1
|
Zhu L, He J. Morin Ameliorates Myocardial Injury in Diabetic Rats via Modulation of Autophagy, Apoptosis, Inflammation, and Oxidative Stress. Diabetes Metab Syndr Obes 2024; 17:4867-4882. [PMID: 39742288 PMCID: PMC11687097 DOI: 10.2147/dmso.s476867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/07/2024] [Indexed: 01/03/2025] Open
Abstract
Background Morin is a flavonol with beneficial effects on diabetic-related injuries. However, the effect of morin on diabetic cardiomyopathy and its association with autophagy, apoptosis, inflammation, and oxidative stress remains unclear. The current study aimed to reveal the mechanisms underlying morin-mediated protection against cardiac failure in diabetic rats. Methods Diabetic cardiomyopathy in albino Wistar rats was induced by streptozotocin (STZ). After treatment with a dose of 25, 50, and 100 mg/kg/day orally for the next 60 days, autophagic (p62, LC3, and BECN1), apoptotic (BCL2, CASP-3, and CASP9), inflammatory (IL-1β, IL-6, TNF-α), and oxidative stress (CAT, SOD, and MDA) markers in protein and gene levels as well as cardiac function tests were measured. Results The findings revealed that long-term morin treatment improved weight gain, lipid and glycemic profile, hypertension, and cardiac hypertrophy and fibrosis in diabetic rats compared to controls (p-value<0.001). Moreover, the upregulation of BCL-2, LC3, and BECN1 along with the downregulation of p62, CASP-3, and CASP-9 revealed that morin suppressed apoptosis and promoted autophagy in the cardiac tissue of rats with diabetes (p-value<0.05). Additionally, the reduction in IL-1β, IL-6, TNF-α, and MDA levels and the increment of SOD and CAT activity suggested that morin decreased inflammation and apoptosis in the heart of the rat models of diabetes (p-value<0.01). Conclusion These results may highlight the potential properties of morin as a therapeutic strategy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, People’s Republic of China
| | - Jizhong He
- Department of Cardiology, Yan’an People’s Hospital, Yan’an, 716000, People’s Republic of China
| |
Collapse
|
2
|
Klichkhanov NK, Suleimanova MN. Chemical Composition and Therapeutic Effects of Several Astragalus Species (Fabaceae). DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 518:172-186. [PMID: 39128957 DOI: 10.1134/s0012496624701096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024]
Abstract
The review integrates information on the component composition and biological activity of some Astragalus L. (Fabaceae) species from studies reported over the past 5-7 years. The aerial and underground parts of 34 Astragalus species contain triterpene saponins, flavonoids, polysacharides, tannins, free organic acids, higher fatty acids, vitamins, trace elements, and other constituents. Among the Astragalus species, A. membranaceus (Fisch.) Bunge is the best studied in terms of component composition and biological activity. Anti-inflammatory, immunomodulatory, antioxidant, anticancer, cardioprotective, and hepathoprotective activities have been experimentally detected in total bioactive substances, fractions, and individual compounds extracted from various parts of A. membranaceus and A. membranaceus var. mongholicus in vitro and in vivo. The composition and biological effects of other Astragalus species are still poorly understood. The review summarizes the recent advances in studying new compounds extracted from Astragalus species and their biological activities.
Collapse
|
3
|
Wang J, Xue H, He J, Deng L, Tian J, Jiang Y, Feng J. Therapeutic potential of finerenone for diabetic cardiomyopathy: focus on the mechanisms. Diabetol Metab Syndr 2024; 16:232. [PMID: 39289758 PMCID: PMC11409712 DOI: 10.1186/s13098-024-01466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a kind of myocardial disease that occurs in diabetes patients and cannot be explained by hypertensive heart disease, coronary atherosclerotic heart disease and other heart diseases. Its pathogenesis may be closely related to programmed cell death, oxidative stress, intestinal microbes and micro-RNAs. The excessive activation of mineralocorticoid receptors (MR) in DCM can cause damage to the heart and kidneys. The third-generation non-steroidal mineralocorticoid receptor antagonist (MRA), finerenone, can effectively block MR, thus playing a role in protecting the heart and kidneys. This review mainly introduces the classification of MRA, and the mechanism of action, applications and limitations of finerenone in DCM, in order to provide reference for the study of treatment plans for DCM patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China
| | - Haojie Xue
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China
| | - Jinyu He
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Julong Tian
- Department of Cardiology, The Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Yang Jiang
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China.
| | - Jian Feng
- Department of Cardiology, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University; Southwest Medical University Affiliated Hospital Medical Group Gulin Hospital (Gulin County People's Hospital), Luzhou, Sichuan, China.
| |
Collapse
|
4
|
Pan X, Hao E, Zhang F, Wei W, Du Z, Yan G, Wang X, Deng J, Hou X. Diabetes cardiomyopathy: targeted regulation of mitochondrial dysfunction and therapeutic potential of plant secondary metabolites. Front Pharmacol 2024; 15:1401961. [PMID: 39045049 PMCID: PMC11263127 DOI: 10.3389/fphar.2024.1401961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a specific heart condition in diabetic patients, which is a major cause of heart failure and significantly affects quality of life. DCM is manifested as abnormal cardiac structure and function in the absence of ischaemic or hypertensive heart disease in individuals with diabetes. Although the development of DCM involves multiple pathological mechanisms, mitochondrial dysfunction is considered to play a crucial role. The regulatory mechanisms of mitochondrial dysfunction mainly include mitochondrial dynamics, oxidative stress, calcium handling, uncoupling, biogenesis, mitophagy, and insulin signaling. Targeting mitochondrial function in the treatment of DCM has attracted increasing attention. Studies have shown that plant secondary metabolites contribute to improving mitochondrial function and alleviating the development of DCM. This review outlines the role of mitochondrial dysfunction in the pathogenesis of DCM and discusses the regulatory mechanism for mitochondrial dysfunction. In addition, it also summarizes treatment strategies based on plant secondary metabolites. These strategies targeting the treatment of mitochondrial dysfunction may help prevent and treat DCM.
Collapse
Affiliation(s)
- Xianglong Pan
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wei Wei
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Guangli Yan
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xijun Wang
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiaotao Hou
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
5
|
Liu S, Wang L, Zhang Z, Leng Y, Yang Y, Fu X, Xie H, Gao H, Xie C. The potential of astragalus polysaccharide for treating diabetes and its action mechanism. Front Pharmacol 2024; 15:1339406. [PMID: 38659573 PMCID: PMC11039829 DOI: 10.3389/fphar.2024.1339406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Type 2 diabetes presents a significant global health burden and is frequently linked to serious clinical complications, including diabetic cardiomyopathy, nephropathy, and retinopathy. Astragalus polysaccharide (APS), extracted from Astragalus membranaceus, exhibits various biochemical and physiological effects. In recent years, a growing number of researchers have investigated the role of APS in glucose control and the treatment of diabetes and its complications in various diabetes models, positioning APS as a promising candidate for diabetes therapy. This review surveys the literature on APS from several databases over the past 20 years, detailing its mechanisms of action in preventing and treating diabetes mellitus. The findings indicate that APS can address diabetes by enhancing insulin resistance, modulating the immune system, protecting islet cells, and improving the intestinal microbiota. APS demonstrates positive pharmacological value and clinical potential in managing diabetic complications, including diabetic retinopathy, nephropathy, cardiomyopathy, cognitive dysfunction, wound healing, and more. However, further research is necessary to explore APS's bioavailability, optimal dosage, and additional clinical evidence.
Collapse
Affiliation(s)
- Shiyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Luyao Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zehua Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - YuLin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Li L, Xie J, Zhang Z, Xia B, Li Y, Lin Y, Li M, Wu P, Lin L. Recent advances in medicinal and edible homologous plant polysaccharides: Preparation, structure and prevention and treatment of diabetes. Int J Biol Macromol 2024; 258:128873. [PMID: 38141704 DOI: 10.1016/j.ijbiomac.2023.128873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Medicinal and edible homologs (MEHs) can be used in medicine and food. The National Health Commission announced that a total of 103 kinds of medicinal and edible homologous plants (MEHPs) would be available by were available in 2023. Diabetes mellitus (DM) has become the third most common chronic metabolic disease that seriously threatens human health worldwide. Polysaccharides, the main component isolated from MEHPs, have significant antidiabetic effects with few side effects. Based on a literature search, this paper summarizes the preparation methods, structural characterization, and antidiabetic functions and mechanisms of MEHPs polysaccharides (MEHPPs). Specifically, MEHPPs mainly regulate PI3K/Akt, AMPK, cAMP/PKA, Nrf2/Keap1, NF-κB, MAPK and other signaling pathways to promote insulin secretion and release, improve glycolipid metabolism, inhibit the inflammatory response, decrease oxidative stress and regulate intestinal flora. Among them, 16 kinds of MEHPPs were found to have obvious anti-diabetic effects. This article reviews the prevention and treatment of diabetes and its complications by MEHPPs and provides a basis for the development of safe and effective MEHPP-derived health products and new drugs to prevent and treat diabetes.
Collapse
Affiliation(s)
- Lan Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Minjie Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Ping Wu
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| |
Collapse
|
7
|
Zhang W, Ju Y, Ren Y, Miao Y, Wang Y. Exploring the Efficient Natural Products for the Therapy of Parkinson's Disease via Drosophila Melanogaster (Fruit Fly) Models. Curr Drug Targets 2024; 25:77-93. [PMID: 38213160 DOI: 10.2174/0113894501281402231218071641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 01/13/2024]
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disorder, partly attributed to mutations, environmental toxins, oxidative stress, abnormal protein aggregation, and mitochondrial dysfunction. However, the precise pathogenesis of PD and its treatment strategy still require investigation. Fortunately, natural products have demonstrated potential as therapeutic agents for alleviating PD symptoms due to their neuroprotective properties. To identify promising lead compounds from herbal medicines' natural products for PD management and understand their modes of action, suitable animal models are necessary. Drosophila melanogaster (fruit fly) serves as an essential model for studying genetic and cellular pathways in complex biological processes. Diverse Drosophila PD models have been extensively utilized in PD research, particularly for discovering neuroprotective natural products. This review emphasizes the research progress of natural products in PD using the fruit fly PD model, offering valuable insights into utilizing invertebrate models for developing novel anti-PD drugs.
Collapse
Affiliation(s)
- Wen Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yingjie Ju
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yunuo Ren
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
8
|
Nanophytosomes Loading Andrographis paniculata Hydroalcoholic Extract: Promising Drug Delivery for Hepatoprotective Efficacy. J Pharm Innov 2023. [DOI: 10.1007/s12247-023-09712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Sun S, Yang S, Zhang N, Yu C, Liu J, Feng W, Xu W, Mao Y. Astragalus polysaccharides alleviates cardiac hypertrophy in diabetic cardiomyopathy via inhibiting the BMP10-mediated signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154543. [PMID: 36610158 DOI: 10.1016/j.phymed.2022.154543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cardiac hypertrophy can lead to cardiac dysfunction and is closely associated with mortality in diabetic cardiomyopathy (DCM). Astragalus polysaccharides (APS) is the main component extracted from Astragalus membranaceus (Fisch.) Bunge (AM), which exhibits anti-hypertrophic effects on cardiomyocytes in various diseases. However, whether APS exerts anti-hypertrophic effects in DCM remains unclear. PURPOSE To investigate whether APS can attenuate cardiac hypertrophy in DCM and exert anti-hypertrophic effects by inhibiting the bone morphogenetic protein 10 (BMP10) pathway. METHODS The anti-hypertrophic effects of APS were studied in high-glucose (HG)-stimulated H9c2 cardiomyocytes and streptozotocin (STZ)-induced DCM rats. BMP10 siRNA was used to inhibit BMP10 expression in H9c2 cardiomyocytes. Cardiac function was assessed by echocardiography. Cardiac hypertrophy was evaluated using heart weight/body weight (HW/BW), RT-PCR, hematoxylin-eosin (HE), and rhodamine phalloidin staining. Changes in hypertrophic components, including BMP10 and downstream factors, were measured using western blotting. RESULTS In vitro, HG treatment increased the relative cell surface area of H9c2 cardiomyocytes, whereas BMP10 siRNA transfection or APS treatment alleviated the increase induced by HG. APS treatment improved the general condition, increased cardiac function, and decreased the HW/BW ratio, ANP mRNA level, and cardiomyocyte cross-sectional area of DCM rats in vivo. Molecular experiments demonstrated that APS downregulated the levels of the pro-hypertrophic protein BMP10 and its downstream proteins ALK3, BMPRII, and p-Smad1/5/8 without affecting the level of total Smad1/5/8. CONCLUSIONS Our study demonstrates that APS can alleviate cardiac hypertrophy and protect against DCM by inhibiting activation of the BMP10 pathway. APS is a promising candidate for DCM treatment.
Collapse
Affiliation(s)
- Shuqin Sun
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shuo Yang
- Department of Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Nannan Zhang
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chunpeng Yu
- Department of Interventional Medical Center, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Junjun Liu
- Department of Vascular Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wenjing Feng
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wanqun Xu
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yongjun Mao
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
10
|
Astragalus Polysaccharides Promote Wound Healing in Diabetic Rats by Upregulating PETN and Inhibiting the mTOR Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3459102. [PMID: 36277005 PMCID: PMC9586772 DOI: 10.1155/2022/3459102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/18/2022]
Abstract
Objective. Presently, astragalus polysaccharide (APS) is being investigated for its therapeutic potential in various diseases; however, its underlying mechanism has not yet been clarified. This study was aimed at observing the effects of APS on wound healing in diabetic rats and at exploring its underlying mechanism. Methods. Streptozotocin was injected into the tail vein of SD rats to induce diabetic animal models, in which an incision on the back was made. Rats were treated with different dosages of APS to observe their wound healing. Additionally, RT-qPCR and Western blot assay were conducted to observe the expression levels of PTEN and mTOR pathway-associated factors. Results. Diabetic rats had a prolonged wound healing process, fewer blood vessels, and increased inflammatory response, in which decreased PTEN and elevated mTOR phosphorylation were also identified. APS effectively improved wound healing in a dose-dependent manner by inhibiting the release of inflammatory mediators and attenuating endothelial injuries. Suppression of PTEN could effectively increase the phosphorylation of mTOR and diminish the therapeutic functions of APS on wound healing in diabetic rats. Conclusion. This study highlighted that APS could promote wound healing in diabetic rats by upregulating PTEN and suppressing the mTOR pathway activation.
Collapse
|
11
|
Tang Z, Huang G. Extraction, structure, and activity of polysaccharide from Radix astragali. Biomed Pharmacother 2022; 150:113015. [PMID: 35468585 DOI: 10.1016/j.biopha.2022.113015] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Radix astragali polysaccharide (RAP) is a water-soluble heteropolysaccharide. It is an immune promoter and regulator, and has antivirus, antitumor, anti-aging, anti-radiation, anti-stress, anti-oxidation and other activitys. The extraction, separation, purification, structure, activity and modification of RAP were summarized. Some extraction methods of RAP had been introduced, and the separation and purification methods of RAP were reviewed, and the structure and activity of RAP were highly discussed. Current derivatization of RAP was outlined. Through the above discussion that the yield of crude polysaccharides from Radix astragali by enzyme-assisted extraction was significantly higher than that by other extraction methods, but each extraction method had different extraction effects under certain conditions, and the activity efficiency of RAP was also different. Therefore, it is particularly important to optimize the extraction method with known better yield for the study of RAP. In addition, the purification and separation of RAP are the key factors affecting the yield and activity of RAP. At the same time, there are still few studies on the derivatiration of Radix astragali polysaccharide, but the researches in this area are very important. RAP also has many important pharmacological effects on human body, but its practical application needs further study. Finally, studies on the structure-activity relationship of RAP still need to be carried out by many scholars. This review would provide some help for further researches on various important applications of RAP.
Collapse
Affiliation(s)
- Zhenjie Tang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
12
|
Du Y, Wan H, Huang P, Yang J, He Y. A critical review of Astragalus polysaccharides: From therapeutic mechanisms to pharmaceutics. Pharmacotherapy 2022; 147:112654. [DOI: 10.1016/j.biopha.2022.112654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 12/12/2022]
|
13
|
Miao XY, Zhu XX, Gu ZY, Fu B, Cui SY, Zu Y, Rong LJ, Hu F, Chen XM, Gong YP, Li CL. Astragalus Polysaccharides Reduce High-glucose-induced Rat Aortic Endothelial Cell Senescence and Inflammasome Activation by Modulating the Mitochondrial Na +/Ca 2+ Exchanger. Cell Biochem Biophys 2022; 80:341-353. [PMID: 35107747 DOI: 10.1007/s12013-021-01058-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Vascular endothelial cells play a vital role in atherosclerotic changes and the progression of cardiovascular disease in older adults. Previous studies have indicated that Astragalus polysaccharides (APS), a main active component of the traditional Chinese medicine Astragalus, protect mitochondria and exert an antiaging effect in the mouse liver and brain. However, the effect of APS on rat aortic endothelial cell (RAEC) senescence and its underlying mechanism have not been investigated. In this study, we extracted RAECs from 2-month-old male Wistar rats by the tissue explant method and found that APS ameliorated the high-glucose-induced increase in the frequency of SA-β-Gal positivity and the levels of the senescence-related proteins p16, p21, and p53. APS increased the tube formation capacity of RAECs under high-glucose conditions. Moreover, APS enhanced the expression of the mitochondrial Na+/Ca2+ exchanger NCLX, and knockdown of NCLX by small interfering RNA (siRNA) transfection suppressed the antiaging effect of APS under high-glucose conditions. Additionally, APS ameliorated RAEC mitochondrial dysfunction, including increasing ATP production, cytochrome C oxidase activity and the oxygen consumption rate (OCR), and inhibited high-glucose-induced NLRP3 inflammasome activation and IL-1β release, which were reversed by siNCLX. These results indicate that APS reduces high-glucose-induced inflammasome activation and ameliorates mitochondrial dysfunction and senescence in RAECs by modulating NCLX. Additionally, APS enhanced the levels of autophagy-related proteins (LC3B-II/I, Atg7) and increased the quantity of autophagic vacuoles under high-glucose conditions. Therefore, these data demonstrate that APS may reduce vascular endothelial cell inflammation and senescence through NCLX.
Collapse
Affiliation(s)
- Xin-Yu Miao
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Xiao Zhu
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhao-Yan Gu
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bo Fu
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Shao-Yuan Cui
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yuan Zu
- Department of Blood Purification, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ling-Jun Rong
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Fan Hu
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiang-Mei Chen
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yan-Ping Gong
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| | - Chun-Lin Li
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
14
|
Astragaloside IV protects diabetic cardiomyopathy against inflammation and apoptosis via regulating TLR4/MyD88/NF-κB signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Ren BC, Zhang W, Zhang W, Ma JX, Pei F, Li BY. Melatonin attenuates aortic oxidative stress injury and apoptosis in STZ-diabetes rats by Notch1/Hes1 pathway. J Steroid Biochem Mol Biol 2021; 212:105948. [PMID: 34224859 DOI: 10.1016/j.jsbmb.2021.105948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022]
Abstract
Oxidative stress injury is an important link in the pathogenesis of diabetes, and reducing oxidative stress damage caused by long-term hyperglycemia is an important diabetic treatment strategy. Melatonin has been proved to be a free radical scavenger with strong antioxidant activity, and its protective effect on diabetes and the complications has been confirmed. However, the role and potential mechanism of melatonin in oxidative stress injury of diabetic aorta have not been reported. Besides, Notch signaling pathway plays an important role in vascular growth, differentiation, and apoptosis. We speculated that melatonin could improve oxidative stress injury of diabetic aorta through Notch1/Hes1 signaling pathway. STZ-induced diabetic rats and vascular smooth muscle cells (VSMCs) cultured with high glucose were treated with or without melatonin, melatonin receptor antagonist Luzindole, γ-secretase inhibitor DAPT respectively. We found that melatonin could improve the oxidative stress injury of diabetic aorta and reduce the apoptosis of VSMCs. Interestingly, melatonin could activate Notch1 signaling pathway, play an antioxidant role, and reduce the expression of apoptosis-related proteins. However, these protective effects could be largely eliminated by Luzindole or DAPT. We concluded that the repression of Notch1 signaling pathway would inhibit the repair of oxidative stress injury in diabetes. Melatonin could ameliorate oxidative stress injury and apoptosis of diabetic aorta by activating Notch1/Hes1 signaling pathway.
Collapse
Affiliation(s)
- Bin-Cheng Ren
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Wen Zhang
- Department of Cardiovascular Surgery, Fuwai Hospital Chinese Academy of Medical Sciences, ShenZhen, China.
| | - Wei Zhang
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Jian-Xing Ma
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Fei Pei
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Bu-Ying Li
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| |
Collapse
|
16
|
Li M, Huang X, Zhang Q, Zhou Y, Luo K. Structure of
Cardamine hupingshanensis
No. 2 Polysaccharide (CHP‐2) and Its Effect on Streptozotocin‐induced Diabetic Rats. STARCH-STARKE 2021. [DOI: 10.1002/star.202000250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Meidong Li
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| | - Xiufang Huang
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| | - Qin Zhang
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| | - Yifeng Zhou
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| | - Kai Luo
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| |
Collapse
|
17
|
Durazzo A, Nazhand A, Lucarini M, Silva AM, Souto SB, Guerra F, Severino P, Zaccardelli M, Souto EB, Santini A. Astragalus (Astragalus membranaceus Bunge): botanical, geographical, and historical aspects to pharmaceutical components and beneficial role. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-021-01003-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractMedicinal plants always are part of folk medicine and are nowadays receiving worldwide attention for prophylaxis, management, and treatment of several diseases, as an alternative to chemical drugs. The current work provided a comprehensive overview and analysis of the Astragalus and health relationship in literature. The analysis of their therapeutic potential is thus instrumental to understand their bioactivity. Among these, the flowering medicinal plant Astragalus membranaceus has raised interest due to several beneficial health effects. This perspective review discussed the botanical, geographical, historical, and the therapeutic properties of A. membranaceus, with a special focus on its health improving effects and medicinal applications both in vitro and in vivo.
Graphic abstract
Collapse
|
18
|
Sangweni NF, Mosa RA, Dludla PV, Kappo AP, Opoku AR, Muller CJF, Johnson R. The triterpene, methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA3), attenuates high glucose-induced oxidative damage and apoptosis by improving energy metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153546. [PMID: 33799221 DOI: 10.1016/j.phymed.2021.153546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Hyperglycemia-induced cardiovascular dysfunction has been linked to oxidative stress and accelerated apoptosis in the diabetic myocardium. While there is currently no treatment for diabetic cardiomyopathy (DCM), studies suggest that the combinational use of anti-hyperglycemic agents and triterpenes could be effective in alleviating DCM. HYPOTHESIS To investigate the therapeutic effect of methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA3), in the absence or presence of the anti-diabetic drug, metformin (MET), against hyperglycemia-induced cardiac injury using an in vitro H9c2 cell model. METHODS To mimic a hyperglycemic state, H9c2 cells were exposed to high glucose (HG, 33 mM) for 24 h. Thereafter, the cells were treated with RA3 (1 μM), MET (1 μM) and the combination of MET (1 μM) plus RA3 (1 μM) for 24 h, to assess the treatments therapeutic effect. RESULTS Biochemical analysis revealed that RA3, with or without MET, improves glucose uptake via insulin-dependent (IRS-1/PI3K/Akt signaling) and independent (AMPK) pathways whilst ameliorating the activity of antioxidant enzymes in the H9c2 cells. Mechanistically, RA3 was able to alleviate HG-stimulated oxidative stress through the inhibition of reactive oxygen species (ROS) and lipid peroxidation as well as the reduced expression of the PKC/NF-кB cascade through decreased intracellular lipid content. Subsequently, RA3 was able to mitigate HG-induced apoptosis by decreasing the activity of caspase 3/7 and DNA fragmentation in the cardiomyoblasts. CONCLUSION RA3, in the absence or presence of MET, demonstrated potent therapeutic properties against hyperglycemia-mediated cardiac damage and could be a suitable candidate in the prevention of DCM.
Collapse
Affiliation(s)
- Nonhlakanipho F Sangweni
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| | - Rebamang A Mosa
- Department of Biochemistry, Genetics and Microbiology (BGM), Division of Biochemistry, University of Pretoria, Hatfield 0028, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Abidemi P Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa
| | - Andy R Opoku
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| |
Collapse
|
19
|
Astragalus polysaccharide attenuates metabolic memory-triggered ER stress and apoptosis via regulation of miR-204/SIRT1 axis in retinal pigment epithelial cells. Biosci Rep 2020; 40:221735. [PMID: 31894851 PMCID: PMC6974424 DOI: 10.1042/bsr20192121] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background: ‘Metabolic memory’ of early hyperglycaemic environment has been frequently suggested in the progression of diabetic retinopathy (DR). Retinal pigment epithelial (RPE) cells are crucial targets for DR initiation following hyperglycaemia. Astragalus polysaccharides (APS) has been long used as a traditional Chinese medicine in treating diabetes. In the present study, the preventive effects and mechanisms of APS on metabolic memory-induced RPE cell death were investigated. Methods: The expressions of miR-204 and SIRT1 were determined by reverse transcription quantitative PCR (RT-qPCR). Dual luciferase assay was applied to detect the potential targeting effects of miR-204 on SIRT1. SIRT1, ER stress and apoptosis related proteins were monitored using Western blotting. Apoptosis was assessed by TUNEL assay and Annexin V/PI staining followed by flow cytometry analysis. MiR-204 mimics and shSIRT1 were applied for miR-204 overexpression and SIRT1 knockdown, respectively. Results: High glucose exposure induced metabolic memory, which was accompanied with sustained dysregulation of miR-204/SIRT1 axis, high level of ER stress and activation of apoptotic pathway even after replacement with normal glucose. Pre-treatment with APS concentration-dependently reversed miR-204 expression, leading to disinhibition of SIRT1 and alleviation of ER stress-induced apoptosis indicated by decreased levels of p-PERK, p-IRE-1, cleaved-ATF6, Bax, cleaved caspase-12, -9, -3, and increased levels of Bcl-2 and unleaved PARP. The effects of APS on RPE cells were reversed by either miR-204 overexpression or SIRT1 knockdown. Conclusions: We concluded that APS inhibited ER stress and subsequent apoptosis via regulating miR-204/SIRT1 axis in metabolic memory model of RPE cells.
Collapse
|
20
|
Upregulation of miRNA-23a-3p rescues high glucose-induced cell apoptosis and proliferation inhibition in cardiomyocytes. In Vitro Cell Dev Biol Anim 2020; 56:866-877. [PMID: 33197036 PMCID: PMC7723946 DOI: 10.1007/s11626-020-00518-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Maternal hyperglycemia potentially inhibits the development of the fetal heart by suppressing cardiomyocyte proliferation and promoting apoptosis. Different studies have indicated that miRNAs are key regulators of cardiomyocyte proliferation, differentiation, and apoptosis and play a protective role in a variety of cardiovascular diseases. However, the biological function of miRNA-23a in hyperglycemia-related cardiomyocyte injury is not fully understood. The present study investigated the effect of miRNA-23a-3p on cell proliferation and apoptosis in a myocardial injury model induced by high glucose. H9c2 cardiomyocytes were exposed to high glucose to establish an in vitro myocardial injury model and then transfected with miRNA-23a-3p mimics. After miRNA-23a-3p transfection, lens-free microscopy was used to dynamically monitor cell numbers and confluence and calculate the cell cycle duration. CCK-8 and EdU incorporation assays were performed to detect cell proliferation. Flow cytometry was used to measured cell apoptosis. Upregulation of miRNA-23a-3p significantly alleviated high glucose-induced cell apoptosis and cell proliferation inhibition (p < 0.01 and p < 0.0001, respectively). The cell cycle of the miRNA-23a-3p mimics group was significantly shorter than that of the negative control group (p < 0.01). The expression of cell cycle–activating and apoptosis inhibition-associated factors Ccna2, Ccne1, and Bcl-2 was downregulated by high glucose and upregulated by miRNA-23a-3p overexpression in high glucose-injured H9c2 cells. miRNA-23a-3p mimics transfection before high glucose treatment had a significantly greater benefit than transfection after high glucose treatment (p < 0.0001), and the rescue effect of miRNA-23a-3p increased as the concentration increased. This study suggests that miRNA-23a-3p exerted a dose- and time-dependent protective effect on high glucose-induced H9c2 cardiomyocyte injury.
Collapse
|
21
|
Remedying the Mitochondria to Cure Human Diseases by Natural Products. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5232614. [PMID: 32733635 PMCID: PMC7376439 DOI: 10.1155/2020/5232614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria are the ‘engine' of cells. Mitochondrial dysfunction is an important mechanism in many human diseases. Many natural products could remedy the mitochondria to alleviate mitochondria-involved diseases. In this review, we summarized the current knowledge of the relationship between the mitochondria and human diseases and the regulation of natural products to the mitochondria. We proposed that the development of mitochondrial regulators/nutrients from natural products to remedy mitochondrial dysfunction represents an attractive strategy for a mitochondria-involved disorder therapy. Moreover, investigating the mitochondrial regulation of natural products can potentiate the in-depth comprehension of the mechanism of action of natural products.
Collapse
|
22
|
Network Pharmacology-Based Identification of the Mechanisms of Shen-Qi Compound Formula in Treating Diabetes Mellitus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5798764. [PMID: 32595730 PMCID: PMC7292981 DOI: 10.1155/2020/5798764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/20/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
Aim The purpose of this research is to identify the mechanisms of Shen-Qi compound formula (SQC), a traditional Chinese medicine (TCM), for treating diabetes mellitus (DM) using system pharmacology. Methods The active components and therapeutic targets were identified, and these targets were analyzed using gene ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) analysis. Finally, an integrated pathway was constructed to show the mechanisms of SQC. Results A total of 282 active components and 195 targets were identified through a database search. The component-target network was constructed, and the key components were screened out according to their degree. Through the GO, PPI, and KEGG analyses, the mechanism network of SQC treating DM was constructed. Conclusions This study shows that the mechanisms of SQC treating DM are related to various pathways and targets. This study provides a good foundation and basis for further in-depth verification and clinical application.
Collapse
|
23
|
Awad A, Khalil SR, Hendam BM, Abd El-Aziz RM, Metwally MMM, Imam TS. Protective potency of Astragalus polysaccharides against tilmicosin- induced cardiac injury via targeting oxidative stress and cell apoptosis-encoding pathways in rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20861-20875. [PMID: 32246429 DOI: 10.1007/s11356-020-08565-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Tilmicosin (Til) was purposed to be used in the treatment of a wide range of respiratory diseases in livestock. However, undesirable adverse effects, cardiac toxicity, in particular, may be associated with Til therapy. In the present study, the response of adult rats administered Til subcutaneously at different doses (10, 25, 50, 75, and 100 mg/kg b.w.; single injection) was evaluated. Astragalus polysaccharide (AP) at two doses (100 and 200 mg/kg b.w.; intraperitoneally) was investigated for its potential to counteract the cardiac influences, involving the oxidative stress-induced damage and apoptotic cell death, elicited by the Til treatment at a dose of 75 mg/kg b.w. in rats. Til induced mortalities and altered the levels of the biomarkers for the cardiac damage, particularly in the rats treated with the doses of 75 and 100 mg/kg b.w.; similarly, morphological alterations in cardiac tissue were seen at all studied doses. AP was found to cause a significant (P ˂ 0.05) decline in the levels of impaired cardiac injury markers (troponin, creatine phosphokinase, and creatine phosphokinase-MB), improvement in the antioxidant endpoints (total antioxidant capacity), and attenuation in the oxidative stress indices (total reactive oxygen species, 8-hydroxy-2-deoxyguanosine, lipid peroxides [malondialdehyde], and protein carbonyl), associated with a significant (P ˂ 0.05) modulation in the mRNA expression levels of the encoding genes (Bcl-2, Bax, caspase-3, P53, Apaf-1, and AIF), related to the intrinsic pathway of apoptotic cell death in the cardiac tissue. AP administration partially restored the morphological changes in the rat's heart. The highest protective efficacy of AP was recorded at a dose level of 200 mg/kg b.w. Taken together, these results indicated that AP is a promising cardioprotective compound capable of attenuating Til-induced cardiac impact by protecting the rat cardiac tissue from Til-induced apoptosis when administered concurrently with and after the Til injection.
Collapse
Affiliation(s)
- Ashraf Awad
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Samah R Khalil
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Reda M Abd El-Aziz
- Physiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tamer S Imam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
24
|
Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy. Heart Fail Rev 2020; 24:279-299. [PMID: 30349977 DOI: 10.1007/s10741-018-9749-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTARCT Diabetic complications are among the largely exigent health problems currently. Cardiovascular complications, including diabetic cardiomyopathy (DCM), account for more than 80% of diabetic deaths. Investigators are exploring new therapeutic targets to slow or abate diabetes because of the growing occurrence and augmented risk of deaths due to its complications. Research on rodent models of type 1 and type 2 diabetes mellitus, and the use of genetic engineering techniques in mice and rats have significantly sophisticated for our understanding of the molecular mechanisms in human DCM. DCM is featured by pathophysiological mechanisms that are hyperglycemia, insulin resistance, oxidative stress, left ventricular hypertrophy, damaged left ventricular systolic and diastolic functions, myocardial fibrosis, endothelial dysfunction, myocyte cell death, autophagy, and endoplasmic reticulum stress. A number of molecular and cellular pathways, such as cardiac ubiquitin proteasome system, FoxO transcription factors, hexosamine biosynthetic pathway, polyol pathway, protein kinase C signaling, NF-κB signaling, peroxisome proliferator-activated receptor signaling, Nrf2 pathway, mitogen-activated protein kinase pathway, and micro RNAs, play a major role in DCM. Currently, there are a few drugs for the management of DCM and some of them have considerable adverse effects. So, researchers are focusing on the natural products to ameliorate it. Hence, in this review, we discuss the pathogical, molecular, and cellular mechanisms of DCM; the current diagnostic methods and treatments; adverse effects of conventional treatment; and beneficial effects of natural product-based therapeutics, which may pave the way to new treatment strategies. Graphical Abstract.
Collapse
|
25
|
Chen Y, Hua Y, Li X, Arslan IM, Zhang W, Meng G. Distinct Types of Cell Death and the Implication in Diabetic Cardiomyopathy. Front Pharmacol 2020; 11:42. [PMID: 32116717 PMCID: PMC7018666 DOI: 10.3389/fphar.2020.00042] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a chronic complication of diabetes mellitus, characterized by abnormalities of myocardial structure and function. Researches on the models of type 1 and type 2 diabetes mellitus as well as the application of genetic engineering technology help in understanding the molecular mechanism of DCM. DCM has multiple hallmarks, including hyperglycemia, insulin resistance, increased free radical production, lipid peroxidation, mitochondrial dysfunction, endothelial dysfunction, and cell death. Essentially, cell death is considered to be the terminal pathway of cardiomyocytes during DCM. Morphologically, cell death can be classified into four different forms: apoptosis, autophagy, necrosis, and entosis. Apoptosis, as type I cell death, is the fastest form of cell death and mainly occurs depending on the caspase proteolytic cascade. Autophagy, as type II cell death, is a degradation process to remove damaged proteins, dysfunctional organelles and commences by the formation of autophagosome. Necrosis is type III cell death, which contains a great diversity of cell death processes, such as necroptosis and pyroptosis. Entosis is type IV cell death, displaying “cell-in-cell” cytological features and requires the engulfing cells to execute. There are also some other types of cell death such as ferroptosis, parthanatos, netotic cell death, lysosomal dependent cell death, alkaliptosis or oxeiptosis, which are possibly involved in DCM. Drugs or compounds targeting the signals involved in cell death have been used in clinics or experiments to treat DCM. This review briefly summarizes the mechanisms and implications of cell death in DCM, which is beneficial to improve the understanding of cell death in DCM and may propose novel and ideal strategies in future.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China.,School of Medicine, Nantong University, Nantong, China
| | - Yuyun Hua
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China
| | - Xinshuai Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China
| | | | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China.,School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
26
|
Mao ZJ, Lin M, Zhang X, Qin LP. Combined Use of Astragalus Polysaccharide and Berberine Attenuates Insulin Resistance in IR-HepG2 Cells via Regulation of the Gluconeogenesis Signaling Pathway. Front Pharmacol 2019; 10:1508. [PMID: 31920677 PMCID: PMC6936338 DOI: 10.3389/fphar.2019.01508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
Insulin resistance (IR) is likely to induce metabolic syndrome and type 2 diabetes mellitus (T2DM). Gluconeogenesis (GNG) is a complex metabolic process that may result in glucose generation from certain non-carbohydrate substrates. Chinese herbal medicine astragalus polysaccharides and berberine have been documented to ameliorate IR, and combined use of astragalus polysaccharide (AP) and berberine (BBR) are reported to synergistically produce an even better effect. However, what change may occur in the GNG signaling pathway of IR-HepG2 cells in this synergistic effect and whether AP-BBR attenuates IR by regulating the GNG signaling pathway remain unclear. For the first time, we discovered in this study that the optimal time of IR-HepG2 cell model formation was 48 h after insulin intervention. AP-BBR attenuated IR in HepG2 cells and the optimal concentration was 10 mg. AP-BBR reduced the intracellular H2O2 content with no significant effect on apoptosis of IR-HepG2 cells. In addition, a rapid change was observed in intracellular calcium current of the IR-HepG2 cell model, and AP-BBR intervention attenuated this change markedly. The gene sequencing results showed that the GNG signaling pathway was one of the signaling pathways of AP-BBR to attenuate IR in IR-Hepg2 cells. The expression of p-FoxO1Ser256 and PEPCK protein was increased, and the expression of GLUT2 protein was decreased significantly in the IR-HepG2 cell model, and both of these effects could be reversed by AP-BBR intervention. AP-BBR attenuated IR in IR-HepG2 cells, probably by regulating the GNG signaling Pathway.
Collapse
Affiliation(s)
- Zhu-Jun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Lin
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu-Ping Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
27
|
Wang Y, Li H, Li Y, Zhao Y, Xiong F, Liu Y, Xue H, Yang Z, Ni S, Sahil A, Che H, Wang L. Coriolus versicolor
alleviates diabetic cardiomyopathy by inhibiting cardiac fibrosis and NLRP3 inflammasome activation. Phytother Res 2019; 33:2737-2748. [PMID: 31338905 DOI: 10.1002/ptr.6448] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yueqiu Wang
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Hui Li
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Yang Li
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Yihan Zhao
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Fangfei Xiong
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Yining Liu
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Hongru Xue
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Zhenyu Yang
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Sha Ni
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Abbas Sahil
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Hui Che
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
- Institute of Chronic DiseaseHeilongjiang Academy of Medical Science Harbin Heilongjiang Province 150001 China
| | - Lihong Wang
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
- Institute of Chronic DiseaseHeilongjiang Academy of Medical Science Harbin Heilongjiang Province 150001 China
| |
Collapse
|
28
|
Zhang S, Wang H, Li L, Chang X, Ma H, Zhang M, Qing X, Zhang L, Zhang Z. Qishen Yiqi Drop Pill, a novel compound Chinese traditional medicine protects against high glucose-induced injury in cardiomyocytes. J Cell Mol Med 2019; 23:6393-6402. [PMID: 31278860 PMCID: PMC6714141 DOI: 10.1111/jcmm.14527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 05/17/2019] [Accepted: 06/19/2019] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Qishen Yiqi Drop Pill (QSYQ) has been recognized as a potential protective agent for various cardiovascular diseases. However, the effect of QSYQ in cardiac complications associated with diabetes is not clear currently. In this study, we investigate whether QSYQ could exert cardiac protective effects against high glucose-induced injuries in cardiac H9c2 cells. METHODS H9c2 cells were exposed to 24 hours of high glucose in presence or absence of QSYQ and LY294002. Cell cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential and mitochondrial permeability transition pore (mPTP) opening were determined. Levels of bax, bcl-2, p53, cleaved caspase-3, PI3K and Akt were evaluated by Western blot. RESULTS Our data indicated that QSYQ significantly increased the cell viability and decreased cytotoxicity. By analysing the apoptotic rate as well as the expression levels of cytoapoptosis-related factors including cleaved caspase-3, bax, bcl-2, and p53, we found that QSYQ could remarkably suppress apoptosis of cardiomyoblasts caused by high glucose. In addition, it also showed that QSYQ reduced the generation of ROS. We further found that QSYQ treatment could inhibit the loss of mitochondrial membrane potential and mPTP opening. Moreover, Western blot analysis showed enhanced phosphorylation of PI3K/Akt. The specific inhibitor of PI3K, LY294002 not only inhibited QSYQ induced PI3K/Akt signalling pathway activation, but alleviated its protective effects. CONCLUSIONS In summary, these findings demonstrated that QSYQ effectively protected H9c2 cells against the series injuries due to high glucose at least partially by activating the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Shouyan Zhang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| | - Hao Wang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| | - Lixia Li
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| | - Xuewei Chang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| | - Huifang Ma
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| | - Mingming Zhang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| | - Xiaochun Qing
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| | - Lijun Zhang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| | - Zhuo Zhang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| |
Collapse
|
29
|
Sun S, Yang S, An N, Wang G, Xu Q, Liu J, Mao Y. Astragalus polysaccharides inhibits cardiomyocyte apoptosis during diabetic cardiomyopathy via the endoplasmic reticulum stress pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111857. [PMID: 30959142 DOI: 10.1016/j.jep.2019.111857] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine Astragalus membranaceus (Fisch.) Bunge (AM) has been utilized for the treatment of diabetes mellitus and its complications for centuries. Astragalus polysaccharides (APS), the main bioactive ingredient extracted from the root of AM, is prescribed widely in China and has definite cardioprotective effect during diabetic cardiomyopathy (DCM). Endoplasmic reticulum (ER) stress-induced apoptosis played a crucial role in the progression of DCM. However, the regulatory mechanisms of APS on ER stress pathway haven't been comprehensively studied so far. AIM OF THE STUDY The aim of this study was to identify the effect of APS on cardiomyocyte apoptosis and to investigate the mechanisms for the anti-apoptotic effect of APS during DCM. MATERIALS AND METHODS DCM rat model was induced by intraperitoneal streptozotocin (STZ) injection and treated with APS for 16 weeks. Cardiac function, pathological changes and apoptotic cells were assessed by echocardiography, hematoxylin-eosin (HE) staining and TUNEL assay, respectively. Expressions of key molecules in ER stress pathway were detected by Western blot analysis. Cardiomyocytes were exposed to high glucose (HG) and treated with APS for 24 h. Cell viability, apoptosis and protein expressions were assessed by MTT, flow cytometer and Western blot analysis, respectively. Moreover, lentivirus over-expressing (OE) C/EBP homologous protein (CHOP) was employed to further investigate the causative role of ER stress pathway in APS-mediated effect on cardiomyocyte apoptosis. RESULTS In vivo, the results demonstrated that APS could improve heart function and attenuate myocardial apoptosis in DCM rat model. Further study demonstrated that APS could down-regulate the protein expressions of activating transcription factor 6 (ATF6) and protein kinase RNA-like ER kinase (PERK) related factors of ER stress pathway. In vitro, APS significantly inhibit HG stimulated H9C2 cell apoptosis and the expressions of ATF6 and PERK related proteins of ER stress pathway. However, after CHOP-OE lentivirus transfection, the protective effects of APS were diminished as increased apoptotic rate and higher expression of CHOP. CONCLUSIONS APS could attenuate cardiomyocyte apoptosis via down-regulating the expression of ATF6 and PERK related factors of ER stress pathway in DCM rats and HG-stimulated H9C2 cells.
Collapse
Affiliation(s)
- Shuqin Sun
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Shuo Yang
- Department of the Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Nina An
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Guimei Wang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Qiang Xu
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Jia Liu
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Yongjun Mao
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
30
|
Guo Z, Lou Y, Kong M, Luo Q, Liu Z, Wu J. A Systematic Review of Phytochemistry, Pharmacology and Pharmacokinetics on Astragali Radix: Implications for Astragali Radix as a Personalized Medicine. Int J Mol Sci 2019; 20:E1463. [PMID: 30909474 PMCID: PMC6470777 DOI: 10.3390/ijms20061463] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Abstract
Astragali radix (AR) is one of the most widely used traditional Chinese herbal medicines. Modern pharmacological studies and clinical practices indicate that AR possesses various biological functions, including potent immunomodulation, antioxidant, anti-inflammation and antitumor activities. To date, more than 200 chemical constituents have been isolated and identified from AR. Among them, isoflavonoids, saponins and polysaccharides are the three main types of beneficial compounds responsible for its pharmacological activities and therapeutic efficacy. After ingestion of AR, the metabolism and biotransformation of the bioactive compounds were extensive in vivo. The isoflavonoids and saponins and their metabolites are the major type of constituents absorbed in plasma. The bioavailability barrier (BB), which is mainly composed of efflux transporters and conjugating enzymes, is expected to have a significant impact on the bioavailability of AR. This review summarizes studies on the phytochemistry, pharmacology and pharmacokinetics on AR. Additionally, the use of AR as a personalized medicine based on the BB is also discussed, which may provide beneficial information to achieve a better and more accurate therapeutic response of AR in clinical practice.
Collapse
Affiliation(s)
- Zhenzhen Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yanmei Lou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Muyan Kong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Qing Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 999078, China.
| | - Jinjun Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
31
|
Sun Q, Wu X, Wang H, Chen W, Zhao X, Yang Y, Chen W. Protective Effects Of Astragalus Polysaccharides On Oxidative Stress In High Glucose-Induced Or SOD2-Silenced H9C2 Cells Based On PCR Array Analysis. Diabetes Metab Syndr Obes 2019; 12:2209-2220. [PMID: 31695464 PMCID: PMC6821059 DOI: 10.2147/dmso.s228351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/27/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Oxidative stress in cardiac myocytes is an important pathogenesis of diabetic cardiomyopathy (DCM). Previously, we reported that astragalus polysaccharide (APS) has protective effects against the oxidative stress of DCM. This study aimed to determine the effect of APS on the oxidative stress induced by hyperglycemia in H9C2 cells. METHODS Rat H9C2 cells were cultured in vitro and randomly divided into the control group, HG group, APS-HG group, siRNASOD2 group, and APS-siRNASOD2 group. The cellular ultrastructure was measured by transmission electron microscopy. Cell apoptosis was examined by TUNEL staining. Levels of reactive oxygen species (ROS) were detected by a quantitative fluorescence assay (DHE). 8-OH-dG and nitrotyrosine, the indicators of oxidative stress injury, were detected by immunohistochemistry. A PCR array was used to evaluate the expression levels of 84 oxidative stress genes in cultured cells, and the PCR array results were partially verified by Western blot. RESULTS APS treatment protected the H9C2 cell ultrastructure, reduced the level of cell apoptosis, inhibited cellular ROS production, and reduced the levels of oxidative stress injury indicators 8-OH-dG and nitrotyrosine in high glucose-induced or SOD2-silenced H9C2 cells. It also altered oxidative stress-related genes at the mRNA and protein levels. CONCLUSION APS may improve antioxidant capacity and inhibit oxidative stress injury in high glucose induced H9C2 cells.
Collapse
Affiliation(s)
- Qilin Sun
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai200040, People’s Republic of China
| | - Xiaoyan Wu
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai200040, People’s Republic of China
| | - Hao Wang
- Experimental Teaching Center of Basic Medicine, Fudan University, Shanghai200032, People’s Republic of China
| | - Wenjie Chen
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai200040, People’s Republic of China
| | - Xuelan Zhao
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai200040, People’s Republic of China
| | - Yehong Yang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai200040, People’s Republic of China
- Yehong Yang Department of Endocrinology, Huashan Hospital, Fudan University, No.12 Wu-lu-mu-qi Road, Shanghai200040, People’s Republic of ChinaTel +86 21 5288999 Email
| | - Wei Chen
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai200040, People’s Republic of China
- Correspondence: Wei Chen Department of Geriatrics, Huashan Hospital, Fudan University, No.12 Wu-lu-mu-qi Road, Shanghai200040, People’s Republic of ChinaTel +86 21 5288999 ext 7190 Email
| |
Collapse
|
32
|
Zheng Y, Bai L, Zhou Y, Tong R, Zeng M, Li X, Shi J. Polysaccharides from Chinese herbal medicine for anti-diabetes recent advances. Int J Biol Macromol 2019; 121:1240-1253. [DOI: 10.1016/j.ijbiomac.2018.10.072] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
|
33
|
Trichosanthis Pericarpium Aqueous Extract Protects H9c2 Cardiomyocytes from Hypoxia/Reoxygenation Injury by Regulating PI3K/Akt/NO Pathway. Molecules 2018; 23:molecules23102409. [PMID: 30241309 PMCID: PMC6222483 DOI: 10.3390/molecules23102409] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
Trichosanthis Pericarpium (TP) is a traditional Chinese medicine for treating cardiovascular diseases. In this study, we investigated the effects of TP aqueous extract (TPAE) on hypoxia/reoxygenation (H/R) induced injury in H9c2 cardiomyocytes and explored the underlying mechanisms. H9c2 cells were cultured under the hypoxia condition induced by sodium hydrosulfite for 30 min and reoxygenated for 4 h. Cell viability was measured by MTT assay. The amounts of LDH, NO, eNOS, and iNOS were tested by ELISA kits. Apoptotic rate was detected by Annexin V-FITC/PI staining. QRT-PCR was performed to analyze the relative mRNA expression of Akt, Bcl-2, Bax, eNOS, and iNOS. Western blotting was used to detect the expression of key members in the PI3K/Akt pathway. Results showed that the pretreatment of TPAE remarkably enhanced cell viability and decreased apoptosis induced by H/R. Moreover, TPAE decreased the release of LDH and expression of iNOS. In addition, TPAE increased NO production and Bcl-2/Bax ratio. Furthermore, the mRNA and protein expression of p-Akt and eNOS were activated by TPAE pretreatment. On the contrary, a specific inhibitor of PI3K, LY294002 not only inhibited TPAE-induced p-Akt/eNOS upregulation but alleviated its anti-apoptotic effects. In conclusion, results indicated that TPAE protected against H/R injury in cardiomyocytes, which consequently activated the PI3K/Akt/NO signaling pathway.
Collapse
|
34
|
Marthandam Asokan S, Wang T, Su W, Lin W. Short Tetra‐peptide from soy‐protein hydrolysate attenuates hyperglycemia associated damages in H9c2 cells and ICR mice. J Food Biochem 2018. [DOI: 10.1111/jfbc.12638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shibu Marthandam Asokan
- Department for Management of Science and Technology Development Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Ting Wang
- Department of Hospitality Management, College of Agriculture Tunghai University Taichung Taiwan
| | - Wei‐Ting Su
- Department of Food Science, College of Agriculture Tunghai University Taichung Taiwan
| | - Wan‐Teng Lin
- Department of Hospitality Management, College of Agriculture Tunghai University Taichung Taiwan
| |
Collapse
|
35
|
Cui Y, Wang Q, Sun R, Guo L, Wang M, Jia J, Xu C, Wu R. Astragalus membranaceus (Fisch.) Bunge repairs intestinal mucosal injury induced by LPS in mice. Altern Ther Health Med 2018; 18:230. [PMID: 30075775 PMCID: PMC6091064 DOI: 10.1186/s12906-018-2298-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/26/2018] [Indexed: 01/28/2023]
Abstract
Background Astragalus membranaceus (Fisch.) Bunge is one of the most widely used traditional Chinese herbal medicines. It is used as immune stimulant, tonic, antioxidant, hepatoprotectant, diuretic, antidiabetic, anticancer, and expectorant. The purpose of the study was to investigate the curative effects of the decoction obtained from Astragalus membranaceus root in intestinal mucosal injury induced by LPS in mice. An LPS-induced intestinal mucosal injury mice model was applied in the study. Methods The mice were post-treated with Astragalus membranaceus decoction (AMD) for 4 days after 3 days LPS induction. ELISA kit was used to detect the content of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-4,IL-6 and IL-8 in the serum of each group mice. The morphological changes in intestinal mucosa at the end of the experiments were observed. Both VH (villus height) and CD (crypt depth) were measured using H&E-stained sections. Results There were significant differences in IL-1β, IL-4,IL-6, IL-8 and TNF-α levels in AMD-treated group on the 7th day compared to the controls group. The VH was lower in duodenum, jejunum and the ileum in LPS-treated mice compared to the control animals. Similarly, there was also decrease in V/C. Compared to the control mice, for AMD-treated mice, VH and CD had no significantly differences. Conclusions Astragalus membranaceus reduced intestinal mucosal damage and promoted tissue repair by inhibiting the expression of inflammatory cytokine.
Collapse
|
36
|
Sermwittayawong D, Patninan K, Phothiphiphit S, Boonyarattanakalin S, Sermwittayawong N, Hutadilok-Towatana N. Purification, characterization, and biological activities of purified polysaccharides extracted from the gray oyster mushroom [Pleurotus sajor-caju
(Fr.) Sing.]. J Food Biochem 2018. [DOI: 10.1111/jfbc.12606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Decha Sermwittayawong
- Faculty of Science, Department of Biochemistry; Prince of Songkla University; Hat Yai Thailand
| | - Kulwanit Patninan
- Faculty of Science, Department of Biochemistry; Prince of Songkla University; Hat Yai Thailand
| | - Somruthai Phothiphiphit
- Schoolof Bio-Chemical Engineering and Technology; Sirindhorn International Institute of Technology, Thammasat University; Pathum Thani Thailand
| | - Siwarutt Boonyarattanakalin
- Schoolof Bio-Chemical Engineering and Technology; Sirindhorn International Institute of Technology, Thammasat University; Pathum Thani Thailand
| | | | - Nongporn Hutadilok-Towatana
- Faculty of Science, Department of Biochemistry; Prince of Songkla University; Hat Yai Thailand
- College of Oriental Medicine; Rangsit University; Pathum Thani Thailand
| |
Collapse
|
37
|
Shen Y, Tang G, Gao P, Zhang B, Xiao H, Si LY. Activation of adenosine A2b receptor attenuates high glucose-induced apoptosis in H9C2 cells via PI3K/Akt signaling. In Vitro Cell Dev Biol Anim 2018; 54:384-391. [PMID: 29626279 DOI: 10.1007/s11626-018-0241-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/04/2018] [Indexed: 12/13/2022]
Abstract
High glucose plays a vital role in apoptosis in H9C2 cells. However, the exact molecular mechanism remains unclear. In this study, we aimed to evaluate the cardio-protective role of A2b receptor in high glucose-induced cardiomyocyte apoptosis via PI3K/Akt pathway. Adenosine A2b receptor agonist (Bay506583), antagonist (MRS1754), and Akt inhibitor (LY294002) were applied respectively to H9C2 cells before exposed to high glucose for 12 h. Apoptosis of H9C2 cells was determined by TUNEL assay and the apoptosis rate by flow cytometry. The protein level of adenosine A2b receptor, p-Akt, total Akt, cleaved capase-3, cleaved capase-9, bax, and bcl-2 was measured by western blotting. The results demonstrated that apoptosis of H9C2 cardiomyocytes triggered by high-glucose treatment was time-dependent. The protein level of A2b receptor and activated Akt was both decreased in cardiomyocyte with high-glucose treatment. Moreover, we found that high glucose-induced apoptosis in H9C2 cells could be attenuated by administration of adenosine A2b receptor agonist Bay606583. This effect could be reversed by Akt inhibitor LY294002. In conclusion, activation of A2b receptor could prevent high glucose-induced apoptosis of H9C2 cells in vitro to a certain extent by activating PI3K/Akt signaling. In conclusion, these results suggested that activation of A2b receptor could be a novel therapeutic approach to high glucose-induced cardiomyocyte injury.
Collapse
Affiliation(s)
- Yi Shen
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gang Tang
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pan Gao
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Bin Zhang
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hang Xiao
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Liang-Yi Si
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
38
|
Chang X, Lu K, Wang L, Lv M, Fu W. Astraglaus polysaccharide protects diabetic cardiomyopathy by activating NRG1/ErbB pathway. Biosci Trends 2018; 12:149-156. [PMID: 29607874 DOI: 10.5582/bst.2018.01027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Diabetic cardiomyopathy (DCM) is one of the main cardiac complications among diabetic patients. According to previous studies, the pathogenesis of DCM is associated with oxidative stress, apoptosis and proliferation of local cardiac cells. It showed, NRG1 can improve the function of mitochondria, and thereby, increasing proliferation and decreasing apoptosis of cardiac muscle cell via ErbB/AKT signaling, also, exert antioxidative function. Besides, NRG1/ErbB pathway was impaired in the DCM model which suggested this signaling played key role in DCM. Astraglaus polysaccharide (APS), one of the active components of Astragalus mongholicus, showed striking antioxidative effect. Here, in this study, our data showed that APS can promote proliferation and decrease apoptosis in AGE-induced DCM cell model, besides, APS can decrease intracellular ROS level, increase activity of SOD, GSH-Px and lower level of MDA and NO in DCM cell model, indicating APS exerted antioxidative function in DCM model cells. Besides, western blot results revealed APS induced NRG1 expressing and the phosphorylation level of ErbB2/4. In addition, the elevated NRG1 promoted AKT and PI3k phosphorylation which indicated APS may exert its function by NRG1/ErbB and the downstream AKT/PI3K signaling. Canertinib is ErbB inhibitor. The effect of APS on proliferation, apoptosis, antioxidation and NRG1/ErbB pathway was partly abolished after the cells were co-treated with APS and canertinib. Taken together, these results suggested APS may display its protective function in DCM cells by activating NGR1/ErbB signaling pathway. And our study increased potential for prevention and therapy to DCM.
Collapse
Affiliation(s)
- Xiao Chang
- Department of intensive care unit, Shenzhen Traditional Chinese Medicine Hospital
| | - Kang Lu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine
| | - Ling Wang
- Department of intensive care unit, Shenzhen Traditional Chinese Medicine Hospital
| | - Min Lv
- Department of intensive care unit, Shenzhen Traditional Chinese Medicine Hospital
| | - Wenjun Fu
- South China Research Center for Acupuncture and Moxibustion, School of Basic Medical Science, Guangzhou University of Chinese Medicine
| |
Collapse
|
39
|
Vacante F, Senesi P, Montesano A, Frigerio A, Luzi L, Terruzzi I. L-Carnitine: An Antioxidant Remedy for the Survival of Cardiomyocytes under Hyperglycemic Condition. J Diabetes Res 2018; 2018:4028297. [PMID: 30622968 PMCID: PMC6304876 DOI: 10.1155/2018/4028297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/13/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Metabolic alterations as hyperglycemia and inflammation induce myocardial molecular events enhancing oxidative stress and mitochondrial dysfunction. Those alterations are responsible for a progressive loss of cardiomyocytes, cardiac stem cells, and consequent cardiovascular complications. Currently, there are no effective pharmacological measures to protect the heart from these metabolic modifications, and the development of new therapeutic approaches, focused on improvement of the oxidative stress condition, is pivotal. The protective effects of levocarnitine (LC) in patients with ischemic heart disease are related to the attenuation of oxidative stress, but LC mechanisms have yet to be fully understood. OBJECTIVE The aim of this work was to investigate LC's role in oxidative stress condition, on ROS production and mitochondrial detoxifying function in H9c2 rat cardiomyocytes during hyperglycemia. METHODS H9c2 cells in the hyperglycemic state (25 mmol/L glucose) were exposed to 0.5 or 5 mM LC for 48 and 72 h: LC effects on signaling pathways involved in oxidative stress condition were studied by Western blot and immunofluorescence analysis. To evaluate ROS production, H9c2 cells were exposed to H2O2 after LC pretreatment. RESULTS Our in vitro study indicates how LC supplementation might protect cardiomyocytes from oxidative stress-related damage, preventing ROS formation and activating antioxidant signaling pathways in hyperglycemic conditions. In particular, LC promotes STAT3 activation and significantly increases the expression of antioxidant protein SOD2. Hyperglycemic cardiac cells are characterized by impairment in mitochondrial dysfunction and the CaMKII signal: LC promotes CaMKII expression and activation and enhancement of AMPK protein synthesis. Our results suggest that LC might ameliorate metabolic aspects of hyperglycemic cardiac cells. Finally, LC doses herein used did not modify H9c2 growth rate and viability. CONCLUSIONS Our novel study demonstrates that LC improves the microenvironment damaged by oxidative stress (induced by hyperglycemia), thus proposing this nutraceutical compound as an adjuvant in diabetic cardiac regenerative medicine.
Collapse
Affiliation(s)
- Fernanda Vacante
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Pamela Senesi
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Anna Montesano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Alice Frigerio
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Livio Luzi
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Ileana Terruzzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
40
|
Chen G, Yang X, Yang X, Li L, Luo J, Dong H, Xu L, Yi P, Wang K, Zou X, Lu F. Jia-Wei-Jiao-Tai-Wan ameliorates type 2 diabetes by improving β cell function and reducing insulin resistance in diabetic rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:507. [PMID: 29187178 PMCID: PMC5707914 DOI: 10.1186/s12906-017-2016-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/19/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Jia-Wei-Jiao-Tai-Wan (JWJTW), composed of Jiao-Tai-Wan (Cinnamomum cassia and Rhizoma coptidis) and other antidiabetic herbs, including Astragalus membranaceus, Herba Gynostemmatis, Radix Puerariae Lobatae, Folium Mori and Semen Trigonellae, is widely used to treat diabetes and has demonstrated a curative effect in the clinic, but the potential mechanism is unknown. This study aimed to explore the effects of JWJTW on diabetic rats and to clarify the underlying mechanism. METHODS JWJTW was prepared, and the main components contained in the formula were identified by high-performance liquid chromatography (HPLC) fingerprint analysis. Diabetic rats induced by streptozotocin (STZ) and a high-sucrose-high-fat diet were treated with two concentrations of JWJTW (1.025 and 2.05 g/kg/d) for 100 days. The oral glucose tolerance test (OGTT), insulin release test (IRT) and insulin tolerance test (ITT) were performed to measure the glycometabolism of the diabetic rats at the end of the treatment period. Blood was collected to determine the serum lipid levels of the diabetic rats. Nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) were detected in pancreas homogenates to analyze the oxidative stress in the pancreata of diabetic rats, and the expression levels of pancreatic and duodenal homeobox 1 (PDX-1) and insulin in the pancreas were tested by Western blot to measure pancreatic islet function. In addition, Western blots were used to measure the expression of proteins related to the insulin signaling pathway in skeletal muscle of the diabetic rats. RESULTS The results showed that the administration of JWJTW could ameliorate impairments in glucose tolerance, insulin release function and insulin tolerance in diabetic rats. JWJTW could also dose-dependently reduce serum lipid levels in diabetic rats. JWJTW restrained oxidative stress by decreasing the expression of NO and MDA and increasing the expression of SOD and GSH-px. JWJTW improved the function of pancreatic β cells by increasing PDX-1 and insulin expression. In addition, JWJTW restored the impaired insulin signaling; upregulated phospho-insulin receptor (pInsR) expression, insulin receptor substrate (IRS) tyrosine phosphorylation, phosphatidylinositol 3-kinase (PI3K) (p85), and glucose transporter 4 (GLUT4) expression; and downregulated the serine phosphorylation of IRS. CONCLUSIONS This study suggests that JWJTW can ameliorate type 2 diabetes by improving β cell function and reducing insulin resistance in diabetic rats.
Collapse
Affiliation(s)
- Guang Chen
- Department of Integrative Traditional & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Xueping Yang
- Institute of Integrative Traditional & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Xiaoyu Yang
- Department of Oncology, Xiangyang No. 1 Hospital, Xiangyang, 441000 China
| | - Lingli Li
- Department of Traditional Chinese Medicine, Pu’ai Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430033 China
| | - Jinlong Luo
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Hui Dong
- Institute of Integrative Traditional & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Lijun Xu
- Institute of Integrative Traditional & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Ping Yi
- Department of Integrative Traditional & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Kaifu Wang
- Institute of Integrative Traditional & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Xin Zou
- Institute of Integrative Traditional & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Fuer Lu
- Institute of Integrative Traditional & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| |
Collapse
|
41
|
Roles and Mechanisms of Herbal Medicine for Diabetic Cardiomyopathy: Current Status and Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8214541. [PMID: 29204251 PMCID: PMC5674516 DOI: 10.1155/2017/8214541] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/04/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
Diabetic cardiomyopathy is one of the major complications among patients with diabetes mellitus. Diabetic cardiomyopathy (DCM) is featured by left ventricular hypertrophy, myocardial fibrosis, and damaged left ventricular systolic and diastolic functions. The pathophysiological mechanisms include metabolic-altered substrate metabolism, dysfunction of microvascular, renin-angiotensin-aldosterone system (RAAS) activation, oxidative stress, cardiomyocyte apoptosis, mitochondrial dysfunction, and impaired Ca2+ handling. An array of molecules and signaling pathways such as p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase (JNK), and extracellular-regulated protein kinases (ERK) take roles in the pathogenesis of DCM. Currently, there was no remarkable effect in the treatment of DCM with application of single Western medicine. The myocardial protection actions of herbs have been gearing much attention. We present a review of the progress research of herbal medicine as a potential therapy for diabetic cardiomyopathy and the underlying mechanisms.
Collapse
|