1
|
Ishtiaq S, Rehman S, Kamran SH, Akhtar ZM, Albaik M, Elhady SS. Metabolic profiling of Verbena bonariensis L. extract by LC/MS and evaluation of the hepatoprotective potential with isoniazid- and rifampicin-induced hepatotoxicity in rats. Arch Pharm (Weinheim) 2024; 357:e2400055. [PMID: 38607964 DOI: 10.1002/ardp.202400055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The study explored the hepatoprotective activity and metabolic profile of Verbena bonariensis L. methanol extract (VBM) and fractions using isoniazid as well as rifampicin-triggered liver toxicity in Wistar albino rats. Metabolite profiling of VBM using HPLC-PDA-ESI-MS identified 12 compounds, mainly iridoids, phenylpropanoids, and flavonoids, where verbascoside represents the major compound. Different biochemical parameters such as aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP), bilirubin, and total protein levels were used to assess liver functions. All the evaluated samples exhibited hepatoprotective potential, but VBM exhibited maximum activity and a notable decline in ALP (p < 0.05, significant), even better than the standard drug (silymarin). VBM significantly reduced the elevated ALT, AST, ALP, and total bilirubin. It also triggered a significant elevation in total proteins compared with diseased animals. This was further consolidated by histopathological studies. Verbena bonariensis L. could serve as a potent hepatoprotective agent and may alleviate liver ailments.
Collapse
Affiliation(s)
- Saiqa Ishtiaq
- Department of Pharmacognosy, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
- Emory College of Arts and Science, Center for the Study of Human Health, Emory University, Atlanta, Georgia, USA
| | - Saira Rehman
- Department of Pharmacognosy, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
- Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Punjab, Pakistan
| | - Sairah Hafeez Kamran
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Zahid Mehmood Akhtar
- Department of Pathology, Gujranwala Medical College, Gujranwala, Punjab, Pakistan
| | - Mai Albaik
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Sameh S Elhady
- King Abdulaziz University Herbarium, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Abid F, Saleem M, Jamshaid T, Jamshaid U, Youssef FS, Diri RM, Elhady SS, Ashour ML. Opuntia monacantha: Validation of the anti-inflammatory and anti-arthritic activity of its polyphenolic rich extract in silico and in vivo via assessment of pro- and anti-inflammatory cytokines. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117884. [PMID: 38350502 DOI: 10.1016/j.jep.2024.117884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Opuntia monacantha belongs to the cactus family Cactaceae and is also known by cochineal prickly pear, Barbary fig or drooping prickly pear. It was traditionally used to treat pain and inflammation. O. monacantha cladodes showed pharmacological effects such as antioxidant potential owing to the presence of certain polysaccharides, flavonoids, and phenols. AIM OF THE STUDY This research aimed to evaluate the anti-inflammatory as well as the anti-arthritic potential of ethanol extract of Opuntia monacantha (E-OM). MATERIALS AND METHODS In vivo edema in rat paw was triggered by carrageenan and used to evaluate anti-inflammatory activity, while induction of arthritis by Complete Freund's Adjuvant (CFA) rat model was done to measure anti-arthritic potential. In silico studies of the previously High performance liquid chromatography (HPLC) characterized metabolites of ethanol extract was performed by using Discovery Studio 4.5 (Accelrys Inc., San Diego, CA, USA) within active pocket of glutaminase 1 (GLS1) (PDB code: 3VP1; 2.30 Å). RESULTS EOM, particularly at 750 mg/kg, caused a reduction in the paw edema significantly and decreased arthritic score by 80.58% compared to the diseased group. It revealed significant results when histopathology of ankle joint was examined at 28th day as it reduced inflammation by 18.06%, bone erosion by 15.50%, and pannus formation by 24.65% with respect to the diseased group. It restored the altered blood parameters by 7.56%, 18.47%, and 3.37% for hemoglobin (Hb), white blood count (WBC), and platelets, respectively. It also reduced rheumatoid factor RF by 13.70% with concomitant amelioration in catalase (CAT) and superoxide dismutase (SOD) levels by 19%, and 34.16%, respectively, in comparison to the diseased group. It notably decreased mRNA expression levels of COX-2, IL-6, TNF-α, IL-1, NF-κβ and augmented the levels of IL-4 and IL-10 in real time PCR with respect to the diseased group and piroxicam. HPLC analysis previously performed showed that phenolic acids and flavonoids are present in E-OM. Molecular docking studies displayed pronounced inhibitory potential of these compounds towards glutaminase 1 (GLS1), approaching and even exceeding piroxicam. CONCLUSIONS Thus, Opuntia monacantha could be a promising agent to manage inflammation and arthritis and could be incorporated into pharmaceuticals.
Collapse
Affiliation(s)
- Farah Abid
- Department of Pharmacology, Faculty of Pharmacy, University of South Asia, Lahore, Pakistan.
| | - Mohammad Saleem
- Department of Pharmacology, Faculty of Pharmacy, University of the Punjab, Lahore, Pakistan.
| | - Talha Jamshaid
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Usama Jamshaid
- Faculty of Pharmacy, University of Strasbourg, Strasbourg, France.
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo, 11566, Egypt.
| | - Reem M Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Sameh S Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo, 11566, Egypt; Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah, 21442, Saudi Arabia.
| |
Collapse
|
3
|
Sarwar I, Asif M, Jamshaid T, Saadullah M, Zubair HM, Saleem M, Jamshaid U, Youssef FS, Ashour ML, Elhady SS. Phytochemical and biological studies of Panicum antidotale aerial parts ethanol extract supported by molecular docking study. Front Pharmacol 2024; 14:1243742. [PMID: 38239191 PMCID: PMC10794742 DOI: 10.3389/fphar.2023.1243742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Panicum antidotale has traditionally been used as a poultice to alleviate local inflammation and painful diseases. This study aimed to evaluate the anti-inflammatory, wound-healing, analgesic, and antipyretic potential of its ethanol extract (PAAPEE) in vivo for the first time. In vitro antioxidant assays of Panicum antidotale using a 2,2-diphenyl-1-picrylhydrazyl assay revealed that it showed IC50 of 62.50 ± 6.85 μg/mL in contrast to standard, ascorbic acid, that showed IC50 of 85.51 ± 0.38 μg/mL. Administration of PAAPEE at a dose of 500 mg/kg (PAAPEE-500) displayed 78.44% and 75.13% inhibition of paw edema in carrageenen and histamine-induced edema models. respectively, 6 h post-treatment compared to that of the untreated group. Furthermore, it showed 68.78% inhibition of Freund's complete adjuvant-induced edema 21 days after treatment. It reduced the animal's rectal temperature in the yeast-induced fever model to 99.45 during the fourth h post-treatment. It significantly inhibited abnormal writhing by 44% in the acetic acid-induced pain model. PAE-500 also showed enhancement in wound closure by 72.52% with respect to that of the untreated group on the 10th day post-treatment using the excision healing of wound model. Histopathological examination of skin samples confirmed this improvement, showing enhanced tissue architecture with minimal infiltration of inflammatory cells. High-performance liquid chromatography (HPLC) of PAAPEE revealed the presence of quercetin, gallic, p-coumaric, benzoic, chlorogenic, syringic, ferulic, cinnamic, and sinapic acids. Molecular docking of 5-lipoxygenase and glycogen synthase kinase-3 β protein indicated their potential interaction within the active sites of both enzymes. Thus, P. antidotale serves as an effective natural wound-healing, anti-inflammatory, analgesic, and antipyretic agent.
Collapse
Affiliation(s)
- Imtisal Sarwar
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Talha Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Malik Saadullah
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hafiz Muhammad Zubair
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Mohammad Saleem
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Usama Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, University of Strasbourg, Strasbourg, France
| | - Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Akbar S, Ishtiaq S, Youssef FS, Elhady SS, Belaid AK, Ashour ML. HPLC and GC Characterization of Dicliptera bupleuroides Aerial Parts and Evaluation of Its Anti-Inflammatory Potential in Vitro, in silico and in Vivo Using Carrageenan and Formalin Induced Inflammation in Rat Models. Chem Biodivers 2023; 20:e202300349. [PMID: 37574856 DOI: 10.1002/cbdv.202300349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
The current study aimed to evaluate the anti-inflammatory activity of Dicliptera bupleuroides Nees aerial parts methanol extract and its different fractions namely hexane, chloroform, ethyl acetate and butanol in vitro using cyclooxygenase inhibitory assay (COX-2). In vivo anti-inflammatory evaluation was performed using carrageenan and formalin induced inflammation in rat models followed by molecular docking. High performance liquid chromatography (HPLC) and gas chromatography coupled with mass chromatography (GC/MS) analyses were used for chemical analyses of the tested samples. The tested samples showed significant inhibition in COX-2 inhibitory assay where methanol extract (DBM) showed the highest inhibitory potential at 100 μg/mL estimated by 67.86 %. At a dose of 400 mg/kg, all of the examined samples showed pronounced results in carrageenan induced acute inflammation in rat model at 4th h interval with DBM showed the highest efficiency displaying 65.32 % inhibition as compared to the untreated rats. Formalin model was employed for seven days and DBM exhibited 65.33 % and 69.39 % inhibition at 200 and 400 mg/kg, respectively approaching that of the standard on the 7th day. HPLC revealed the presence of caffeic acid, gallic acid and sinapic acid, quercetin and myricetin in DBM. GC/MS analysis of its hexane fraction revealed the presence of 16 compounds belonging mainly to fatty acids and sterols that account for 85.26 % of the total detected compounds. Molecular docking showed that hexadecanoic acid followed by decanedioic acid and isopropyl myristate showed the best fitting within cyclooxygenase-II (COX-II) while nonacosane followed by hexatriacontane and isopropyl myristate revealed the most pronounced fitting within the 5-lipoxygenase (5-LOX) active sites. Absorption, metabolism, distribution and excretion and toxicity prediction (ADMET/ TOPKAT) concluded that most of the detected compounds showed reasonable pharmacokinetic, pharmacodynamic and toxicity properties that could be further modified to be more suitable for incorporation in pharmaceutical dosage forms combating inflammation and its undesirable consequences.
Collapse
Affiliation(s)
- Shehla Akbar
- Deparadtment of Pharmacognosy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Department of Pharmacy, College of Pharmacy, University of the Punjab, Lahore, 05422, Pakistan
| | - Saiqa Ishtiaq
- Department of Pharmacy, College of Pharmacy, University of the Punjab, Lahore, 05422, Pakistan
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo, 11566, Egypt
| | - Sameh S Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amal K Belaid
- Department of Medicinal and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo, 11566, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah, 21442, Saudi Arabia
| |
Collapse
|
5
|
Metabolic Profiling and Investigation of the Modulatory Effect of Fagonia cretica L. Aerial Parts on Hepatic CYP3A4 and UGT2B7 Enzymes in Streptozotocin-Induced Diabetic Model. Antioxidants (Basel) 2023; 12:antiox12010119. [PMID: 36670981 PMCID: PMC9854966 DOI: 10.3390/antiox12010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Drug-metabolizing enzymes are either boosted or suppressed by diabetes mellitus. This research was designed to explore Fagonia cretica L. aerial parts' impact on CYP3A4 and UGT2B7 activity and their mRNA expression in diabetic rats. Fagonia cretica (F. cretica) dried powder was sequentially extracted with n-hexane, chloroform, ethyl acetate, methanol, and water. The methanol extract and aqueous fraction presented the most significant potential to decrease the concentration of alpha-hydroxyl midazolam, with 176.0 ± 0.85 mg/Kg and 182.9 ± 0.99 mg/Kg, respectively, compared to the streptozotocin (STZ)-induced diabetic group, reflecting the inhibition in CYP3A4 activity. The fold change in mRNA expression of CYP3A4 was decreased significantly by the methanol extract, and the aqueous fraction of F. cretica estimated by 0.15 ± 0.002 and 0.16 ± 0.001, respectively, compared with the diabetic group. Morphine metabolism was significantly increased in rats treated with F. cretica methanol extract and its aqueous fraction, displaying 93.4 ± 0.96 mg/Kg and 96.4 ± 1.27 mg/Kg, respectively, compared with the metabolism of morphine in the diabetic group, which highlights the induction of UGT2B7 activity. The fold change in mRNA expression of UGT2B7 was significantly increased by the methanol extract and the aqueous fraction, estimated at 8.14 ± 0.26 and 7.17 ± 0.23 respectively, compared to the diabetic group. Phytochemical analysis was performed using high-performance liquid chromatography (HPLC), where the methanol extract showed more flavonoids and phenolic compounds compared to the aqueous fraction of F. cretica. The obtained results were further consolidated by molecular docking studies, where quercetin showed the best fitting within the active pocket of CYP3A4, followed by gallic acid, displaying free binding energies (∆G) of -30.83 and -23.12 kcal/mol, respectively. Thus, F. cretica could serve as a complementary medicine with standard anti-diabetic therapy that can modulate the activity of the drug-metabolizing enzymes.
Collapse
|
6
|
Soto-Vásquez MR, Alvarado-García PAA, Youssef FS, Ashour ML, Bogari HA, Elhady SS. FTIR Characterization of Sulfated Polysaccharides Obtained from Macrocystis integrifolia Algae and Verification of Their Antiangiogenic and Immunomodulatory Potency In Vitro and In Vivo. Mar Drugs 2022; 21:36. [PMID: 36662209 PMCID: PMC9863126 DOI: 10.3390/md21010036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to evaluate the antiangiogenic and immunomodulatory potential of sulfated polysaccharides from the marine algae Macrocystis integrifolia characterized by FTIR. The cytotoxicity of sulfated polysaccharides was evaluated using the 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) assay. Antiangiogenic activity was evaluated using the chicken chorioallantoic membrane (CAM) assay. Immunomodulatory activity was determined on macrophage functionality and allergic response. The results showed that sulfated polysaccharides significantly decreased angiogenesis in chicken chorioallantoic membranes (p < 0.05). Likewise, they inhibited in vivo chemotaxis and in vitro phagocytosis, the transcription process of genes that code the enzymes cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and nitric oxide synthase-2 (NOS-2) and the nuclear factor kappa-light chain enhancer of activated B cells (NF-κB), showing immunomodulatory properties on the allergic response, as well as an in vivo inhibitory effect in the ovalbumin-induced inflammatory allergy model (OVA) and inhibited lymphocyte proliferation specific to the OVA antigen in immunized mice. Finally, these compounds inhibited the histamine-induced skin reaction in rats, the production of immunoglobulin E (IgE) in mice, and the passive response to skin anaphylaxis in rats. Therefore, the results of this research showed the potential of these compounds to be a promising source for the development of antiangiogenic and immunomodulatory drugs.
Collapse
Affiliation(s)
- Marilú Roxana Soto-Vásquez
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Av. Juan Pablo II, Trujillo 13011, Peru
| | | | - Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Hanin A. Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Youssef FS, Ramadan MF, Echeverria Moran V, Aremu AO, Mamadalieva NZ. Editorial: Potential of natural products as drug leads possessing antioxidant and anti-aging properties. Front Pharmacol 2022; 13:1094950. [PMID: 36569304 PMCID: PMC9782410 DOI: 10.3389/fphar.2022.1094950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt,*Correspondence: Fadia S. Youssef,
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Valentina Echeverria Moran
- Facultad de Medicina, Universidad San Sebastián, Concepción, Chile,Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| | - Adeyemi O. Aremu
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa,Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Nilufar Z. Mamadalieva
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences Republic of Uzbekistan (UzAS), Tashkent, Uzbekistan
| |
Collapse
|
8
|
Benchikha N, Messaoudi M, Larkem I, Ouakouak H, Rebiai A, Boubekeur S, Ferhat MA, Benarfa A, Begaa S, Benmohamed M, Almasri DM, Hareeri RH, Youssef FS. Evaluation of Possible Antioxidant, Anti-Hyperglycaemic, Anti-Alzheimer and Anti-Inflammatory Effects of Teucrium polium Aerial Parts (Lamiaceae). LIFE (BASEL, SWITZERLAND) 2022; 12:life12101579. [PMID: 36295014 PMCID: PMC9604868 DOI: 10.3390/life12101579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022]
Abstract
Teucrium polium L. is commonly used in folk medicine to treat hypertension and diabetes and to heal wounds. The present work aimed to evaluate the different biological activities of T. polium hydroalcoholic extract, its total phenol and flavonoid content, and its mineral elements. Results showed that T. polium extract showed significant antioxidant potential in 2-diphenyl-1-picrylhydrazyl (DPPH) assay with IC50 equal to 8.68 μg/mL but with moderate activity in galvinoxyl assay with IC50 of 21.82 μg/mL and mild activity in the β-carotene assay. It also showed a pronounced anti-hyperglycemic activity using α-amylase inhibitory assay (IC50 = 111.68 µg/mL) and exceeds that of acarbose. T. polium showed excellent activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values of 28.69 and 4.93 μg/mL, respectively, postulating its promising anti-Alzheimer potential. The plant extract exhibited a strong anti-inflammatory effect with Bovine Serum Albumin (BSA) denaturation inhibitory potential estimated by 97.53% at 2 mg/mL, which was further confirmed by the in vivo carrageen-induced edema model. The extract revealed its richness in flavonoids and phenols, evidenced by its polyphenols content (36.35 ± 0.294 μg GAE/mg) and flavonoids (24.30 ± 0.44 μg QE/mg). It is rich in minerals necessary for human health, such as calcium, potassium, iron, sodium, magnesium, manganese and zinc. Molecular docking performed for previously identified compounds on human α-amylase, 5-lipoxygenase (5-LOX) and acetylcholine esterase confirmed the results. Thus, it can be concluded that T. polium can be a good candidate for alleviating many health-debilitating problems and can be highly beneficial in the pharmaceutical industry and medical research.
Collapse
Affiliation(s)
- Naima Benchikha
- Laboratory of Applied Chemistry and Environment (LCAE), Chemistry Department, University of Hamma Lakhdar El-Oued, B.P.789, El-Oued 39000, Algeria
| | - Mohammed Messaoudi
- Laboratory of Applied Chemistry and Environment (LCAE), Chemistry Department, University of Hamma Lakhdar El-Oued, B.P.789, El-Oued 39000, Algeria
- Nuclear Research Centre of Birine, P.O. Box 180, Ain Oussera, Djelfa 17200, Algeria
| | - Imane Larkem
- Laboratory of Diversity of Ecosystems and Dynamics of Agricultural Production Systems in Arid Zones, Department of Agronomy, Faculty of Nature and Life Science, Biskra University, Biskra 07000, Algeria
| | - Hamza Ouakouak
- Laboratory of Applied Chemistry and Environment (LCAE), Chemistry Department, University of Hamma Lakhdar El-Oued, B.P.789, El-Oued 39000, Algeria
| | - Abdelkrim Rebiai
- Laboratory of Applied Chemistry and Environment (LCAE), Chemistry Department, University of Hamma Lakhdar El-Oued, B.P.789, El-Oued 39000, Algeria
| | - Siham Boubekeur
- Research and Development Centre RDC-SAIDAL, 35Benyoucef Khattab Avenue, Mohammadia, El-Harrah, Algiers 16000, Algeria
| | | | - Adel Benarfa
- Centre de Recherche Scientifique Et Technique en Analyses Physico-Chimiques (CRAPC)-PTAPC, P.O. Box 0354, Laghouat 03000, Algeria
| | - Samir Begaa
- Nuclear Research Centre of Birine, P.O. Box 180, Ain Oussera, Djelfa 17200, Algeria
| | - Mokhtar Benmohamed
- Laboratory of Fundamental Sciences, University Amar Télidji of Laghouat, P.O. Box 37G, Road of Ghardaïa, Laghouat 03000, Algeria
| | - Diena M. Almasri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
- Correspondence:
| |
Collapse
|
9
|
Evaluation of the Antihyperglycemic and Antihyperlipidemic Activity of Saussurea hypoleuca Root in Alloxan-Induced Diabetes in Rat Model and Correlation to Its Major Secondary Metabolites. Life (Basel) 2022; 12:life12091451. [PMID: 36143486 PMCID: PMC9504274 DOI: 10.3390/life12091451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Saussurea hypoleuca belongs to the family Asteraceae, which has previously shown hepatoprotective, anticancer, and antioxidant activity. This study aimed to evaluate the antihyperglycemic and antihyperlipidemic activity of its root methanol extract and various fractions for the first time. This was performed using alloxan-induced diabetes in the rat model for both short, and long-term periods using different administration doses. Different biochemical parameters were studied and further consolidated by histopathological examination and in silico molecular modeling. The results showed that in the long-term study, at a dose of 400 mg/kg b.wt, the ethyl acetate fraction caused a pronounced reduction in fasting blood glucose level (FBG) and glycated hemoglobin (HbA1c) by 77.2% and 36.8%, respectively, compared to the diabetic group. This was confirmed by the histopathological examination of the animals’ pancreatic sections. The ethyl acetate fraction also showed a reduction in total cholesterol (TC), total glycerides (TG), and low-density lipoprotein cholesterol (LDL-C) levels. It improved kidney and liver functions, causing a reduction in aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine transaminase (ALT), urea, and creatinine levels. This is mainly attributed to its richness in secondary metabolites. Molecular docking showed that all the tested compounds showed certain inhibitory potential towards human α-glucosidase (HAG) and ATP citrate lyase (ACL). Thus, Saussurea hypoleuca roots can help in the management of hyperglycemia, hyperlipidemia, and hepatic and kidney dysfunction.
Collapse
|
10
|
Youssef FS, Ovidi E, Rai M. Editorial: Natural Product Based Drugs that Control Obesity and Other Disorders that Trigger and Provoke Inflammation. Front Pharmacol 2022; 13:891496. [PMID: 35496322 PMCID: PMC9039037 DOI: 10.3389/fphar.2022.891496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Elisa Ovidi
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, Viterbo, Italy
| | - Mahendra Rai
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, India
| |
Collapse
|
11
|
Parama D, Girisa S, Khatoon E, Kumar A, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. An Overview of the Pharmacological Activities of Scopoletin against Different Chronic Diseases. Pharmacol Res 2022; 179:106202. [DOI: 10.1016/j.phrs.2022.106202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022]
|
12
|
Wu Q, Yin CH, Li Y, Cai JQ, Yang HY, Huang YY, Zheng YX, Xiong K, Yu HL, Lu AP, Wang KX, Guan DG, Chen YP. Detecting Critical Functional Ingredients Group and Mechanism of Xuebijing Injection in Treating Sepsis. Front Pharmacol 2021; 12:769190. [PMID: 34938184 PMCID: PMC8687625 DOI: 10.3389/fphar.2021.769190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a systemic inflammatory reaction caused by various infectious or noninfectious factors, which can lead to shock, multiple organ dysfunction syndrome, and death. It is one of the common complications and a main cause of death in critically ill patients. At present, the treatments of sepsis are mainly focused on the controlling of inflammatory response and reduction of various organ function damage, including anti-infection, hormones, mechanical ventilation, nutritional support, and traditional Chinese medicine (TCM). Among them, Xuebijing injection (XBJI) is an important derivative of TCM, which is widely used in clinical research. However, the molecular mechanism of XBJI on sepsis is still not clear. The mechanism of treatment of "bacteria, poison and inflammation" and the effects of multi-ingredient, multi-target, and multi-pathway have still not been clarified. For solving this issue, we designed a new systems pharmacology strategy which combines target genes of XBJI and the pathogenetic genes of sepsis to construct functional response space (FRS). The key response proteins in the FRS were determined by using a novel node importance calculation method and were condensed by a dynamic programming strategy to conduct the critical functional ingredients group (CFIG). The results showed that enriched pathways of key response proteins selected from FRS could cover 95.83% of the enriched pathways of reference targets, which were defined as the intersections of ingredient targets and pathogenetic genes. The targets of the optimized CFIG with 60 ingredients could be enriched into 182 pathways which covered 81.58% of 152 pathways of 1,606 pathogenetic genes. The prediction of CFIG targets showed that the CFIG of XBJI could affect sepsis synergistically through genes such as TAK1, TNF-α, IL-1β, and MEK1 in the pathways of MAPK, NF-κB, PI3K-AKT, Toll-like receptor, and tumor necrosis factor signaling. Finally, the effects of apigenin, baicalein, and luteolin were evaluated by in vitro experiments and were proved to be effective in reducing the production of intracellular reactive oxygen species in lipopolysaccharide-stimulated RAW264.7 cells, significantly. These results indicate that the novel integrative model can promote reliability and accuracy on depicting the CFIGs in XBJI and figure out a methodological coordinate for simplicity, mechanism analysis, and secondary development of formulas in TCM.
Collapse
Affiliation(s)
- Qi- Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuan-Hui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-Qi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Han-Yun Yang
- The First Clinical Medical College of Southern Medical University, Guangzhou, China
| | - Ying-Ying Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi-Xu Zheng
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Xiong
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-Lang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Ai-Ping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| | - Ke-Xin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dao-Gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yu-Peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Chung CP, Lee MY, Hsia SM, Chiang W, Kuo YH, Hsu HY, Lin YL. Suppression on allergic airway inflammation of dehulled adlay ( Coix lachryma-jobi L. var. ma-yuen Stapf) in mice and anti-degranulation phytosterols from adlay bran. Food Funct 2021; 12:12788-12799. [PMID: 34854443 DOI: 10.1039/d1fo01621k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) seeds have been used in Asia for thousands years to treat warts, chapped skin, rheumatism, and neuralgia. The anti-allergic activity of dehulled adlay (DA) seeds was identified, and the bran (AB) is regarded as the main functional constituent in the edible part. However, no study has focused on in vivo acute anti-allergic airway inflammation. In the present report, we investigated DA methanolic extract (DAM) reversed ovalbumin (OVA)/methacholine (Mch)-induced airway hypersensitivity, decreased interleukin (IL)-4, IL-5, and IL-13 levels from splenocytes, suppressed tumor necrosis factor (TNF)-α, IL-1β, and IL-13 levels and reduced eosinophil counts and eotaxin in bronchoalveolar lavage fluid (BALF), which imply that the modulatory effects of DA should involve allergic degranulation. Further, seven phytosterols were isolated from AB ethanolic extract (ABE); among them, 3-O-caffeoyl-5β-sitostan-3-ol, β-sitosterol 3-O-glucopyranoside and β-sitosterol inhibited β-hexosaminidase release from A23187-stimulated RBL-2H3 cells with percentages of 54.1%, 52.0% and 48.5%, respectively, at 50 μM. In addition, β-sitosterol reduced immunoglobulin (Ig)E-stimulated degranulation on RBL-2H3 cells in a dose-dependent manner. The phytosterols were the predominant components based on gas chromatography (GC) analysis. This is the first study to demonstrate that DA suppressed OVA/Mch-induced acute airway inflammation. The phytosterols in AB showed significant anti-degranulation activities, and may be regarded as the indicative components of AB for anti-allergy effects.
Collapse
Affiliation(s)
- Cheng-Pei Chung
- Department of Nutrition and Health Sciences, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Ming-Yi Lee
- Department of Nutrition and Health Sciences, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Wenchang Chiang
- Graduate Institute of Food Science and Technology, Center for Food and Biomolecules, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
| | - Hsin-Yi Hsu
- Department & Graduate Institute of Tourism, College of Tourism, Leisure, and Sports, Aletheia University, Taipei, Taiwan.
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
14
|
Nurcahyanti ADR, Jap A, Lady J, Prismawan D, Sharopov F, Daoud R, Wink M, Sobeh M. Function of selected natural antidiabetic compounds with potential against cancer via modulation of the PI3K/AKT/mTOR cascade. Biomed Pharmacother 2021; 144:112138. [PMID: 34750026 DOI: 10.1016/j.biopha.2021.112138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with growing global incidence, as 387 million people were diagnosed in 2014 with an expected projection of 642 million in 2040. Several complications are associated with DM including heart attack, stroke, kidney failure, blindness, and cancer. The latter is the second leading cause of death worldwide accounting for one in every six deaths, with liver, pancreas, and endometrium cancers are the most abundant among patients with diabetes. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a vital role in developing a wide array of pathological disorders, among them diabetes and cancer. Natural secondary metabolites that counteract the deleterious effects of reactive oxygen species (ROS) and modulate PI3K/Akt/mTOR pathway could be a promising approach in cancer therapy. Here, 717 medicinal plants with antidiabetic activities were highlighted along with 357 bioactive compounds responsible for the antidiabetic activity. Also, 43 individual plant compounds with potential antidiabetic activities against cancer via the modulation of PI3K/Akt/mTOR cascade were identified. Taken together, the available data give an insight of the potential of repurposing medicinal plants and/or the individual secondary metabolites with antidiabetic activities for cancer therapy.
Collapse
Affiliation(s)
- Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia.
| | - Adeline Jap
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Jullietta Lady
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Deka Prismawan
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Farukh Sharopov
- Chinese-Tajik Innovation Center for Natural Products, National Academy of Sciences of Tajikistan, Ayni str. 299/2, 734063, Dushanbe, Tajikistan
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mansour Sobeh
- AgroBiosciences Research, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
| |
Collapse
|
15
|
Youssef FS, Ovidi E, Musayeib NMA, Ashour ML. Morphology, Anatomy and Secondary Metabolites Investigations of Premna odorata Blanco and Evaluation of Its Anti-Tuberculosis Activity Using In Vitro and In Silico Studies. PLANTS (BASEL, SWITZERLAND) 2021; 10:1953. [PMID: 34579484 PMCID: PMC8467642 DOI: 10.3390/plants10091953] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 06/06/2023]
Abstract
In-depth botanical characterization was performed on Premna odorata Blanco (Lamiaceae) different organs for the first time. The leaves are opposite, hairy and green in color. Flowers possess fragrant aromatic odors and exist in inflorescences of 4-15 cm long corymbose cyme-type. In-depth morphological and anatomical characterization revealed the great resemblance to plants of the genus Premna and of the family Lamiaceae, such as the presence of glandular peltate trichomes and diacytic stomata. Additionally, most examined organs are characterized by non-glandular multicellular covering trichomes, acicular, and rhombic calcium oxalate crystals. P. odorata leaves n-hexane fraction revealed substantial anti-tuberculous potential versus Mycobacterium tuberculosis, showing a minimum inhibition concentration (MIC) of 100 μg/mL. Metabolic profiling of the n-hexane fraction using gas-chromatography coupled to mass spectrometry (GC/MS) analysis revealed 10 major compounds accounting for 93.01%, with trans-phytol constituting the major compound (24.06%). The virtual screening revealed that trans-phytol highly inhibited MTB C171Q receptor as M. tuberculosis KasA (β-ketoacyl synthases) with a high fitting score (∆G = -15.57 kcal/mol) approaching that of isoniazid and exceeding that of thiolactomycin, the co-crystallized ligand. Absorption, distribution, metabolism, excretion and toxicity predictions (ADME/TOPKAT) revealed that trans-phytol shows lower solubility and absorption levels when compared to thiolactomycin and isoniazid. Still, it is safer, causing no mutagenic or carcinogenic effects with higher lethal dose, which causes the death of 50% (LD50). Thus, it can be concluded that P. odorata can act as a source of lead entities to treat tuberculosis.
Collapse
Affiliation(s)
- Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
| | - Elisa Ovidi
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy;
| | - Nawal M. Al Musayeib
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
| |
Collapse
|
16
|
Olanlokun JO, Olowofolahan AO, Bodede O, Adegbuyi AT, Prinsloo G, Steenkamp P, Olorunsogo OO. Anti-Inflammatory Potentials of the n-Hexane Fraction of Alstonia boonei Stem Bark in Lipopolysaccharide-Induced Inflammation in Wistar Rats. J Inflamm Res 2021; 14:3905-3920. [PMID: 34429627 PMCID: PMC8376584 DOI: 10.2147/jir.s304076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background Inflammation is a protective response of the host to infections and tissue damage and medicinal plants have been used to regulate inflammatory response. The phytochemical contents of the n-hexane fraction of Alstonia boonei and their anti-inflammatory potentials in lipopolysaccharide-induced inflammation were investigated in rat liver. Materials and Methods A quantity of 5 mg/kg lipopolysaccharide (LPS) was used to induce inflammation in twenty-five male Wistar rats, grouped (n = 5) and treated as follows: negative control (10 mL/kg saline), positive control (1 mg/kg ibuprofen); 50, 100 and 20 mg/kg of the n-hexane fraction of Alstonia boonei were administered to test groups. In another experiment, twenty rats (n = 5, without LPS) were administered the same doses of the n-hexane fraction of A. boonei and ibuprofen for seven days. At the end of the experiment, animals were sacrificed, serum was obtained from blood and liver mitochondria isolated in a refrigerated centrifuge. Mitochondrial permeability transition (mPT) pore opening and mitochondrial F0F1 ATPase (mATPase) were determined spectrophotometrically. Serum interleukins 1β, 6 (IL-1β, IL-6), tumour necrosis factor alpha (TNF-α), C-reactive protein (CRP) and creatine kinase (CK), gamma glutamyl transferase (GGT), aspartate and alanine aminotransferases (AST and ALT,) of the animals in which inflammation was induced using LPS but treated with graded doses of n-hexane fraction of A. boonei were determined using the ELISA technique. The phytochemical contents of the n-hexane fraction of A. boonei were determined using ultra performance liquid chromatography-tandem mass spectrometer (UHPLC-MS). Results Calcium induced mPT in 8 fold and LPS induced mPT 14 fold in the negative control while the n-hexane fraction reversed mPT in the treated groups (50, 100 and 200 mg/kg) to 2, 4, 4 folds, respectively. LPS treatment of the negative group enhanced F0F1 mATPase activity, increased CRP, TNF-α, IL-1β, IL-6 levels as well as CK, AST, ALT and GGT activities. These values were significantly reduced by 100 and 200 mg/kg of the n-hexane fraction. UHPLC-MS analysis of the fraction revealed the presence of terpenoids, phenolics and sphingolipids. Conclusion These results showed that bioactive phytochemicals present in the n-hexane fraction of A. boonei were not toxic, have an anti-inflammatory effect and could be used for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeola Oluwakemi Olowofolahan
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusola Bodede
- Department of Agriculture and Animal Health, University of South Africa, Florida Campus, Florida, 1710, South Africa
| | | | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, University of South Africa, Florida Campus, Florida, 1710, South Africa
| | - Paul Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, 2006, South Africa
| | - Olufunso Olabode Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
17
|
Anti-Allergic, Anti-Inflammatory and Anti-Hyperglycemic Activity of Chasmanthe aethiopica Leaf Extract and Its Profiling Using LC/MS and GLC/MS. PLANTS 2021; 10:plants10061118. [PMID: 34073129 PMCID: PMC8226651 DOI: 10.3390/plants10061118] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
This study aims to comprehensively explore the phytoconstituents as well as investigate the different biological activities of Chasmanthe aethiopica (Iridaceae) for the first time. Metabolic profiling of the leaf methanol extract of C. aethiopica (CAL) was carried out using HPLC-PDA-ESI-MS/MS. Twenty-nine compounds were annotated belonging to various phytochemical classes including organic acids, cinnamic acid derivatives, flavonoids, isoflavonoids, and fatty acids. Myricetin-3-O-rhamnoside was the major compound identified. GLC/MS analysis of the n-hexane fraction (CAL-A) resulted in the identification of 45 compounds with palmitic acid (16.08%) and methyl hexadecanoic acid ester (11.91%) representing the major constituents. CAL-A exhibited a potent anti-allergic activity as evidenced by its potent inhibition of β-hexosaminidase release triggered by A23187 and IgE by 72.7% and 48.7%, respectively. Results were comparable to that of dexamethasone (10 nM) in the A23187 degranulation assay showing 80.7% inhibition for β-hexosaminidase release. Both the n-hexane (CAL-A) and dichloromethane (CAL-B) fractions exhibited potent anti-inflammatory activity manifested by the significant inhibition of superoxide anion generation and prohibition of elastase release. CAL showed anti-hyperglycemic activity in vivo using streptozotocin-induced diabetic rat model by reducing fasting blood glucose levels (FBG) by 53.44% as compared with STZ-treated rats along with a substantial increase in serum insulin by 22.22%. Molecular modeling studies indicated that dicaffeoylquinic acid showed the highest fitting with free binding energies (∆G) of -47.24 and -60.50 Kcal/mol for human α-amylase and α-glucosidase, respectively confirming its anti-hyperglycemic activity. Thus, C. aethiopica leaf extract could serve as an effective antioxidant natural remedy combating inflammation, allergy, and hyperglycemia.
Collapse
|
18
|
Marahatha R, Gyawali K, Sharma K, Gyawali N, Tandan P, Adhikari A, Timilsina G, Bhattarai S, Lamichhane G, Acharya A, Pathak I, Devkota HP, Parajuli N. Pharmacologic activities of phytosteroids in inflammatory diseases: Mechanism of action and therapeutic potentials. Phytother Res 2021; 35:5103-5124. [PMID: 33957012 DOI: 10.1002/ptr.7138] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022]
Abstract
Natural products and their derivatives are known to be useful for treating numerous diseases since ancient times. Because of their high therapeutic potentials, the use of different medicinal plants is possible to treat varied inflammation-mediated chronic diseases. Among natural products, phytosteroids have emerged as promising compounds mostly because they have diverse pharmacological activities. Currently, available medications exert numerous systemic toxicities, including hypertension, immune suppression, osteoporosis, and metabolic abnormalities. Thus, further research on phytosteroids to subside these complications is of significant importance. In this study, the information on phytosteroids, their types, and actions against inflammation, and allergic complications was collected by a systematic survey of literature on several scientific search engines. The literature review suggested that phytosteroids exhibit antiinflammatory action via different modes through transrepression or selective COX-2 enzymes. Also, in silico ADMET analysis was carried out on available phytosteroids to uncover their pharmacokinetic properties. Our analysis has shown that eight compounds: withaferin A, stigmasterol, β-sitosterol, guggulsterone, diosgenin, sarsasapogenin, physalin A, and dioscin, -isolated from medicinal plants show similar pharmacokinetic properties as compared to dexamethasone, commercially available glucocorticoid. These phytosteroids could be useful for the treatment of inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, asthma, and cardiovascular diseases. Thus, systematic research is required to explore potent phytosteroids with lesser side effects, which might substitute the current medications.
Collapse
Affiliation(s)
- Rishab Marahatha
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Kabita Gyawali
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Kabita Sharma
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Narayan Gyawali
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Parbati Tandan
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Ashma Adhikari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Grishma Timilsina
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Salyan Bhattarai
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Canada
| | - Ganesh Lamichhane
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Ashis Acharya
- Central Department of Geology, Tribhuvan University, Kirtipur, Nepal
| | - Ishwor Pathak
- Department of Chemistry, Amrit Campus, Tribhuvan University, Thamel, Nepal
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| |
Collapse
|
19
|
Youssef FS, Altyar AE, Omar AM, Ashour ML. Phytoconstituents, In Vitro Anti-Infective Activity of Buddleja indica Lam., and In Silico Evaluation of its SARS-CoV-2 Inhibitory Potential. Front Pharmacol 2021; 12:619373. [PMID: 33912041 PMCID: PMC8072666 DOI: 10.3389/fphar.2021.619373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/03/2021] [Indexed: 01/30/2023] Open
Abstract
Phytochemical investigation of Buddleja indica Lam. leaves methanol extract (BIT) resulted in the isolation of six known compounds for the first time from the plant, namely, p-hydroxybenzoic acid 1), caffeic acid 2), quercetin 3-O-β-D glucoside-7-O-α-L-rhamnoside 3), kaempferol 3-O-β-D glucoside-7-O-α-L-rhamnoside 4), quercetin 7-O-β-D glucoside 5) and kaempferol 6). BIT extract showed potent antibacterial activity with MIC values ranging between 0.48 and 1.95 μg/ml with Bacillus subtilis was the most susceptible to the BIT effect. It showed a notable antimycobacterial and anti-Helicobacter pylori activity with MIC values of 100 and 80 μg/ml, respectively. Vesicular stomatitis virus (VSV) was more sensitive to the antiviral activity of BIT comparable to herpes simplex virus type 1 (HSV-1), showing 48.38 and 41.85% inhibition of the viral replication at a dose of 50 μg/ml for VSV and HSV-1, respectively. In silico molecular docking of the isolated compounds revealed that caffeic acid 2) showed the highest fitting within the active sites of DNA-gyrase, topoisomerase IV, and SARS-CoV-2 MPro. Quercetin 7-O-β-D glucoside 5) revealed the best fitting in dihydrofolate reductase active site with ∆ G value equals -36.53 Kcal/mol. Kaempferol 6) exhibited the highest fitting towards β-lactamase, SARS-CoV-2PLpro, and SARS-CoV-2 3CLpro active sites. Thus, B. indica Lam. can be considered as a future source of cheap, substantially safe, and credible antibacterial, antifungal, and antiviral candidate of natural origin that could effectively participate in solving the problem of COVID-19 pandemic. These findings provide a scientific consolidation for the ethnomedicinal uses of Buddleja indica Lam. as a topical antiseptic.
Collapse
Affiliation(s)
- Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Boudreau A, Richard AJ, Harvey I, Stephens JM. Artemisia scoparia and Metabolic Health: Untapped Potential of an Ancient Remedy for Modern Use. Front Endocrinol (Lausanne) 2021; 12:727061. [PMID: 35211087 PMCID: PMC8861327 DOI: 10.3389/fendo.2021.727061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
Botanicals have a long history of medicinal use for a multitude of ailments, and many modern pharmaceuticals were originally isolated from plants or derived from phytochemicals. Among these, artemisinin, first isolated from Artemisia annua, is the foundation for standard anti-malarial therapies. Plants of the genus Artemisia are among the most common herbal remedies across Asia and Central Europe. The species Artemisia scoparia (SCOPA) is widely used in traditional folk medicine for various liver diseases and inflammatory conditions, as well as for infections, fever, pain, cancer, and diabetes. Modern in vivo and in vitro studies have now investigated SCOPA's effects on these pathologies and its ability to mitigate hepatotoxicity, oxidative stress, obesity, diabetes, and other disease states. This review focuses on the effects of SCOPA that are particularly relevant to metabolic health. Indeed, in recent years, an ethanolic extract of SCOPA has been shown to enhance differentiation of cultured adipocytes and to share some properties of thiazolidinediones (TZDs), a class of insulin-sensitizing agonists of the adipogenic transcription factor PPARγ. In a mouse model of diet-induced obesity, SCOPA diet supplementation lowered fasting insulin and glucose levels, while inducing metabolically favorable changes in adipose tissue and liver. These observations are consistent with many lines of evidence from various tissues and cell types known to contribute to metabolic homeostasis, including immune cells, hepatocytes, and pancreatic beta-cells. Compounds belonging to several classes of phytochemicals have been implicated in these effects, and we provide an overview of these bioactives. The ongoing global epidemics of obesity and metabolic disease clearly require novel therapeutic approaches. While the mechanisms involved in SCOPA's effects on metabolic, anti-inflammatory, and oxidative stress pathways are not fully characterized, current data support further investigation of this plant and its bioactives as potential therapeutic agents in obesity-related metabolic dysfunction and many other conditions.
Collapse
Affiliation(s)
- Anik Boudreau
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Innocence Harvey
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Jacqueline M. Stephens,
| |
Collapse
|
21
|
Septembre-Malaterre A, Lalarizo Rakoto M, Marodon C, Bedoui Y, Nakab J, Simon E, Hoarau L, Savriama S, Strasberg D, Guiraud P, Selambarom J, Gasque P. Artemisia annua, a Traditional Plant Brought to Light. Int J Mol Sci 2020; 21:E4986. [PMID: 32679734 PMCID: PMC7404215 DOI: 10.3390/ijms21144986] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
Traditional remedies have been used for thousand years for the prevention and treatment of infectious diseases, particularly in developing countries. Of growing interest, the plant Artemisia annua, known for its malarial properties, has been studied for its numerous biological activities including metabolic, anti-tumor, anti-microbial and immunomodulatory properties. Artemisia annua is very rich in secondary metabolites such as monoterpenes, sesquiterpenes and phenolic compounds, of which the biological properties have been extensively studied. The purpose of this review is to gather and describe the data concerning the main chemical components produced by Artemisia annua and to describe the state of the art about the biological activities reported for this plant and its compounds beyond malaria.
Collapse
Affiliation(s)
- Axelle Septembre-Malaterre
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Mahary Lalarizo Rakoto
- Faculté de Médecine, Université d’Antananarivo, Campus Universitaire Ambohitsaina, BP 375, Antananarivo 101, Madagascar;
| | - Claude Marodon
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Yosra Bedoui
- INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint Denis de La Réunion, France;
| | - Jessica Nakab
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Elisabeth Simon
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Ludovic Hoarau
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Stephane Savriama
- EA929 Archéologie Industrielle, Histoire, Patrimoine/Géographie-Développement Environnement de la Caraïbe (AIHP-GEODE), Université des Antilles, Campus Schoelcher, BP7207, 97275 Schoelcher Cedex Martinique, France;
| | - Dominique Strasberg
- Unité Mixte de Recherche Peuplements Végétaux et Bio-agresseurs en Milieu Tropical (PVBMT), Pôle de Protection des Plantes, Université de La Réunion, 7 Chemin de l’IRAT, 97410 Saint-Pierre, La Réunion, France;
| | - Pascale Guiraud
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Jimmy Selambarom
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Philippe Gasque
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
- Laboratoire d’immunologie clinique et expérimentale de la zone de l’océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
22
|
Fu C, Yu P, Wang M, Qiu F. Phytochemical analysis and geographic assessment of flavonoids, coumarins and sesquiterpenes in Artemisia annua L. based on HPLC-DAD quantification and LC-ESI-QTOF-MS/MS confirmation. Food Chem 2020; 312:126070. [DOI: 10.1016/j.foodchem.2019.126070] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/02/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
|
23
|
Abd Rani NZ, Kumolosasi E, Jasamai M, Jamal JA, Lam KW, Husain K. In vitro anti-allergic activity of Moringa oleifera Lam. extracts and their isolated compounds. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:361. [PMID: 31829185 PMCID: PMC6907282 DOI: 10.1186/s12906-019-2776-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Moringa oleifera Lam. is a commonly used plant in herbal medicine and has various reported bioactivities such as antioxidant, antimicrobial, anticancer and antidiabetes. It is rich in nutrients and polyphenols. The plant also has been traditionally used for alleviating allergic conditions. This study was aimed to examine the anti-allergic activity of M. oleifera extracts and its isolated compounds. METHOD M. oleifera leaves, seeds and pods were extracted with 80% of ethanol. Individual compounds were isolated using a column chromatographic technique and elucidated based on the nuclear magnetic resonance (NMR) and electrospray ionisation mass spectrometry (ESIMS) spectral data. The anti-allergic activity of the extracts, isolated compounds and ketotifen fumarate as a positive control was evaluated using rat basophilic leukaemia (RBL-2H3) cells for early and late phases of allergic reactions. The early phase was determined based on the inhibition of beta-hexosaminidase and histamine release; while the late phase was based on the inhibition of interleukin (IL-4) and tumour necrosis factor (TNF-α) release. RESULTS Two new compounds; ethyl-(E)-undec-6-enoate (1) and 3,5,6-trihydroxy-2-(2,3,4,5,6-pentahydroxyphenyl)-4H-chromen-4-one (2) together with six known compounds; quercetin (3), kaempferol (4), β-sitosterol-3-O-glucoside (5), oleic acid (6), glucomoringin (7), 2,3,4-trihydroxybenzaldehyde (8) and stigmasterol (9) were isolated from M. oleifera extracts. All extracts and the isolated compounds inhibited mast cell degranulation by inhibiting beta-hexosaminidase and histamine release, as well as the release of IL-4 and TNF-α at varying levels compared with ketotifen fumarate. CONCLUSION The study suggested that M. oleifera and its isolated compounds potentially have an anti-allergic activity by inhibiting both early and late phases of allergic reactions.
Collapse
Affiliation(s)
- Nur Zahirah Abd Rani
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Endang Kumolosasi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Malina Jasamai
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Jamia Azdina Jamal
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Kok Wai Lam
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Xiong G, Deng Y, Cao Z, Liao X, Zhang J, Lu H. The hepatoprotective effects of Salvia plebeia R. Br. extract in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2019; 95:399-410. [PMID: 31654769 DOI: 10.1016/j.fsi.2019.10.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Salvia plebeia R. Br. is a traditional Chinese medicinal herb that has been widely used for the treatment of many inflammatory diseases such as hepatitis. However, the underlying molecular mechanism about the hepatoprotective effects of S. plebeia remains largely unknown. Here, we investigated the antioxidant activities and anti-inflammatory effects of ethanol extracts of S. plebeia (SPEE) in the zebrafish model. Firstly, we determined the chemical compositions of SPEE and identified three major constituents by using GC-MS analysis. After that, SPEE exhibited significantly antioxidant properties in the LPS-induced zebrafish embryos, and the enzyme activities of ROS, CAT and SOD were obviously inhibited in a dose-dependent manner. Secondly, SPEE greatly reduced fat vacuoles (HE staining), lipid accumulation (Oil O staining) and hepatocyte fibrosis (Gemori staining) in the thioacetamide (TAA)-induced hepatocyte injury of adult zebrafish. Meanwhile, the NO contents and lipid metabolism-related genes were substantially down-regulated after SPEE exposure. Thirdly, we used RNA-Seq analysis to identify the differentially expressed genes (DEGs) after SPEE exposure in adult zebrafish liver. The results showed that 1289 DEGs including 558 up-regulated and 731 down-regulated were identified between the TAA + SPEE and TAA groups. KEGG pathway and GO functional analysis revealed that steroid biosynthesis, oxidation-reduction and innate immunity were significantly enriched. Mechanistically, SPEE can considerably reduce the cell apoptosis of hepatocytes and promote the translocation of Nrf2 protein from the nucleus to the cytoplasm in TAA-induced zebrafish. Moreover, SPEE can modulate various inflammatory cytokines and immune genes both in the control and H2O2-stimulated conditions. The pro-inflammatory cytokines such as IL-1β and TNF-α was markedly up-regulated but the anti-inflammatory cytokines such as TGF-β was greatly down-regulated after SPEE treatment. In addition, some key genes in the TLR signaling were also activated in the H2O2-stimulated conditions. In summary, our results suggested that SPEE had an important role in the antioxidant and anti-inflammatory effects in zebrafish in the near future. Some of the components identified in this study may be served as potential sources of new hepatoprotective compounds for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Guanghua Xiong
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Yunyun Deng
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Zigang Cao
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Xinjun Liao
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Jun'e Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China.
| | - Huiqiang Lu
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China.
| |
Collapse
|