1
|
Asyakina L, Atuchin V, Drozdova M, Kozlova O, Prosekov A. Ex Vivo and In Vitro Antiaging and Antioxidant Extract Activity of the Amelanchier ovalis from Siberia. Int J Mol Sci 2022; 23:ijms232315156. [PMID: 36499480 PMCID: PMC9738774 DOI: 10.3390/ijms232315156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Phenolic acids are biologically active substances that prevent aging and age-related diseases, e.g., cancer, cardiovascular diseases, Alzheimer's disease, Parkinson's disease, etc. Cellular senescence is related to oxidative stress. The Siberian Federal District is rich in medicinal plants whose extracts contain phenolic acids. These plants can serve as raw materials for antiaging, antioxidant food supplements, and Amelanchier ovalis is one of them. In the present research, we tested the phytochemical profile of its extract for phenolic acids. Its geroprotective and antioxidant properties were studied both ex vivo and in vitro using Saccharomyces cerevisiae Y-564 as a model organism. The chromotographic analysis revealed gallic, p-hydroxybenzoic, and protocatechuic acids, as well as derivatives of chlorogenic and gallic acids. The research involved 0.25, 0.5, and 1.0 mg/mL extracts of Amelanchier ovalis, all of which increased the growth and lifespan of yeast cells. In addition, the extracts increased the survival rate of yeast under oxidative stress. An in vitro experiment also demonstrated the antioxidant potential of Amelanchier ovalis against ABTS radicals. Therefore, the Amelanchier ovalis berry extract proved to be an excellent source of phenolic acids and may be recommended as a raw material for use in antioxidant and geroprotective food supplements.
Collapse
Affiliation(s)
- Lyudmila Asyakina
- Laboratory of Natural Nutraceuticals Biotesting, Research Department, Kemerovo State University, 650000 Kemerovo, Russia
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Department of Industrial Machinery Design, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
- R&D Center “Advanced Electronic Technologies”, Tomsk State University, 634034 Tomsk, Russia
- Correspondence:
| | - Margarita Drozdova
- Laboratory of Natural Nutraceuticals Biotesting, Research Department, Kemerovo State University, 650000 Kemerovo, Russia
| | - Oksana Kozlova
- Department of Bionanotechnology, Kemerovo State University, 650000 Kemerovo, Russia
| | - Alexander Prosekov
- Department of Bionanotechnology, Kemerovo State University, 650000 Kemerovo, Russia
| |
Collapse
|
2
|
Kaur P, Arora S, Singh R. Isolation, characterization and biological activities of betulin from Acacia nilotica bark. Sci Rep 2022; 12:9370. [PMID: 35672366 PMCID: PMC9174266 DOI: 10.1038/s41598-022-13338-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/16/2022] [Indexed: 01/25/2023] Open
Abstract
Medicinal plants are in use of humankind since ancient and still they are playing an important role in effective and safer natural drug delivery systems. Acacia nilotica (native of Egypt) commonly known as babul belongs to family Fabaceae, widely spread in India, Sri Lanka and Sudan. Being a common and important plant, using in many ways from fodder (shoots and leaves to animals) to dyeing (leather coloration) to medicine (root, bark, leaves, flower, gum, pods). The present study is focused on investigating the natural chemistry and important biological activities of the plant. Employing bioassay guided fractionation coupled with TLC and column chromatography, a pure fraction named AN-10 was isolated from ethyl acetate fraction of crude methanol extract which identified as "Betulin (Lupan-3ß,28-diol)" by Liebermann-Burchard test and structure elucidation by UV-Vis, NMR and MS techniques. A battery of in vitro biological assays for antioxidant, anti-inflammatory and anticancer were performed and betulin showed excellent potential in all assays. It was found that the inhibitory potential in all assays were dose dependent manner and after a range of concentration, the activities get leveled off with no further increase in activity.
Collapse
Affiliation(s)
- Prabhjit Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143001, India.,Medicinal Plant Research Laboratory, Post Graduate Department of Botany, Khalsa College, Amritsar, Punjab, 143001, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143001, India
| | - Rajbir Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143001, India. .,Medicinal Plant Research Laboratory, Post Graduate Department of Botany, Khalsa College, Amritsar, Punjab, 143001, India.
| |
Collapse
|
3
|
Catalán Ú, Pedret A, Yuste S, Rubió L, Piñol C, Sandoval-Ramírez BA, Companys J, Foguet E, Herrero P, Canela N, Motilva MJ, Solà R. Red-Fleshed Apples Rich in Anthocyanins and White-Fleshed Apples Modulate the Aorta and Heart Proteome in Hypercholesterolaemic Rats: The AppleCOR Study. Nutrients 2022; 14:nu14051047. [PMID: 35268023 PMCID: PMC8912372 DOI: 10.3390/nu14051047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
The impact of a red-fleshed apple (RFA) rich in anthocyanins (ACNs), a white-fleshed apple (WFA) without ACNs, and an extract infusion from Aronia fruit (AI) equivalent in dose of cyanidin-3-O-galactoside (main ACN) as RFA was determined by the proteome profile of aorta and heart as key cardiovascular tissues. Hypercholesterolaemic Wistar rats were separated into six groups (n = 6/group; three males and three females) and the proteomic profiles were analyzed using nanoliquid chromatography coupled to mass spectrometry. No adverse events were reported and all products were well tolerated. RFA downregulated C1QB and CFP in aorta and CRP in heart. WFA downregulated C1QB and CFP in aorta and C9 and C3 in aorta and heart, among other proteins. AI downregulated PRKACA, IQGAP1, and HSP90AB1 related to cellular signaling. Thus, both apples showed an anti-inflammatory effect through the complement system, while RFA reduced CRP. Regardless of the ACN content, an apple matrix effect was observed that involved different bioactive components, and inflammatory proteins were reduced.
Collapse
Affiliation(s)
- Úrsula Catalán
- Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Medicine and Surgery Department, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, 43201 Reus, Spain; (Ú.C.); (B.A.S.-R.); (R.S.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
- Unitat de Nutrició i Salut, Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain;
| | - Anna Pedret
- Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Medicine and Surgery Department, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, 43201 Reus, Spain; (Ú.C.); (B.A.S.-R.); (R.S.)
- Unitat de Nutrició i Salut, Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain;
- Correspondence: ; Tel.: +34-977-75-9375
| | - Silvia Yuste
- Food Technology Department, Universitat de Lleida-AGROTECNIO Center, 25198 Lleida, Spain; (S.Y.); (L.R.)
| | - Laura Rubió
- Food Technology Department, Universitat de Lleida-AGROTECNIO Center, 25198 Lleida, Spain; (S.Y.); (L.R.)
| | - Carme Piñol
- Department of Medicine, Universitat de Lleida, 25008 Lleida, Spain;
- Institut de Recerca Biomèdica de Lleida, Fundació Dr. Pifarré-IRBLleida, 25198 Lleida, Spain
| | - Berner Andrée Sandoval-Ramírez
- Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Medicine and Surgery Department, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, 43201 Reus, Spain; (Ú.C.); (B.A.S.-R.); (R.S.)
| | - Judit Companys
- Unitat de Nutrició i Salut, Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain;
| | - Elisabet Foguet
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (E.F.); (P.H.); (N.C.)
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (E.F.); (P.H.); (N.C.)
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (E.F.); (P.H.); (N.C.)
| | - Maria-Jose Motilva
- Instituto de Ciencias de la Vid y del Vino (ICVV), Gobierno de La Rioja, CSIC, Universidad de La Rioja, 26007 Logroño, Spain;
| | - Rosa Solà
- Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Medicine and Surgery Department, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, 43201 Reus, Spain; (Ú.C.); (B.A.S.-R.); (R.S.)
- Unitat de Nutrició i Salut, Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain;
- Hospital Universitari Sant Joan de Reus (HUSJR), 43204 Reus, Spain
| |
Collapse
|
4
|
Fylymonenko VP, Galuzinska LV, Kravchenko GB, Kravchenko VM, Bryukhanova ТО, Мaloshtan LМ, Lytkin DV. Effectiveness of food concentrate phenolic compounds of apples in experimental membrane pathologies. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Apple fruits are an available source of phenolic compounds that exhibit a wide range of biological activities (antioxidant, anti-inflammatory, membrane stabilizing, etc.). The antioxidant properties of food concentrate phenolic compounds of apples (Concentrate) were studied in vitro in models of spontaneous and ascorbate induced lipid peroxidation (LPO) in rat liver homogenate, and acute carbon tetrachloromethane hepatitis was chosen as in vivo model in rats. Membrane stabilizing activity was evaluated by the degree of hemolysis in blood samples from the tail vein. The effect of Concentrate on vascular permeability was studied considering the time of animal skin papules staining at the site of injection of phlogogenic substances. Hepatoprotective activity in the model of acute carbon tetrachloride hepatitis was assessed by changes in prooxidant-antioxidant status in liver homogenate and liver enzymes activity in serum. Significant antioxidant effect of Concentrate was fixed in models of spontaneous and ascorbate induced LPO (TBA reactants’ content was 3.12 times and 2.25 times lower than control for spontaneous LPO and ascorbate induced LPO, respectively) and under tetrachloride hepatitis (Concentrate antioxidant activity was 47.8%). The membrane-protective activity of the studied Concentrate was also high and reached 50.1%. Also, Concentrate demonstrated capillary-strengthening properties, reducing the permeability of the vascular wall, which was caused by three different chlorogens, most notably by zymosan (Concentrate significantly delayed the stain utilization from the bloodstream by 2.14 times compared to control). Newly developed concentrate showed complex hepatoprotective activity, improving the indices of antioxidant-prooxidant status and activity of liver cytolysis enzymes in rats with tetrachloromethane hepatitis. The transparent corrective effects of Concentrate are the result of synergism and additivity of its multiple components and indicate the prospects of its further research in order to develop medications for the prophylaxis and treatment of diseases associated with membrane damage.
Collapse
|
5
|
Dyshlyuk LS, Dmitrieva AI, Drozdova MY, Milentyeva IS, Prosekov AY. Relevance of bioassay of biologically active substances (BAS) with geroprotective properties in the model of the nematode Caenorhabditis elegans in experiments in vivo. Curr Aging Sci 2021; 15:121-134. [PMID: 34856917 DOI: 10.2174/1874609814666211202144911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/25/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022]
Abstract
Aging is a process global in nature. The age of living organisms contributes to the appearance of chronic diseases, which not only reduce the quality of life, but also significantly damage it. Modern medicines can successfully fight multiple diseases and prolong life. At the same time, medications have a large number of side effects. New research indicates that bioactive phytochemicals have great potential for treating even the most severe diseases and can become an alternative to medicines. Despite many studies in this area, the effects of many plant ingredients on living organisms are poorly understood. Analysis of the mechanisms through which herbal preparations influence the aging process helps to select the right active substances, determine the optimal doses to obtain the maximum positive effect. It is preferable to check the effectiveness of plant extracts and biologically active components with geroprotective properties in vivo. For these purposes, live model systems such as Rattus rattus, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans are used. These models help to comprehensively study the impact of the developed new drugs on the aging process. The model organism C. elegans is gaining increasing popularity in these studies because of its many advantages. This review article discusses the advantages of the nematode C. elegans as a model organism for studying the processes associated with aging. The influence of various BAS and plant extracts on the increase in the life span of the nematode, on the increase in its stress resistance and on other markers of aging is also considered. The review showed that the nematode C. elegans has a number of advantages over other organisms and is a promising model system for studying the geroprotective properties of BAS.
Collapse
Affiliation(s)
- Lyubov S Dyshlyuk
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Anastasiya I Dmitrieva
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Margarita Yu Drozdova
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Irina S Milentyeva
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Alexander Yu Prosekov
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| |
Collapse
|
6
|
Kwong MMY, Lee JW, Samian MR, Wahab HA, Watanabe N, Ong EBB. Identification of Tropical Plant Extracts That Extend Yeast Chronological Life Span. Cells 2021; 10:cells10102718. [PMID: 34685698 PMCID: PMC8534465 DOI: 10.3390/cells10102718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Certain plant extracts (PEs) contain bioactive compounds that have antioxidant and lifespan-extending activities on organisms. These PEs play different roles in cellular processes, such as enhancing stress resistance and modulating longevity-defined signaling pathways that contribute to longevity. Here, we report the discovery of PEs that extended chronological life span (CLS) in budding yeast from a screen of 222 PEs. We identified two PEs, the leaf extracts of Manihot esculenta and Wodyetia bifurcata that extended CLS in a dose-dependent manner. The CLS-extending PEs also conferred oxidative stress tolerance, suggesting that these PEs might extend yeast CLS through the upregulation of stress response pathways.
Collapse
Affiliation(s)
- Mandy Mun Yee Kwong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia—USM, Penang 11800, Malaysia; (M.M.Y.K.); (J.W.L.)
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia—USM, Penang 11800, Malaysia; (M.R.S.); (H.A.W.); (N.W.)
| | - Jee Whu Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia—USM, Penang 11800, Malaysia; (M.M.Y.K.); (J.W.L.)
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia—USM, Penang 11800, Malaysia; (M.R.S.); (H.A.W.); (N.W.)
| | - Mohammed Razip Samian
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia—USM, Penang 11800, Malaysia; (M.R.S.); (H.A.W.); (N.W.)
- School of Biological Sciences, Universiti Sains Malaysia—USM, Penang 11800, Malaysia
| | - Habibah A. Wahab
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia—USM, Penang 11800, Malaysia; (M.R.S.); (H.A.W.); (N.W.)
- School of Pharmaceutical Sciences, Universiti Sains Malaysia—USM, Penang 11800, Malaysia
| | - Nobumoto Watanabe
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia—USM, Penang 11800, Malaysia; (M.R.S.); (H.A.W.); (N.W.)
- Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia—USM, Penang 11800, Malaysia; (M.M.Y.K.); (J.W.L.)
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia—USM, Penang 11800, Malaysia; (M.R.S.); (H.A.W.); (N.W.)
- Correspondence:
| |
Collapse
|
7
|
Vuoso DC, Porcelli M, Cacciapuoti G, D’Angelo S. Biological Activity of MelAnnurca Flesh Apple Biophenols. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401316666200217113808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:
The apple is among the most consumed fruits in the world and several studies
suggest that apple polyphenols could play a role in preventing degenerative diseases. Recent studies
have shown that polyphenols possess a high antioxidant and/or anti-proliferative power, therefore
their food intake could play a decisive role in the prevention of various pathologies, in particular
those associated with the production of free radicals. The Annurca apple (MelAnnurca), a variety
from southern Italy, is called the "queen of apples" due to its remarkable organoleptic qualities: taste,
flavor and aroma. The Annurca apple is a constituent component of the Mediterranean diet and its
potential health benefit could be attributed to a large amount of bioactive components; in fact, this
apple is characterized by an extremely high content of polyphenols.
Objective:
The aim of this paper was to review the most recent literature regarding the health benefits
of Annurca apples and their phytochemicals. In particular, this review highlighted the effects of the
flesh of this fruit on different types of human cells.
Methods:
A literature research was performed using the keywords “Annurca”, “apple”, “flesh”,
“fruit”, “polyphenols”, “nutrition”, “nutraceuticals”, individually or all together, in Scopus, Web of
Science and PubMed.
Results:
The MelAnnurca apple has a higher content of bioactive compounds (polyphenols) than
other apples, making it an ideal source of nutraceuticals. Both the cytotoxic activity and the antioxidant
effect of the extracts of polyphenols obtained from its flesh have been highlighted.
Conclusion:
These results give new insights for future implementation of the production chain of the
Annurca apple in the area of Campania, Southern Italy. However, although evidence to support the
health benefits of MelAnnurca apple polyphenols is rapidly accumulating, further human studies may
be needed before the public is convinced and willing to incorporate the apple Annurca into their diet,
accepting the idea that the integration of polyphenols has a beneficial effect on the health of the human
body.
Collapse
Affiliation(s)
- Daniela C. Vuoso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marina Porcelli
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanna Cacciapuoti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Stefania D’Angelo
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| |
Collapse
|
8
|
Sharma R, Padwad Y. Perspectives of the potential implications of polyphenols in influencing the interrelationship between oxi-inflammatory stress, cellular senescence and immunosenescence during aging. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Sandoval-Ramírez BA, Catalán Ú, Calderón-Pérez L, Companys J, Pla-Pagà L, Ludwig IA, Romero MP, Solà R. The effects and associations of whole-apple intake on diverse cardiovascular risk factors. A narrative review. Crit Rev Food Sci Nutr 2020; 60:3862-3875. [PMID: 31928209 DOI: 10.1080/10408398.2019.1709801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Apples are among the world's most consumed fruits. However, while the impact of whole-apple intake on cardiovascular disease (CVD) remains unknown. This narrative review summarizes a novel integrated view of whole-apple intake, CVD risk association (through observational studies; OSs), and the effects on CVD risk factors (randomized trials; RTs). In 8 OSs, whole-apple intake was associated with a reduced risk of CVD mortality, ischemic heart disease mortality, stroke mortality, all-cause mortality, and severe abdominal aortic calcification, as well as with lower C-reactive protein (CRP) concentrations. In 8 RTs, whole-apple consumption reduced total cholesterol, low-density lipoprotein cholesterol, systolic blood pressure, pulse pressure, and plasma inflammatory cytokines, and noticeably reduced CRP, whereas it increased high-density lipoprotein cholesterol (HDLc) and improved endothelial function. Thus, consuming between 100 and 150 g/day of whole apples is associated with a lower CVD risk and decreases in blood pressure, pulse pressure, total cholesterol, low-density lipoprotein cholesterol, and inflammation status as well as with increases in HDLc and endothelial function. These results, support the regular consumption of whole apples as an aid in the prevention of CVD.
Collapse
Affiliation(s)
- Berner Andrée Sandoval-Ramírez
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Úrsula Catalán
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
| | - Lorena Calderón-Pérez
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Catalonia, Spain
| | - Judit Companys
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Catalonia, Spain
| | - Laura Pla-Pagà
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Catalonia, Spain
| | - Iziar A Ludwig
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Ma Paz Romero
- Food Technology Department, XaRTA-TPV, Agrotecnio Center, Escola Tecnica Superior d'Enginyeria Agraria, University of Lleida, Lleida, Catalonia, Spain
| | - Rosa Solà
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Hospital Universitari Sant Joan de Reus (HUSJR), Reus, Catalonia, Spain
| |
Collapse
|
10
|
Biradar SP, Tamboli AS, Khandare RV, Pawar PK. Chebulinic acid and Boeravinone B act as anti-aging and anti-apoptosis phyto-molecules during oxidative stress. Mitochondrion 2019; 46:236-246. [DOI: 10.1016/j.mito.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/24/2018] [Accepted: 07/13/2018] [Indexed: 11/25/2022]
|
11
|
Sommella E, Badolati N, Riccio G, Salviati E, Bottone S, Dentice M, Campiglia P, Tenore GC, Stornaiuolo M, Novellino E. A Boost in Mitochondrial Activity Underpins the Cholesterol-Lowering Effect of Annurca Apple Polyphenols on Hepatic Cells. Nutrients 2019; 11:E163. [PMID: 30646510 PMCID: PMC6356966 DOI: 10.3390/nu11010163] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
Reduction in cholesterol blood levels represents one of the therapeutic goals to achieve in order to reduce the occurrence of cardiovascular diseases. Commonly, this goal is attempted by promoting healthy lifestyle behaviors and low-fat diets. Recently, several nutraceuticals have been shown to possess cholesterol-lowering properties and are becoming common over the counter products. Among others, apple polyphenols efficiently lower total cholesterol levels in humans and impact overall lipid metabolism. Malus Pumila Miller cv Annurca is an apple native to Southern Italy presenting one of the highest content of procyanidin B2, a dimeric procyanidin. Tested in clinical trials, the oral consumption of an Annurca polyphenolic extract (AAE) exerted a cholesterol-lowering effect similar to the statins Atorvastatin and Simvastatin. Despite AAE activity, the analysis of the molecular mechanism behind its cholesterol-lowering effect is unclear. Using isotope labeling and high-resolution mass spectrometry approaches we here performed a metabolic profiling of in vitro cultured human hepatocytes treated with AAE to reveal its mechanism of action. The results show that AAE acts differently than statins. The extract reprograms hepatic cell metabolism and promotes mitochondrial respiration, lipolysis and fatty acid β-oxidation. Citrate and acetyl-CoA, both necessary for the production of cholesterol, are diverted to the Krebs Cycle by AAE, that, ultimately, lowers cholesterogenesis and fatty acid synthesis.
Collapse
Affiliation(s)
- Eduardo Sommella
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
| | - Nadia Badolati
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Gennaro Riccio
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Emanuela Salviati
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
| | - Sara Bottone
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80149 Naples, Italy.
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| |
Collapse
|
12
|
Sansone F, Mencherini T, Picerno P, Lauro MR, Cerrato M, Aquino RP. Development of Health Products from Natural Sources. Curr Med Chem 2019; 26:4606-4630. [PMID: 30259806 DOI: 10.2174/0929867325666180926152139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/07/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022]
Abstract
BioActive Compounds (BACs) recovered from food or food by-product matrices are useful in maintaining well being, enhancing human health, and modulating immune function to prevent or to treat chronic diseases. They are also generally seen by final consumers as safe, non-toxic and environment-friendly. Despite the complex process of production, chemical characterization, and assessment of health effects, BACs must also be manufactured in stable and bioactive ingredients to be used in pharmaceutical, food and nutraceutical industry. Generally, vegetable derivatives occur as sticky raw materials with pervasive smell and displeasing flavor. Also, they show critical water solubility and dramatic stability behavior over time, involving practical difficulties for industrial use. Therefore, the development of novel functional health products from natural sources requires the design of a suitable formulation to delivery BACs at the site of action, preserve stability during processing and storage, slow down the degradation processes, mask lousy tasting or smell, and increase the bioavailability, while maintaining the BACs functionality. The present review focuses on human health benefits, BACs composition, and innovative technologies or formulation approaches of natural ingredients from some selected foods and by-products from industrial food transformations.
Collapse
Affiliation(s)
| | | | - Patrizia Picerno
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | | | - Michele Cerrato
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | | |
Collapse
|
13
|
Yalcin G, Lee CK. Recent studies on anti-aging compounds with Saccharomyces cerevisiae as a model organism. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
14
|
Protective Role of Polyphenols against Vascular Inflammation, Aging and Cardiovascular Disease. Nutrients 2018; 11:nu11010053. [PMID: 30597847 PMCID: PMC6357531 DOI: 10.3390/nu11010053] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 01/02/2023] Open
Abstract
Aging is a major risk factor in the development of chronic diseases affecting various tissues including the cardiovascular system, muscle and bones. Age-related diseases are a consequence of the accumulation of cellular damage and reduced activity of protective stress response pathways leading to low-grade systemic inflammation and oxidative stress. Both inflammation and oxidative stress are major contributors to cellular senescence, a process in which cells stop proliferating and become dysfunctional by secreting inflammatory molecules, reactive oxygen species (ROS) and extracellular matrix components that cause inflammation and senescence in the surrounding tissue. This process is known as the senescence associated secretory phenotype (SASP). Thus, accumulation of senescent cells over time promotes the development of age-related diseases, in part through the SASP. Polyphenols, rich in fruits and vegetables, possess antioxidant and anti-inflammatory activities associated with protective effects against major chronic diseases, such as cardiovascular disease (CVD). In this review, we discuss molecular mechanisms by which polyphenols improve anti-oxidant capacity, mitochondrial function and autophagy, while reducing oxidative stress, inflammation and cellular senescence in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). We also discuss the therapeutic potential of polyphenols in reducing the effects of the SASP and the incidence of CVD.
Collapse
|
15
|
Riccio G, Sommella E, Badolati N, Salviati E, Bottone S, Campiglia P, Dentice M, Tenore GC, Stornaiuolo M, Novellino E. Annurca Apple Polyphenols Protect Murine Hair Follicles from Taxane Induced Dystrophy and Hijacks Polyunsaturated Fatty Acid Metabolism toward β-Oxidation. Nutrients 2018; 10:nu10111808. [PMID: 30463345 PMCID: PMC6267362 DOI: 10.3390/nu10111808] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/31/2018] [Accepted: 11/14/2018] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy-induced alopecia (CIA) is a common side effect of conventional chemotherapy and represents a major problem in clinical oncology. Even months after the end of chemotherapy, many cancer patients complain of hair loss, a condition that is psychologically difficult to manage. CIA disturbs social and sexual interactions and causes anxiety and depression. Synthetic drugs protecting from CIA and endowed with hair growth stimulatory properties are prescribed with caution by oncologists. Hormones, growth factors, morphogens could unwontedly protect tumour cells or induce cancer cell proliferation and are thus considered incompatible with many chemotherapy regimens. Nutraceuticals, on the contrary, have been shown to be safe and effective treatment options for hair loss. We here show that polyphenols from Malus Pumila Miller cv Annurca are endowed with hair growth promoting activity and can be considered a safe alternative to avoid CIA. In vitro, Annurca Apple Polyphenolic Extract (AAE) protects murine Hair Follicles (HF) from taxanes induced dystrophy. Moreover, in virtue of its mechanism of action, AAE is herein proven to be compatible with chemotherapy regimens. AAE forces HFs to produce ATP using mitochondrial β-oxidation, reducing Pentose Phosphate Pathway (PPP) rate and nucleotides production. As consequence, DNA replication and mitosis are not stimulated, while a pool of free amino acids usually involved in catabolic reactions are spared for keratin production. Moreover, measuring the effect exerted on Poly Unsaturated Fatty Acid (PUFA) metabolism, we prove that AAE promotes hair-growth by increasing the intracellular levels of Prostaglandins F2α (PGF2α) and by hijacking PUFA catabolites toward β-oxidation.
Collapse
Affiliation(s)
- Gennaro Riccio
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Eduardo Sommella
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Nadia Badolati
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Emanuela Salviati
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Sara Bottone
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80149 Naples, Italy.
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| |
Collapse
|
16
|
Badolati N, Sommella E, Riccio G, Salviati E, Heintz D, Bottone S, Di Cicco E, Dentice M, Tenore G, Campiglia P, Stornaiuolo M, Novellino E. Annurca Apple Polyphenols Ignite Keratin Production in Hair Follicles by Inhibiting the Pentose Phosphate Pathway and Amino Acid Oxidation. Nutrients 2018; 10:nu10101406. [PMID: 30279339 PMCID: PMC6213762 DOI: 10.3390/nu10101406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
Patterned hair loss (PHL) affects around 50% of the adult population worldwide. The negative impact that this condition exerts on people’s life quality has boosted the appearance of over-the-counter products endowed with hair-promoting activity. Nutraceuticals enriched in polyphenols have been recently shown to promote hair growth and counteract PHL. Malus pumila Miller cv. Annurca is an apple native to Southern Italy presenting one of the highest contents of Procyanidin B2. We have recently shown that oral consumption of Annurca polyphenolic extracts (AAE) stimulates hair growth, hair number, hair weight and keratin content in healthy human subjects. Despite its activity, the analysis of the molecular mechanism behind its hair promoting effect is still partially unclear. In this work we performed an unprecedented metabolite analysis of hair follicles (HFs) in mice topically treated with AAE. The metabolomic profile, based on a high-resolution mass spectrometry approach, revealed that AAE re-programs murine HF metabolism. AAE acts by inhibiting several NADPH dependent reactions. Glutaminolysis, pentose phosphate pathway, glutathione, citrulline and nucleotide synthesis are all halted in vivo by the treatment of HFs with AAE. On the contrary, mitochondrial respiration, β-oxidation and keratin production are stimulated by the treatment with AAE. The metabolic shift induced by AAE spares amino acids from being oxidized, ultimately keeping them available for keratin biosynthesis.
Collapse
Affiliation(s)
- Nadia Badolati
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Eduardo Sommella
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Gennaro Riccio
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Emanuela Salviati
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Dimitri Heintz
- Plant Imaging and Mass Spectrometry, Institut de Biologie Moleculaire des Plantes, CNRS, Universite de Strasbourg, 67000 Strasbourg, France.
| | - Sara Bottone
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80149 Naples, Italy.
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80149 Naples, Italy.
| | - Giancarlo Tenore
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| |
Collapse
|
17
|
Ding AJ, Zheng SQ, Huang XB, Xing TK, Wu GS, Sun HY, Qi SH, Luo HR. Current Perspective in the Discovery of Anti-aging Agents from Natural Products. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:335-404. [PMID: 28567542 PMCID: PMC5655361 DOI: 10.1007/s13659-017-0135-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/16/2017] [Indexed: 05/18/2023]
Abstract
Aging is a process characterized by accumulating degenerative damages, resulting in the death of an organism ultimately. The main goal of aging research is to develop therapies that delay age-related diseases in human. Since signaling pathways in aging of Caenorhabditis elegans (C. elegans), fruit flies and mice are evolutionarily conserved, compounds extending lifespan of them by intervening pathways of aging may be useful in treating age-related diseases in human. Natural products have special resource advantage and with few side effect. Recently, many compounds or extracts from natural products slowing aging and extending lifespan have been reported. Here we summarized these compounds or extracts and their mechanisms in increasing longevity of C. elegans or other species, and the prospect in developing anti-aging medicine from natural products.
Collapse
Affiliation(s)
- Ai-Jun Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shan-Qing Zheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiao-Bing Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ti-Kun Xing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Gui-Sheng Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hua-Ying Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Shu-Hua Qi
- Guangdong Key Laboratory of Marine Material Medical, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, Guangdong, China
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 134 Lanhei Road, Kunming, 650201, Yunnan, China.
| |
Collapse
|