiting the degradation of TJ-associated proteins in vivo after IS. Interestingly, their combination further enhanced these effects. OGD injury markedly reduced the viability, proliferation and migration of primary BMECs; decreased the ratio of Bcl-2/Bax, TEER value, and the expressions of ZO-1, occludin and claudin-5; induced LDH release and apoptosis; and increased the cleaved caspase-3/caspase-3 ratio and NaF permeability. Meanwhile, BO might be the main contributor to the combinative treatment in ameliorating OGD-induced damage of BMECs and degradation of TJ-related proteins, and the potential mechanism might be involved in upregulating the HIF-1α/VEGF signalling pathway. Although LCH showed no obvious improvement, it could enhance the therapeutic effect of BO. Interestingly, their combination even produced some new improvements, including the reduction of cleaved caspase-3 and increase in TEER value, none of which were exhibited in their monotherapies. CONCLUSIONS LCH and BO exhibited complementary therapeutic features in alleviating cerebral ischaemic injury by inhibiting BMECs apoptosis, maintaining the BBB and attenuating the loss of neurons. LCH preferred to protect ischaemic neurons, while BO played a key role in protecting BMECs, maintaining the BBB and TJs by activating the HIF-1α/VEGF signalling pathway.
Collapse
Affiliation(s)
- Xiaoxiong Song
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wanqing Xing
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xiaofeng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xueqing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jing Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jinfu Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bin Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming Ruan
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China.
| |
Collapse
|
3
|
Zhang XJ, Wang YJ, Lu X, Ying PJ, Qian SY, Liang J, Zheng GQ. The quality of reporting of randomized controlled trials of HuatuoZaizao pill for stroke. Front Pharmacol 2023; 13:1106957. [PMID: 36703753 PMCID: PMC9871376 DOI: 10.3389/fphar.2022.1106957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Background: HuatuoZaizao pill (HZP), a Chinese patent medicine, is often used in the treatment of stroke. However, there is still a lack of enough evidence to recommend the routine use of HZP for stroke. This study is aimed at evaluating the quality of reporting of randomized controlled trials (RCTs) on HZP for stroke. Methods: RCTs on HuatuoZaizao pill for stroke were evaluated by using Consolidated Standards of Reporting Trials (CONSORT) guidelines and CONSORT extension criteria on reporting herbal interventions (CONSORT-CHM) guidelines. Microsoft Excel 2007 and SPSS20.0 was used for statistics analyses. Results: Seventeen studies involving 1801 stroke patients were identified. CONSORT-CHM has expanded 24.3% (9/37) items in CONSORT and added a small item. The average scores of CONSORT evaluation is 14.6, while the average scores of the CONSORT-CHM evaluation is 11.6. The central items in CONSORT as eligibility criterion, sample size calculation, primary outcome, method of randomization sequence generation, allocation concealment, implementation of randomization, description of blinding, and detailed statistical methods were reported in 77%, 6%, 100%, 47%, 6%, 6%, 6%, and 94% of trials, respectively. In terms of the CONSORT-CHM, none of the articles reported in detail the dosage form, origin, formula basis and so on of HZP, and only half of studies reported the outcome indicators related to Traditional Chinese Medicine syndromes. Conclusion: The overall report quality of RCT related to HZP is low. HZP still needs to report higher quality RCTs to prove its effectiveness and safety.
Collapse
Affiliation(s)
- Xiao-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Jing Wang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Lu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Jie Ying
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shi-Yan Qian
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jie Liang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China,*Correspondence: Guo-Qing Zheng,
| |
Collapse
|
4
|
Shen W, Jiang N, Zhou W. What can traditional Chinese medicine do for adult neurogenesis? Front Neurosci 2023; 17:1158228. [PMID: 37123359 PMCID: PMC10130459 DOI: 10.3389/fnins.2023.1158228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Adult neurogenesis plays a crucial role in cognitive function and mood regulation, while aberrant adult neurogenesis contributes to various neurological and psychiatric diseases. With a better understanding of the significance of adult neurogenesis, the demand for improving adult neurogenesis is increasing. More and more research has shown that traditional Chinese medicine (TCM), including TCM prescriptions (TCMPs), Chinese herbal medicine, and bioactive components, has unique advantages in treating neurological and psychiatric diseases by regulating adult neurogenesis at various stages, including proliferation, differentiation, and maturation. In this review, we summarize the progress of TCM in improving adult neurogenesis and the key possible mechanisms by which TCM may benefit it. Finally, we suggest the possible strategies of TCM to improve adult neurogenesis in the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wei Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- *Correspondence: Ning Jiang, ; Wenxia Zhou,
| | - Wenxia Zhou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- *Correspondence: Ning Jiang, ; Wenxia Zhou,
| |
Collapse
|
5
|
Zhang B, Pei W, Cai P, Wang Z, Qi F. Recent advances in Chinese patent medicines entering the international market. Drug Discov Ther 2022; 16:258-272. [PMID: 36543180 DOI: 10.5582/ddt.2022.01115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As an indispensable part of Traditional Chinese medicine (TCM), Chinese patent medicines have played an important role in preventing and treating diseases in China. Since they are easy to use, easy to store, and cost-effective, Chinese patent medicines have been generally accepted and widely used in Chinese clinical practice as a vital medical resource. In recent years, as TCM has developed and it has been accepted around the world, many Chinese patent medicine companies have gained international market access and successfully registered several Chinese patent medicines as over-the-counter (OTC) or prescription drugs in regions and countries that primarily use Western medicine such as the EU, Russia, Canada, Singapore, and Vietnam. Moreover, several Chinese patent medicines have been obtained the US Food and Drug Administration (FDA) approval conducting phase II or III clinical trials in the US. The current work has focused on several Chinese patent medicines that have been successfully registered or that have been submitted for registration abroad. Summarized here are recent advances in the efficacy and molecular mechanisms of these Chinese patent medicines to treat respiratory infectious diseases (Lianhua Qingwen capsules, Jinhua Qinggan granules, and Shufeng Jiedu Capsules), cardiovascular and cerebrovascular diseases (Compound Danshen Dripping Pills, Huatuo Zaizao pills, and Tongxinluo Capsules), cancers (a Kanglaite injection and a Shenqi Fuzheng Injection), and gynecological diseases (Guizhi Fuling Capsules). The hope is that this review will contribute to a better understanding of Chinese patent medicines by people around the world.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Traditional Chinese Medicine Orthopedics, Neck-Shoulder and Lumbocrural Pain Hospital affiliated to Shandong First Medical University, Ji'nan, China
| | - Wenjian Pei
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| | - Pingping Cai
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| | - Zhixue Wang
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| | - Fanghua Qi
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| |
Collapse
|
6
|
Abstract
Scoparone (6,7-dimethoxycoumarin) is a simple coumarin from botanical drugs of Artemisia species used in Traditional Chinese Medicine and Génépi liquor. However, its bioavailability to the brain and potential central effects remain unexplored. We profiled the neuropharmacological effects of scoparone upon acute and subchronic intraperitoneal administration (2.5-25 mg/kg) in Swiss mice and determined its brain concentrations and its effects on the endocannabinoid system (ECS) and related lipids using LC-ESI-MS/MS. Scoparone showed no effect in the forced swimming test (FST) but, administered acutely, led to a bell-shaped anxiogenic-like behavior in the elevated plus-maze test and bell-shaped procognitive effects in the passive avoidance test when given subchronically and acutely. Scoparone rapidly but moderately accumulated in the brain (Cmax < 15 min) with an apparent first-order elimination (95% eliminated at 1 h). Acute scoparone administration (5 mg/kg) significantly increased brain arachidonic acid, prostaglandins, and N-acylethanolamines (NAEs) in the FST. Conversely, subchronic scoparone treatment (2.5 mg/kg) decreased NAEs and increased 2-arachidonoylglycerol. Scoparone differentially impacted ECS lipid remodeling in the brain independent of serine hydrolase modulation. Overall, the unexpectedly potent central effects of scoparone observed in mice could have toxicopharmacological implications for humans.
Collapse
|
7
|
Research Trends, Hot Spots, and Prospects for Traditional Chinese Medicine in the Field of Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:4548367. [PMID: 35003301 PMCID: PMC8731293 DOI: 10.1155/2021/4548367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022]
Abstract
Ischemia-reperfusion (I/R) injury is one of the most common phenomena in ischemic disease or processes that causes progressive disability or even death. It has a major impact on global public health. Traditional Chinese medicine (TCM) has a long history of application in ischemic diseases and has significant clinical effect. Numerous studies have shown that the formulas or single herbs in TCM have specific roles in regulating oxidative stress, anti-inflammatory, inhibiting cell apoptosis, etc., in I/R injury. We used bibliometrics to quantitatively analyze the global output of publications on TCM in the field of I/R injury published in the period 2001–2021 to identify research hotspots and prospects. We included 446 related documents published in the Web of Science during 2001–2021. Visualization analysis revealed that the number of publications related to TCM in the field of I/R injury has increased year by year, reaching a peak in 2020. China is the country with the largest number of publications. Keywords and literature analyses demonstrated that neuroregeneration is likely one of the research hotspots and future directions of research in the field. Taken together, our findings suggest that although the inherent limitations of bibliometrics may affect the accuracy of the literature-based prediction of research hotspots, the results obtained from the included publications can provide a reference for the study of TCM in the field of I/R injury.
Collapse
|
8
|
Xie J, Li X, Zhang L, Liu C, Leung JWH, Liu P, Yu Z, Liu R, Li L, Huang C, Huang Z. Genistein-3'-sodium sulfonate ameliorates cerebral ischemia injuries by blocking neuroinflammation through the α7nAChR-JAK2/STAT3 signaling pathway in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153745. [PMID: 34634743 DOI: 10.1016/j.phymed.2021.153745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/28/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Neuroinflammation plays a pivotal role in the acute progression of cerebral ischemia/reperfusion injury (I/RI). We previously reported that genistein-3'-sodium sulfonate (GSS), a derivative from the extract of the phytoestrogen genistein (Gen), protects cortical neurons against focal cerebral ischemia. However, the molecular mechanism underlying the neuroprotective effects exerted by GSS remains unclear. PURPOSE The present study focused on the anti-inflammatory effects of GSS following I/RI in rats. STUDY DESIGN Randomized controlled trial. METHODS The tMCAO rat model and LPS-stimulated BV2 in vitro model were used. Longa's scare was used to observe neurological function. TTC staining and Nissl staining were used to evaluate brain injury. ELISA, qRT-PCR, Western blotting and immunofluorescent staining methods were used to detect cytokine concentration, mRNA level, protein expression and location. RESULTS GSS treatment improves neurological function, reduces the volume of cerebral infarction, attenuates proinflammatory cytokines and inactivates the phosphorylation of JAK2 and STAT3 in I/RI rats. Furthermore, GSS increased the expression of α7nAChR. More importantly, the neuroprotective, anti-inflammatory and inhibiting JAK2/STAT3 signaling pathway effects of GSS were counteracted in the presence of alpha-bungarotoxin (α-BTX), an α7nAChR inhibitor, suggesting that α7nAChR is a potential target associated with the anti-inflammatory effects of GSS in the I/RI rats. GSS also inhibited BV2 cells from releasing IL-1β via the α7nAChR pathway after LPS stimulation. CONCLUSION GSS protects against cerebral I/RI through the expression of α7nAChR and inhibition of the JAK2/STAT3 pathway. Our findings provide evidence for the role of the cholinergic anti-inflammatory pathway in neuroinflammation and uncover a potential novel mechanism for GSS treatment in ischemic stroke. The downstream signals of GSS, α7nAChR- JAK2/STAT3 could also be potential targets for the treatment of I/RI.
Collapse
Affiliation(s)
- Jiali Xie
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Department of Physiology, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou 341000, China; Department of Basic Medicine, Gannan Health Vocational College, Ganzhou, 341000, China
| | - Xiao Li
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Department of Physiology, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou 341000, China; Department of Physiology, Basic Medicine School of Gannan Medical University, Ganzhou 341000, China
| | - Limei Zhang
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Department of Physiology, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou 341000, China; Department of Physiology, Basic Medicine School of Gannan Medical University, Ganzhou 341000, China
| | - Chaoming Liu
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Department of Physiology, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou 341000, China
| | - Joseph Wai-Hin Leung
- Department of Biology, University of Ottawa, Ottawa, K1N 6N5, Canada; Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, Canada
| | - Peiwen Liu
- The first clinical college of Lanzhou University, Nanzhou, 73000, China
| | - Zining Yu
- Graduate School, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ruizhen Liu
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Department of Physiology, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou 341000, China; Department of Physiology, Basic Medicine School of Gannan Medical University, Ganzhou 341000, China
| | - Liangdong Li
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Department of Physiology, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou 341000, China; Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Cheng Huang
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Department of Physiology, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou 341000, China; Department of Physiology, Basic Medicine School of Gannan Medical University, Ganzhou 341000, China
| | - Zhihua Huang
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Department of Physiology, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou 341000, China; Department of Physiology, Basic Medicine School of Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
9
|
Yang L, Qian J, Yang B, He Q, Wang J, Weng Q. Challenges and Improvements of Novel Therapies for Ischemic Stroke. Front Pharmacol 2021; 12:721156. [PMID: 34658860 PMCID: PMC8514732 DOI: 10.3389/fphar.2021.721156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023] Open
Abstract
Stroke is the third most common disease all over the world, which is regarded as a hotspot in medical research because of its high mortality and morbidity. Stroke, especially ischemic stroke, causes severe neural cell death, and no effective therapy is currently available for neuroregeneration after stroke. Although many therapies have been shown to be effective in preclinical studies of ischemic stroke, almost none of them passed clinical trials, and the reasons for most failures have not been well identified. In this review, we focus on several novel methods, such as traditional Chinese medicine, stem cell therapy, and exosomes that have not been used for ischemic stroke till recent decades. We summarize the proposed basic mechanisms underlying these therapies and related clinical results, discussing advantages and current limitations for each therapy emphatically. Based on the limitations such as side effects, narrow therapeutic window, and less accumulation at the injury region, structure transformation and drug combination are subsequently applied, providing a deep understanding to develop effective treatment strategies for ischemic stroke in the near future.
Collapse
Affiliation(s)
- Lijun Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jing Qian
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Center for Drug and Cosmetic Evaluation, Hangzhou, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Kaushik P, Ali M, Salman M, Tabassum H, Parvez S. Harnessing the mitochondrial integrity for neuroprotection: Therapeutic role of piperine against experimental ischemic stroke. Neurochem Int 2021; 149:105138. [PMID: 34284077 DOI: 10.1016/j.neuint.2021.105138] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/13/2023]
Abstract
Ischemic stroke (IS) is a rapidly increasing global burden and is associated with severe neurological decline and mortality. There is urgent requirement of the efforts, aimed to identify therapeutic strategies that are effective in clinic to promote significant recovery from IS. Studies have shown that mitochondria mediated neuroprotection can be a competent target against ischemic damage. Therefore, we examined whether mitochondrial impairment is regulated by Piperine (PIP), an alkaloid of Piper Longum, which has neuroprotective activity against ischemic brain injury. In this study, transient middle cerebral artery occlusion (tMCAO) surgery was performed on male Wistar rats for 90 min followed by 22.5 h of reperfusion for mimicking the IS condition. This study consisted of three groups: sham, tMCAO and tMCAO + PIP (10 mg/kg b.wt., p.o/day for 15 days), and studied for behavioral tests, infarct volume, brain pathological changes, mitochondrial dysfunction, inflammation alongwith cell survival status. PIP pre-treatment showed reduction in neurological alterations and infarct volume. In addition, PIP pre-treatment suppressed the mitochondrial dysfunction and might have anti-apoptotic potential by preventing Cytochrome c (Cyt c) release from mitochondria to cytoplasm and caspase 3 activation. It also regulates pro-apoptotic, Bax and anti-apoptotic, Bcl-2 proteins accompanied by glial fibrillary acidic protein (GFAP) positive cells in cortex region. Quantitative Reverse transcription-polymerase chain reaction (qRT-PCR) results also showed that PIP reduced the expression of pro-inflammatory protein, interleukin-1 β (IL-1β) and enhanced cell survival by restoring the activity of brain derived neurotrophic factor (BDNF) and its transcription protein, cAMP response element binding protein (CREB). Taken together, PIP reduced the mitochondrial dysfunction, neurological impairment, and enhanced neuronal survival. In conclusion, our findings reinforce PIP as an effective neuroprotective agent and provide important evidence about its role as a potential target to serve as a promising therapy for treatment of IS.
Collapse
Affiliation(s)
- Pooja Kaushik
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mubashshir Ali
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Government of India, V. Ramalingaswamy Bhawan, New Delhi, 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
11
|
Yu B, Yao Y, Zhang X, Ruan M, Zhang Z, Xu L, Liang T, Lu J. Synergic Neuroprotection Between Ligusticum Chuanxiong Hort and Borneol Against Ischemic Stroke by Neurogenesis via Modulating Reactive Astrogliosis and Maintaining the Blood-Brain Barrier. Front Pharmacol 2021; 12:666790. [PMID: 34220506 PMCID: PMC8242197 DOI: 10.3389/fphar.2021.666790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 01/26/2023] Open
Abstract
Background:Ligusticum chuanxiong Hort (LCH) is a famous ethnomedicine in Asia known for its excellent output on stroke treatment, and borneol usually acts as an assistant for its reducing permeability of the blood–brain barrier (BBB) after stroke. Although their synergy against brain ischemia was verified in previous studies, the potential mechanism is still unknown. Methods: The research aimed to explore the exact synergic mechanisms between LCH and borneol on neurogenesis within the areas of the dentate gyrus and subventricular zone. After treating middle cerebral artery occlusion rats with LCH (0.1 g/kg) and/or borneol (0.08 g/kg), the neurological severity score, brain infarct ratio, Nissl staining, Evans blue permeability, BBB ultrastructure, and expressions of von Willebrand factor and tight junction–associated proteins were measured. Co-localizations of Nestin+/BrdU+ and doublecortin+/BrdU+, and expressions of neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) were observed under a fluorescence microscope. Moreover, astrocyte polarization markers of complement component 3 and pentraxin 3, and relevant neurotrophins were also detected by immunoblotting. Results: Basically, LCH and borneol had different focuses, although both of them decreased infarct areas, and increased quantity of Nissl bodies and expression of brain-derived neurotrophic factor. LCH increased the neurological severity score, NeuN+ cells, and the ratios of Nestin+/BrdU+ and doublecortin+/BrdU+, and decreased GFAP+ cells and ciliary neurotrophic factor expression. Additionally, it regulated the expressions of complement component 3 and pentraxin 3 to transform astrocyte phenotypes. Borneol improved BBB ultrastructure and increased the expressions of von Willebrand factor, tight junction–associated proteins, vascular endothelial growth factor, and vascular endothelial growth factor receptor 2. Unexpectedly, their combined therapy showed more obvious regulations on the Nissl score, Evans blue permeability, doublecortin+/BrdU+, NeuN+ cells, brain-derived neurotrophic factor, and vascular endothelial growth factor than both of their monotherapies. Conclusions: The results indicated that LCH and borneol were complementary to each other in attenuating brain ischemia by and large. LCH mainly promoted neural stem cell proliferation, neurogenesis, and mature neuron preservation, which was probably related to the transformation of reactive astrocytes from A1 subtype to A2, while borneol preferred to maintain the integrity of the BBB, which provided neurogenesis with a homeostatic environment.
Collapse
Affiliation(s)
- Bin Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao Yao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofeng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Ruan
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Zhennian Zhang
- Department of Encephalopathy, Nanjing Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Li Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Liang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinfu Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Asgari Taei A, Dargahi L, Nasoohi S, Hassanzadeh G, Kadivar M, Farahmandfar M. The conditioned medium of human embryonic stem cell-derived mesenchymal stem cells alleviates neurological deficits and improves synaptic recovery in experimental stroke. J Cell Physiol 2021; 236:1967-1979. [PMID: 32730642 DOI: 10.1002/jcp.29981] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
Abstract
The transplantation of mesenchymal stem cells (MSCs) is of main approaches in regenerative therapy for stroke. Due to the potential tumorigenicity and low survival rate of transplanted cells, focuses have been shifted from cell replacement to their paracrine effects. Therefore, stem cell-conditioned medium (CM) therapy has emerged as an alternative candidate. Here, we investigated the effect of CM derived from human embryonic MSCs on experimental ischemic stroke. Wistar rats underwent ischemic stroke by the right middle cerebral artery occlusion (MCAO). CM was infused either one time (1 hr post-MCAO) or three times (1, 24, and 48 hr post-MCAO) through guide cannula into the left lateral ventricle. Neurological functions were evaluated using Bederson's test and modified Neurological Severity Score on Days 1, 3, and 7 following MCAO. Infarction volumes and cerebral edema were measured on Days 3 and 7. growth-associated protein-43, synaptophysin, cAMP response element-binding protein, and phosphorylated-cAMP response element-binding protein levels were also assessed in peri-ischemic cortical tissue on Day 7 postsurgery. Our results indicated that three times injections of CM could significantly reduce body weight loss, mortality rate, infarct volumes, cerebral edema, and improve neurological deficits in MCAO rats. Moreover, three injections of CM could restore decreased levels of synaptic markers in MCAO rats up to its normal levels observed in the sham group. Our data suggest that using the CM obtained from embryonic stem cells-MSCs could be a potent therapeutic approach to attenuate cerebral ischemia insults which may be partly mediated through modulation of synaptic plasticity.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Jiang S, Yu LJ, Yang H, Jin Y, Chen J, Zhang JH, Liu Y, Xu Y. A study on inhibition of the Aβ 1-42-induced inflammatory response by the Huatuo Zaizao pill through the NF-κB signaling pathway. Arch Med Sci 2020; 19:1136-1144. [PMID: 37560736 PMCID: PMC10408018 DOI: 10.5114/aoms.2020.99427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/15/2019] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION The pathology of Alzheimer's disease (AD) includes β-amyloid (Aβ) (plaques) and neurofibrillary tangles (NFTs). This study aimed to explore the efficacy of Huatuo Zaizao pill (HTZP) in an AD mouse model induced by injecting Aβ1-42, and the neuroprotective mechanism of HTZP in AD. MATERIAL AND METHODS C57BL/6 (B6) mice were randomly divided into 4 groups (n = 10, per group): control group, AD model group, and 2 different doses of HTZP treated groups. The Morris water maze test was carried out on AD mice to assess the learning ability after treatment with HTZP for 15 day. The levels of inflammatory factors and the nuclear factor-κB (NF-κB) pathway were examined by western blot and real-time polymerase chain reaction (PCR). The content of microglia was investigated by immunofluorescence. RESULTS This study revealed that a cognitive disorder could be mitigated when the AD mice were treated with HTZP, which might be associated with the decreased level of pro-inflammatory factors, and the inhibitory activities of microglia. Additionally, phosphorylation of IκB and NF-κB p65 could be reduced by prohibiting the neuroinflammation of NF-κB activation in the hippocampus of AD mice. CONCLUSIONS These results showed that HTZP could mitigate a cognitive disorder, diminish the activation of microglia, and inhibit the content of inflammatory factors through the NF-κB pathway in Aβ1-42-induced AD mice. HTZP may be an appropriate agent for AD treatment in the future.
Collapse
Affiliation(s)
- Su Jiang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Neurology, Jiangsu Taizhou People’s Hospital, Taizhou, Jiangsu, China
- Department of Neurology, Jiangsu Taizhou People’s Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lin-Jie Yu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hui Yang
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuexinzi Jin
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jing-Hua Zhang
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ying Liu
- Department of Neurology, Jiangsu Taizhou People’s Hospital, Taizhou, Jiangsu, China
- Department of Neurology, Jiangsu Taizhou People’s Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Kaushik P, Ali M, Tabassum H, Parvez S. Post-ischemic administration of dopamine D2 receptor agonist reduces cell death by activating mitochondrial pathway following ischemic stroke. Life Sci 2020; 261:118349. [PMID: 32853654 DOI: 10.1016/j.lfs.2020.118349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 12/21/2022]
Abstract
AIMS Cerebral ischemic stroke leads to mitochondrial alterations which are key factors for initiation of various cascades resulting in neuronal damage. Dopamine D2 receptor (D2R) agonist, Sumanirole (SUM) has been reported to possess anti-inflammatory, anti-oxidant, and anti-apoptotic properties. However, the role of SUM in ischemic stroke (IS) has not been studied yet. The aim of the present study was to investigate the neuroprotective efficiency of SUM against ischemic injury and its possible effect on mitochondrial restorative mechanisms. MATERIALS AND METHODS Transient middle cerebral artery occlusion (tMCAO) was performed in Wistar rats for 90 min occlusion and 22.5 h reperfusion to mimic ischemic stroke. Post- treatment with Sumanirole (0.1 mg/kg and 1 mg/kg; s.c.) was done at 1 h, 6 h, 12 hand 18 h after surgery. In addition, neurobehavioral analysis, mitochondrial reactive oxygen species and mitochondrial membrane potential by flow cytometric analysis, mitochondrial complexes analysis, infarct size evaluation and histological analysis were performed. KEY FINDINGS Sumanirole restored behavioural alterations as measured by rotarod performance, grip strength, adhesive tape removal analysis and neurological deficits. In addition, it also refurbished mitochondrial dysfunction by decreasing mitochondrial reactive oxygen species production, elevating mitochondrial membrane potential and by protecting the activity of mitochondrial complexes along with histological alterations. As a result, infarct sizes were markedly reduced in tMCAO surgery animals. SIGNIFICANCE Findings from the study provide evidence that SUM promotes neuronal survival in in vivo model of IS through mitochondria mediated neuroprotective features.
Collapse
Affiliation(s)
- Pooja Kaushik
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mubashshir Ali
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Government of India, V. Ramalingaswamy Bhawan, New Delhi 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
15
|
Jieyu Anshen Granule, a Chinese Herbal Formulation, Exerts Effects on Poststroke Depression in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7469068. [PMID: 32184899 PMCID: PMC7060433 DOI: 10.1155/2020/7469068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/18/2019] [Accepted: 01/20/2020] [Indexed: 01/18/2023]
Abstract
Jieyu Anshen granule (JY) is a traditional Chinese medicine formula for treating depression and anxiety. The aim of the study was to observe the effects of JY on poststroke depression (PSD) and investigate the underlying mechanism. PSD rat model was developed by middle cerebral artery occlusion following chronic unpredictable mild stress in conjunction with isolation rearing. We performed behavioral tests, Western blot, ELISA, and BrdU/NeuN staining. Treatment with JY showed significant antidepressant effect in open-field and sucrose preference tests, as well as significant improvement in beam-walking, cylinder, grip strength, and water maze tests. In addition, treatment with JY could restore the levels of neurotransmitters and decrease the levels of hormone and inflammation cytokines in serum and brain. Treatment with JY also showed significant regulation in the expression of neurotransmitter receptors and NF-κB/IκB-α signaling in the prefrontal cortex and hippocampus. Moreover, the numbers of newborn neurons in the hippocampus were increased by treatment with JY. Our results suggest that JY could ameliorate PSD and improve the neurological and cognitive functions. The antidepressive effect may be associated with the modulation of JY on monoamine system, neuroendocrine, neuroinflammation, and neurogenesis.
Collapse
|
16
|
Liu X, Cui Y, Li X, Yang H. In-depth transcriptomic and proteomic analyses of the hippocampus and cortex in a rat model after cerebral ischemic injury and repair by Shuxuetong (SXT) injection. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112362. [PMID: 31676400 DOI: 10.1016/j.jep.2019.112362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/29/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND There is a lack of systematic descriptions and characterization of strokes and their effects in both the cerebral hippocampus and cortex. Shuxuetong (SXT) injection was reported to have good therapeutic effects in the clinic; therefore, it was selected as a drug intervention method for cerebral ischemia repair in rat models. The aim of this study was to understand the features of molecules and pathways and to reveal key processes of SXT repair. MATERIALS AND METHODS Evaluation of neurological deficit and infarct volume measurement was used to estimate the pharmacological effects of SXT injection on Ischemia-reperfusion(I/R) model rats. LC-MS/MS and RNA-Seq analysis were used to analyze the proteins and mRNA expression in the cerebral hippocampus and cortex 6 h and 24 h after ischemic injury and repair. A label-free approach (IBAQ) for proteomics analysis and FPKM based on gene read count for transcriptomics analysis were used to quantify the differences among the three experimental groups (Sham, Model and SXT-treated groups). Transcriptomics and proteomics analyses were verified by RT-qPCR and western blotting. RESULTS By combining LC-MS/MS and RNA-Seq, eight larger datasets (two time points and two tissues) were confidently identified in more than three biological replicates. An average of 4500 unique proteins and 8200 protein-coding genes were confidently identified. By combining the subcellular localization, hierarchical clustering, pathway enrichment analysis in the injury and repair phase, six core proteins and related genes that were significantly expressed were verified as candidates for cerebral ischemic injury by western blotting and quantitative real-time PCR. Meanwhile, the results indicated that there was better expression in the 6 h group by significant proteomics analysis during the development and progression of cerebral ischemia. Two primary co-enriched pathways, the PI3K-AKT and MAPK signaling pathways, and six related core candidates may play key roles in molecular mechanisms related to cerebral ischemic injury and repair by SXT injection. CONCLUSION Our data not only identified six core candidates and two key signaling pathways for cerebral ischemic injury and verification but also provided evidence for the explanation, prevention and treatment of cerebral ischemia by SXT injection. The results of the present study provide evidence for the explanation, prevention and treatment of cerebral ischemia by SXT injection.
Collapse
Affiliation(s)
- Xin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yiran Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
17
|
Cynomorium songaricum Extract Alleviates Memory Impairment through Increasing CREB/BDNF via Suppression of p38MAPK/ERK Pathway in Ovariectomized Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9689325. [PMID: 31239867 PMCID: PMC6556289 DOI: 10.1155/2019/9689325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/14/2019] [Accepted: 05/05/2019] [Indexed: 12/05/2022]
Abstract
Cynomorium songaricum Rupr is a very important traditional Chinese medicine for tonifying the kidney, which has a significant effect on improving estrogen level on the long term. In many studies, it can improve the learning and memory function of ovariectomized (OVX) model animals. 10 of the 50 rats received only bilateral back surgery and were harvested with the same amount of fat as the ovaries without removing the ovaries as sham group; remains underwent bilateral ovariectomy and equally randomized into five groups: sham group, with OVX as model group, estradiol valerate (EV, 0.2 mg/kg) as positive control, with 3.3 and 33 mg/kg body weight/day of ethyl acetate extract of Cynomorium songaricum extract (CSE) as low and high dosage groups, respectively. The orally administered CSE to ovariectomized rats exerted an ameliorative effect on learning and memory in the Morris water maze tests. All rats were sacrificed after 8 weeks of treatment, and tissue was analyzed using histopathology and electron microscopy. To comprehensively examine the mechanism, brain derived neurotrophic factor (BDNF), p-p38 mitogen-activated protein kinase (p-p38MAPK), extracellular regulated protein kinases (ERK), p-extracellular regulated protein kinases (p-ERK), and p-cAMP-response element binding protein (p-CREB) were detected by Western blotting. Using histopathology and electron microscopy, it was clearly observed that the pyramidal neurons of the hippocampal CA1 area were reduced in the OVX groups, indicating that CSE could attenuate the loss of pyramidal neurons in hippocampal CA1 and revert the synaptic morphological variations produced by ovariectomy. Mechanistically, the expressions of p-p38MAPK and p-ERK levels were significantly downregulated by CSE intervention, whereas the BDNF and p-CREB were significantly upregulated by CSE as compared to the control. Concisely, Cynomorium songaricum Rupr exhibited potential therapeutic effect on Neuroprotection of ovariectomized rats, and its effect was possibly exerted by p-CREB/BDNF mediated down regulation of ERK/p38MAPK.
Collapse
|
18
|
Chen L, Liu DN, Wang Y, Liu XY, Han S, Zhang K, Li GY, Tian X, Wang HY, Wang JH. Treatment with MQA, a Derivative of Caffeoylquinic Acid, Provides Neuroprotective Effects against Cerebral Ischemia Through Suppression of the p38 Pathway and Oxidative Stress in Rats. J Mol Neurosci 2019; 67:604-612. [PMID: 30734208 DOI: 10.1007/s12031-019-01268-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
1,5-O-dicaffeoyl-3-O-(4-malic acid methylester)-quinic acid (MQA), extracted from Arctium lappa L., has been observed to exert neuroprotective effects in vitro. The aim of this study was to investigate whether MQA is an effective therapeutic method for cerebral ischemic injury in vivo. In this study, adult male rats were randomly divided into four groups: a normal group, a model group subjected to middle cerebral artery occlusion (MCAO) for 24 h, a model + MQA group (which received intragastric MQA for the 7 days prior to MCAO), and a model + positive drug group. MQA appeared to induce effects in cerebral ischemic injury in rats, by downregulating malondialdehyde, glutathione peroxidase, and nitric oxide synthase levels. Treatment with MQA significantly reduced infarcted sections. In addition, caspase-3 and Iba1 protein expression were evaluated with immunohistochemistry, and cortical cell apoptosis was assessed with terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays. Expression of AKT and Bax, ERK1/2, P38 and Bcl-2, NFkB1, PARP, and caspase-3 was assessed with Western blotting. We found Bcl-2 and NFkB1 (p50) expressions were upregulated, whereas the expression of PARP, caspase-3, NFkB1 (p105), ERK1/2, P38, AKT, and Bax was downregulated. In conclusion, we observed MQA was an effective treatment for cerebral ischemic injury in rats.
Collapse
Affiliation(s)
- Long Chen
- School of Pharmacy, Ministry of Education, Shihezi University/Key Laboratory of Xingjiang Phytomedicine Resources Utilization, Shihezi, China
| | - Dan-Ni Liu
- School of Pharmacy, Ministry of Education, Shihezi University/Key Laboratory of Xingjiang Phytomedicine Resources Utilization, Shihezi, China
| | - Yu Wang
- School of Science And Technology, Jilin Normal University, Siping, Jilin, China
| | - Xue-Ying Liu
- School of Pharmacy, Ministry of Education, Shihezi University/Key Laboratory of Xingjiang Phytomedicine Resources Utilization, Shihezi, China
| | - Shuai Han
- School of Pharmacy, Ministry of Education, Shihezi University/Key Laboratory of Xingjiang Phytomedicine Resources Utilization, Shihezi, China
| | - Ke Zhang
- School of Pharmacy, Ministry of Education, Shihezi University/Key Laboratory of Xingjiang Phytomedicine Resources Utilization, Shihezi, China.
| | - Guo-Yu Li
- School of Pharmacy, Ministry of Education, Shihezi University/Key Laboratory of Xingjiang Phytomedicine Resources Utilization, Shihezi, China
| | - Xing Tian
- School of Pharmacy, Ministry of Education, Shihezi University/Key Laboratory of Xingjiang Phytomedicine Resources Utilization, Shihezi, China.
| | - Hang-Yu Wang
- School of Pharmacy, Ministry of Education, Shihezi University/Key Laboratory of Xingjiang Phytomedicine Resources Utilization, Shihezi, China.
| | - Jin-Hui Wang
- School of Pharmacy, Ministry of Education, Shihezi University/Key Laboratory of Xingjiang Phytomedicine Resources Utilization, Shihezi, China.,School of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Mohamed SK, Ahmed AAE, El Morsy EM, Nofal S. The protective effect of zeranol in cerebral ischemia reperfusion via p-CREB overexpression. Life Sci 2019; 217:212-221. [PMID: 30550883 DOI: 10.1016/j.lfs.2018.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022]
Abstract
AIMS Cerebral ischemia reperfusion (I/R) is a neurovascular disease leading to cerebral damage. It was found that postmenopausal women are liable to more dangerous effects than men at same age in stroke. The objective of this study is to investigate the neuroprotective effect of zeranol against cerebral ischemia reperfusion in ovariectomized rats. MAIN METHODS 36 female wistar rats divided in to 3 groups: sham group, I/R group (where I/R was induced 7 weeks after ovariectomy), zeranol group (0.5 mg/kg every 3 days for 5 weeks before I/R). Cerebral ischemia reperfusion (I/R) was performed by bilateral common carotid artery occlusion then de-ligated to restore blood flow. After 24 h of reperfusion, rats performed cylinder test to evaluate behavioral dysfunction followed by decapitation. Brain tissues were collected for biochemical measures such as oxidative stress marker malondialdehyde, antioxidant markers reduced glutathione, inflammatory markers (interleukin-1 beta, tumor necrosis factor alpha, and inducible nitric oxide synthase), matrix metalloproteinase-9, adenosine triphosphate, brain derived neurotrophic factor, glucose transporter-3, phosphorylated c-AMP response element binding protein and finally nissl staining for histopathological examination. KEY FINDINGS The zeranol administered group showed a reversal of neuronal damage caused by ischemia evidenced by the decrease in MDA, IL-1β, TNF-α, and MMP-9 levels, increase GSH, and ATP levels, decrease expression of iNOS in both regions cortex and hippocampus, increase protein level of p-CREB, GLUT-3 and BDNF, increase number of intact neuron cells in both regions and attenuated histological changes in both cortex and hippocampus regions. SIGNIFICANCE Zeranol has neuroprotective potential against cerebral ischemia reperfusion in ovariectomized rats.
Collapse
Affiliation(s)
- Shimaa K Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt
| | - Amany A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt
| | - Engy M El Morsy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt
| | - Shahira Nofal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt.
| |
Collapse
|
20
|
Xijiao Dihuang Decoction Alleviates Ischemic Brain Injury in MCAO Rats by Regulating Inflammation, Neurogenesis, and Angiogenesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5945128. [PMID: 30046341 PMCID: PMC6036833 DOI: 10.1155/2018/5945128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/09/2018] [Indexed: 01/09/2023]
Abstract
Ischemic stroke is an increasingly important public health problem, and no effective treatments are approved. Xijiao Dihuang Decoction (XDD), a famous herbal formula for treating hemorrhagic fever syndromes, has been shown to exert powerful neuroprotective property. The aim of this study was to identify the chemical constituents in XDD, observe the neuroprotective effect of XDD against acute ischemic stroke, and explore the specific mechanisms by which these effects were mediated. With UHPLC-Q/TOF-MS, 47 components in XDD were detected and 25 of them were identified. In rats subjected to MCAO, XDD ameliorated neurological deficit, histopathology changes, and infarction volume. In addition, levels of TNF-ɑ, IL-6, and IL-1β in XDD-treated group were significantly lower compared to the model group. Mechanistic studies showed that XDD inhibited MCAO-induced NF-κB activation, presenting as downregulating the expression of phospho-NF-κB p65 and preventing IκBɑ degradation. Besides, BDNF, GDNF, VEGF, bFGF, and CD34 levels were significantly increased by XDD, suggesting that the protective effects of XDD may also be associated with the promotion of neurogenesis and angiogenesis. In conclusion, these findings provided a novel regulatory pathway of the neuroprotective effect of XDD that helped rehabilitate patients with stroke.
Collapse
|
21
|
Zhang JH, Yu LJ, Yang H, Hui Z, Jiang S, Chen L, Zhao Y, Wang SL, Liu Y, Xu Y. Huatuo Zaizao pill ameliorates cognitive impairment of APP/PS1 transgenic mice by improving synaptic plasticity and reducing Aβ deposition. Altern Ther Health Med 2018; 18:167. [PMID: 29843688 PMCID: PMC5975403 DOI: 10.1186/s12906-018-2237-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/22/2018] [Indexed: 11/10/2022]
Abstract
Background It is well known that Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by memory deficits and cognitive decline. Amyloid-β (Aβ) deposition and synaptic dysfunction play important roles in the pathophysiology of Alzheimer’s disease (AD). The Huatuo Zaizao pill (HT) is a Traditional Chinese Medicine (TCM) that has been used clinically for many years in China, mainly for post-stroke rehabilitation and cognitive decline; however, the mechanism of cognitive function is not clear. In this study, we investigated the effect of HT on hippocampal synaptic function, Amyloid-β (Aβ) deposition in APP/PS1 AD transgenic mice. Method Six-month-old APP/PS1 transgenic (Tg) mice were randomly divided into control, HT-treated, and memantine (MEM)-treated groups. Then, these groups were orally administered vehicle (for the control), HT (0.25 g/kg) and MEM (5 mg/kg) respectively for 4 weeks. The Morris water maze, Novel Object Recognition, and Open field tests were used to assess cognitive behavioral changes. We evaluated the effects of HT on neuronal excitability, membrane ion channel activity, and synaptic plasticity in acute hippocampal slices by combining electrophysiological extracellular tests. Synaptic morphology in the hippocampus was investigated by electron microscopy. Western blotting was used to assess synaptic-associated protein and Aβ production and degrading levels. Immunofluorescence staining was used to determine the relative integrated density. Results HT can ameliorate hippocampus-dependent memory deficits and improve synaptic dysfunction by reversing LTP impairment in APP/PS1 transgenic mice. Moreover, HT reduces amyloid plaque deposition by regulating α-secretase and γ-secretase levels. Conclusion HT can improve the learning and memory function of APP/PS1 transgenic mice by improving synaptic function and reducing amyloid plaque deposition. Electronic supplementary material The online version of this article (10.1186/s12906-018-2237-2) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Zhu SZ, Szeto V, Bao MH, Sun HS, Feng ZP. Pharmacological approaches promoting stem cell-based therapy following ischemic stroke insults. Acta Pharmacol Sin 2018; 39:695-712. [PMID: 29671416 DOI: 10.1038/aps.2018.23] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/13/2018] [Indexed: 02/06/2023] Open
Abstract
Stroke can lead to long-term neurological deficits. Adult neurogenesis, the continuous generation of newborn neurons in distinct regions of the brain throughout life, has been considered as one of the appoaches to restore the neurological function following ischemic stroke. However, ischemia-induced spontaneous neurogenesis is not suffcient, thus cell-based therapy, including infusing exogenous stem cells or stimulating endogenous stem cells to help repair of injured brain, has been studied in numerous animal experiments and some pilot clinical trials. While the effects of cell-based therapy on neurological function during recovery remains unproven in randomized controlled trials, pharmacological agents have been administrated to assist the cell-based therapy. In this review, we summarized the limitations of ischemia-induced neurogenesis and stem-cell transplantation, as well as the potential proneuroregenerative effects of drugs that may enhance efficacy of cell-based therapies. Specifically, we discussed drugs that enhance proliferation, migration, differentiation, survival and function connectivity of newborn neurons, which may restore neurobehavioral function and improve outcomes in stroke patients.
Collapse
|
23
|
Cao L, Miao M, Qiao J, Bai M, Li R. The protective role of verbenalin in rat model of focal cerebral ischemia reperfusion. Saudi J Biol Sci 2017; 25:1170-1177. [PMID: 30174518 PMCID: PMC6117236 DOI: 10.1016/j.sjbs.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 11/22/2022] Open
Abstract
To investigate the protective mechanism of verbenalin on cerebral ischemia-reperfusion injury. Middle cerebral artery occlusion in the left hemisphere was induced in rats by filament insertion, and rat model of focal cerebral ischemia-reperfusion was established. The high, medium and low dose of verbenalin groups were injected in the tail vein of corresponding drugs 10 min before reperfusion, and submitted for 22 h of reperfusion after the operation. Mortality rate was then calculated, and neurological deficits of rats were scored. The serum of rats was got to determine the S-100β protein level, and the brain tissue was removed to determine the levels of Bax, Bcl-2, Caspase-3 and ATPase. TTC staining was performed on the brain tissue to calculate the percentage of cerebral infarct size. Changes in brain tissue morphology were observed. Rat model of focal cerebral ischemia-reperfusion was successfully replicated. In groups that have taken different doses of verbenalin, the mortality rate, neurological deficit score and the percentage of cerebral infarction size were significantly reduced, and the levels of Bax, Caspase-3, S-100β level of the serum in the brain tissue were also significantly reduced. Increases in the levels of Bcl-2 and ATPase in brain tissue and improvement of pathological damage of hippocampus and cortex were observed. Verbenalin can inhibit the expression of apoptosis genes, promote the expression of anti-apoptosis genes, improve brain microcirculation and energy metabolism, hence reducing cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Lihua Cao
- Department of Pharmacology, Henan University of TCM, Zhengzhou 450046, China
| | - Mingsan Miao
- Department of Pharmacology, Henan University of TCM, Zhengzhou 450046, China
| | - Jingyi Qiao
- Department of Pharmacology, Henan University of TCM, Zhengzhou 450046, China
| | - Ming Bai
- Department of Pharmacology, Henan University of TCM, Zhengzhou 450046, China
| | - Ruiqi Li
- Department of Pharmacology, Henan University of TCM, Zhengzhou 450046, China
| |
Collapse
|
24
|
Miao M, Cao L, Li R, Fang X, Miao Y. Protective effect of chlorogenic acid on the focal cerebral ischemia reperfusion rat models. Saudi Pharm J 2017; 25:556-563. [PMID: 28579891 PMCID: PMC5447441 DOI: 10.1016/j.jsps.2017.04.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective The aim of the study was to investigate the protective characteristic of chlorogenic acid, a natural glucosyl xanthone found in Lonicera Japonica on the cerebral ischemia reperfusion injury and the underlying mechanism. Methods Focal cerebral ischemia reperfusion model was built by blocking the left middle cerebral artery in rats by using the suture-occluded method. Before operation, the corresponding drugs were given for each group once a day for 7 days. After 1 h of final administration, the model was built, after operation, reperfusion was conducted for 22 h, Before the reperfusion 10 min tail vein injection of large, medium and small dose of chlorogenic acid and then mortality was calculated, and Neurological deficit score (NDS) was conducted, and serum was collected to measure the NSE level; a 2 mm thick brain slice located at the intersection of optic nerves was collected for TTC staining, and the percentage of cerebral infarction area was calculated; brain homogenate was collected to measure the ICAM-1, VCAM-1, EPO and HIF-1α levels in brain tissue of cerebral ischemia reperfusion rat models; NGF was detected using immunohistochemical method; the morphological changes in brain tissue was observed with HE staining. Results All focal cerebral ischemia reperfusion rat models were duplicated successfully. Every chlorogenic acid group with different dosage can significantly reduce the mortality, NDS and cerebral infarction area of rats, and significantly increase the EPO, HIF-1α and NGF levels in brain tissue; significantly improve the pathological lesions of hippocampus and cortex in brain tissue. Conclusion The results showed that chlorogenic acid could protect the focal cerebral ischemia reperfusion injury rat models by adjusting the inflammatory factor, hypoxia factor and nerve growth factor.
Collapse
Affiliation(s)
- Mingsan Miao
- Department of Pharmacology, Henan University of TCM, Zhengzhou 450046, China
| | - Lihua Cao
- Department of Pharmacology, Henan University of TCM, Zhengzhou 450046, China
| | - Ruiqi Li
- Department of Pharmacology, Henan University of TCM, Zhengzhou 450046, China
| | - Xiaoyan Fang
- Department of Pharmacology, Henan University of TCM, Zhengzhou 450046, China
| | - Yanyan Miao
- Department of Pharmacology, Henan University of TCM, Zhengzhou 450046, China
| |
Collapse
|
25
|
The effects of Chinese medicines on cAMP/PKA signaling in central nervous system dysfunction. Brain Res Bull 2017; 132:109-117. [PMID: 28438669 DOI: 10.1016/j.brainresbull.2017.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/11/2017] [Indexed: 01/06/2023]
Abstract
Neuropathological injury in the mammalian adult central nervous system (CNS) may cause axon disruption, neuronal death and lasting neurological deficits. Failure of axon regeneration is one of the major challenges for CNS functional recovery. Recently, the cAMP/PKA signaling pathway has been proven to be a critical regulator for neuronal regeneration, neuroplasticity, learning and memory. Also, previous studies have shown the effects of Chinese medicines on the prevention and treatment of CNS dysfunction mediated in part by cAMP/PKA signaling. In this review, the authors discuss current knowledge of the role of cAMP/PKA signaling pathway in neuronal regeneration and provide an overview of the Chinese medicines that may enable CNS functional recovery via this signaling pathway.
Collapse
|