1
|
Oliveira CA, Mercês ÉAB, Portela FS, Malheiro LFL, Silva HBL, De Benedictis LM, De Benedictis JM, Silva CCDE, Santos ACL, Rosa DP, Velozo HS, de Jesus Soares T, de Brito Amaral LS. An integrated view of cisplatin-induced nephrotoxicity, hepatotoxicity, and cardiotoxicity: characteristics, common molecular mechanisms, and current clinical management. Clin Exp Nephrol 2024; 28:711-727. [PMID: 38678166 DOI: 10.1007/s10157-024-02490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
Cisplatin (CP) is a chemotherapy drug widely prescribed to treat various neoplasms. Although fundamental for the therapeutic action of the drug, its cytotoxic mechanisms trigger adverse effects in several tissues, such as the kidney, liver, and heart, which limit its clinical use. In this sense, studies point to an essential role of damage to nuclear and mitochondrial DNA associated with oxidative stress, inflammation, and apoptosis in the pathophysiology of tissue injuries. Due to the limitation of effective preventive and therapeutic measures against CP-induced toxicity, new strategies with potential cytoprotective effects have been studied. Therefore, this article is timely in reviewing the characteristics and main molecular mechanisms common to renal, hepatic, and cardiac toxicity previously described, in addition to addressing the main validated strategies for the current management of these adverse events in clinical practice. We also handle the main promising antioxidant substances recently presented in the literature to encourage the development of new research that consolidates their potential preventive and therapeutic effects against CP-induced cytotoxicity.
Collapse
Affiliation(s)
- Caroline Assunção Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Érika Azenathe Barros Mercês
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Fernanda Santos Portela
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Lara Fabiana Luz Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | | | | | | | | | | | | | - Helloisa Souza Velozo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Telma de Jesus Soares
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Liliany Souza de Brito Amaral
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil.
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil.
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil.
| |
Collapse
|
2
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Anticancer Activity of Metallodrugs and Metallizing Host Defense Peptides-Current Developments in Structure-Activity Relationship. Int J Mol Sci 2024; 25:7314. [PMID: 39000421 PMCID: PMC11242492 DOI: 10.3390/ijms25137314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
This article provides an overview of the development, structure and activity of various metal complexes with anti-cancer activity. Chemical researchers continue to work on the development and synthesis of new molecules that could act as anti-tumor drugs to achieve more favorable therapies. It is therefore important to have information about the various chemotherapeutic substances and their mode of action. This review focuses on metallodrugs that contain a metal as a key structural fragment, with cisplatin paving the way for their chemotherapeutic application. The text also looks at ruthenium complexes, including the therapeutic applications of phosphorescent ruthenium(II) complexes, emphasizing their dual role in therapy and diagnostics. In addition, the antitumor activities of titanium and gold derivatives, their side effects, and ongoing research to improve their efficacy and reduce adverse effects are discussed. Metallization of host defense peptides (HDPs) with various metal ions is also highlighted as a strategy that significantly enhances their anticancer activity by broadening their mechanisms of action.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
3
|
Okiljević B, Martić N, Govedarica S, Andrejić Višnjić B, Bosanac M, Baljak J, Pavlić B, Milanović I, Rašković A. Cardioprotective and Hepatoprotective Potential of Silymarin in Paracetamol-Induced Oxidative Stress. Pharmaceutics 2024; 16:520. [PMID: 38675181 PMCID: PMC11055062 DOI: 10.3390/pharmaceutics16040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Silymarin, derived from Silybum marianum, has been used in traditional medicine for various ailments. In this study, the cardioprotective and hepatoprotective effects of silymarin against paracetamol-induced oxidative stress were examined in 28 male Swiss Webster mice, divided into four groups and treated for 7 days (via the oral route) with (a) saline 1 mL/kg (control group), (b) saline 1 mL/kg + single dose of paracetamol 110 mg/kg on the 7th day; (c) silymarin 50 mg/kg; and (d) silymarin 50 mg/kg + single dose of paracetamol 110 mg/kg on the 7th day. In vitro and in vivo antioxidant activity together with liver enzyme activity were evaluated. Histopathological and immunohistochemical assessment was performed. Silymarin mitigated paracetamol-induced liver injury by reducing oxidative stress markers such as lipid peroxidation and restoring antioxidant enzyme activity. Silymarin treatment resulted in a significant decrease in liver enzyme levels. Reduced necrosis and inflammatory infiltrate in liver tissues of silymarin-treated groups were detected as well. Immunohistochemical analysis demonstrated reduced expression of inflammatory markers (COX2, iNOS) and oxidative stress marker (SOD2) in the liver tissues of the silymarin-treated groups. Similar trends were observed in cardiac tissue. These results suggest that silymarin exerts potent hepatoprotective and cardioprotective effects against paracetamol-induced oxidative stress, making it a promising therapeutic agent for liver and heart diseases associated with oxidative damage.
Collapse
Affiliation(s)
- Bogdan Okiljević
- Department of Cardiac Surgery, Dedinje Cardiovascular Institute, 11000 Belgrade, Serbia;
| | - Nikola Martić
- Department of Pharmacology, Toxicology, and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Srđan Govedarica
- Clinic of Urology, Clinical Center of Vojvodina, 21000 Novi Sad, Serbia;
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Bojana Andrejić Višnjić
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (B.A.V.); (M.B.)
| | - Milana Bosanac
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (B.A.V.); (M.B.)
| | - Jovan Baljak
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Isidora Milanović
- Department of Pharmacology, Biochemistry, Pharmacy and Ecology, Academy for Applied Studies Belgrade, College of Health Sciences, 11080 Belgrade, Serbia;
| | - Aleksandar Rašković
- Department of Pharmacology, Toxicology, and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| |
Collapse
|
4
|
Hamdy S, Elshopakey GE, Risha EF, Rezk S, Ateya AI, Abdelhamid FM. Curcumin mitigates gentamicin induced-renal and cardiac toxicity via modulation of Keap1/Nrf2, NF-κB/iNOS and Bcl-2/BAX pathways. Food Chem Toxicol 2024; 183:114323. [PMID: 38056816 DOI: 10.1016/j.fct.2023.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Gentamicin (GEN) is an aminoglycoside antibiotic used to treat gram-negative bacterial infections. Our study aimed to explore curcumin's (CMN) protective role against GEN-induced renal and cardiac toxicity. Rats were randomly classified into 4 equal groups; Control (cont), GEN (100 mg/kg b.wt, i.p.) for seven days, CMN (200 mg/kg b.wt, orally) for 21 days, and CMN + GEN groups. GEN caused renal and cardiac dysfunctions; increased urea, creatinine, uric acid, cystatin C, CK-MB, LDH, and troponin I serum levels. MDA level was elevated significantly while activities of SOD, CAT, and GSH level were reduced significantly in renal and cardiac tissues. GEN-intoxicated rats showed up-regulation of NF-κB, IL-1β, Keap1, HMOX1, and BAX with down-regulation of Nrf2, and Bcl-2 mRNA expression in renal and cardiac tissues. Also, GEN-induced up-regulation of renal mRNA expression of KIM-1, NGAL, and intermediate filament proteins [desmin, nestin, and vimentin] as well cardiac gene expression of cMyBP-C and H-FABP. GEN-induced toxicity was significantly attenuated by CMN co-treatment as CMN improved renal and cardiac biomarkers, reduced oxidative stress and inflammatory response, and reversed alterations in mRNA expression of all tested renal and cardiac genes. These outcomes indicated that CMN could protect renal and cardiac tissues against GEN-induced oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Sara Hamdy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Engy F Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shaymaa Rezk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed I Ateya
- Department of Development of Animal wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma M Abdelhamid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
5
|
Atef MM, Hafez YM, El-Deeb OS, Basha EH, Ismail R, Alshenawy H, El-Esawy RO, Eltokhy AK. The cardioprotective effect of human glucagon-like peptide-1 receptor agonist (semaglutide) on cisplatin-induced cardiotoxicity in rats: Targeting mitochondrial functions, dynamics, biogenesis, and redox status pathways. Cell Biochem Funct 2023. [PMID: 37051656 DOI: 10.1002/cbf.3795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
The cardiotoxic effect of chemotherapeutic agents as cisplatin has become a major issue recently. Interference with mitochondrial dynamics, biogenesis, redox status, and apoptosis are the most possible underlying mechanisms. Semaglutide is a human glucagon-like peptide-1 receptor agonist (GLP-1R), which is used primarily for the treatment of DM. Various recent studies have investigated (GLP-1R) role in cardiovascular diseases due to antiapoptotic and antioxidant effects. The current study aimed to investigate the curative role of semaglutide's against cisplatin- induced cardiotoxicity and its relation to mitochondrial functions, dynamics, biogenesis, apoptosis, and redox status pathways. The study included 30 male rats divided into three groups: control, cisplatin-induced cardiotoxicity, and cisplatin-induced cardiotoxicity treated with semaglutide. At the end of the experiment heart index, serum cardiotoxicity markers, SOD, GPX activities and H2 O2 level were estimated. Mitochondrial transmembrane potential, complex I and citrate synthase enzyme activities, ATP level, Mfn2 in addition to PGC-1 α levels were assessed as biogenesis markers. Mitophagy markers PINK1 and Parkin mRNA gene expression were estimated. Histopathological examination of cardiac muscles of all studied groups and immunoassay of P53 and caspase 3 in cardiac tissue were examined to assess apoptosis. Cisplatin has disturbed mitochondrial function and dynamics, dysregulate redox status and induced mitophagy and apoptosis, in the other hand semaglutide treatment has normalized dysregulated mitochondrial function and dynamics, redox status and suppressed mitophagy and apoptosis. Semaglutide has ameliorative effect against cisplatin- induced cardiotoxicity via modulation of mitochondrial functions, dynamics, biogenesis, apoptosis, and redox status pathways.
Collapse
Affiliation(s)
- Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Omnia Safwat El-Deeb
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman H Basha
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Radwa Ismail
- Anatomy Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hanan Alshenawy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Amira Kamel Eltokhy
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Ali FEM, Hassanein EHM, Abd El-Ghafar OAM, Rashwan EK, Saleh FM, Atwa AM. Exploring the cardioprotective effects of canagliflozin against cisplatin-induced cardiotoxicity: Role of iNOS/NF-κB, Nrf2, and Bax/cytochrome C/Bcl-2 signals. J Biochem Mol Toxicol 2023; 37:e23309. [PMID: 36645100 DOI: 10.1002/jbt.23309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023]
Abstract
Cardiotoxicity is a severe considerable side effect of cisplatin (CDDP) that requires much medical attention. The current study investigates the cardioprotective effects of canagliflozin (CA) against CDDP-induced heart toxicity. Rats were allocated to the control group; the CA group was administered CA 10 mg/kg/day orally for 10 days; the CDDP group was injected with 7 mg/kg, intraperitoneal as a single dose on the 5th day, and the CDDP + CA group. Compared to the CDDP-treated group, CA effectively attenuated CDDP-induced heart injury as evidenced by a decrease of serum aspartate aminotransferase, alkaline phosphatase, creatine kinase-MB, and lactate dehydrogenase enzymes and supported by the alleviation of histopathological changes in cardiac tissues. Biochemically, CA attenuated cardiac oxidative injury through upregulation of the nuclear factor-erythroid 2 related factor 2 (Nrf2) signal. CA suppressed inflammation by decreasing cardiac NO2 - , MPO, iNOS, nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha, and interleukin 1-beta levels. Besides, CA significantly upregulated cardiac levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and p-AKT proteins. Moreover, CA remarkably mitigated CDDP-induced apoptosis via modulation of Bax, cytochrome C, and Bcl-2 protein levels. Together, the present study revealed that CA could be a good candidate for preventing CDDP-induced cardiac injury by modulating iNOS/NF-κB, Nrf2, PI3K/AKT, and Bax/cytochrome C/Bcl-2 signals.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Al-Azhar University, Assuit, Egypt
| | - Fayez M Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
7
|
Afsar T, Razak S, Almajwal A. Reversal of cisplatin triggered neurotoxicity by Acacia hydaspica ethyl acetate fraction via regulating brain acetylcholinesterase activity, DNA damage, and pro-inflammatory cytokines in the rodent model. BMC Complement Med Ther 2022; 22:179. [PMID: 35790919 PMCID: PMC9254489 DOI: 10.1186/s12906-022-03657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cisplatin (CisPT) is a chemotherapeutic that outcome in adverse effects including neurotoxicity. We examined the efficacy of hydaspica ethyl acetate extract (AHE) against CisPT-prompted neurotoxicity.
Methods
Group I: Distilled water; Group II: CisPT (12 mg/kg b.w. i.p) on the 13th day of treatment. Group III: received AHE (400 mg/kg b.w) orally for 16 days. Group IV and V received 200 and 400 mg/kg b.w AHE orally for 16 days while CisPT injection on day 13, respectively. Group VI: received Silymarin (100 mg/kg b.w) orally for 16 days and CP (12 mg/kg b.w., i.p.) on day 13. TNF-α, IL6, brain acetylcholinesterase activity (AChE), oxidative trauma markers, genotoxicity, antioxidant enzymes, and morphological alterations in cerebral hemispheres were inspected.
Results
AHE administration before CisPT considerably reduced both tissue TNF-α and IL 6 expressions compared to CisPT treated group in a dose-dependent manner. AHE treatment (400 mg/kg b.w) significantly ameliorated brain AChE activity. Brain tissue MDA, H2O2, and NO content were markedly (p < 0.001) elevated after CisPT inoculation while a noticeable (p < 0.001) diminution was observed in AHE treatment groups. AHE treatment significantly (p < 0.001) improved brain antioxidant defense in a dose-dependent manner. Furthermore, AHE efficiently recused CisPT to induce DNA damage in brain tissue as revealed by ladder assay and DNA fragmentation patterns. Histopathological findings revealed severe neurodegenerations in CisPT treated group, however, AHE treatment noticeably precluded morphological alterations and neuron damages induced by CisPT.
Conclusion
A. hydaspica AHE extract may be provided as a prospective adjuvant that precludes CisPT-induced neurotoxicity due to its radical scavenging and antioxidant potential.
Collapse
|
8
|
Qurat-Ul-Ain S, Rukhsana A, Tariq SI, Kanwal A. Berberis lyceum root bark extract attenuates anticancer drugs induced neurotoxicityand cardiotoxicity in rats. Afr Health Sci 2022; 22:192-210. [PMID: 36910359 PMCID: PMC9993256 DOI: 10.4314/ahs.v22i3.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Traditionally, Berberis lyceum was extensively used for the treatment of several human diseases. Objective This study was undertaken to determine in vivo effects of Berberis lyceum root bark against doxorubicin-induced cardiotoxicity and cisplatin-induced neurotoxicity in Sprague Dawley rats. Methods A single dose of doxorubicin (20 mg/ kg i. p) and cisplatin (4mg/kg i.p) was used to induce cardiotoxicity and neurotoxicity, respectively. Berberis lyceum methanolic extract was given orally (200 and 400 mg/ kg) to toxicity-induced rats. The cardiac biomarkers i.e. serum aspartate aminotransferase, alanine transaminase, lactate dehydrogenase, creatine kinase and creatine kinase MB were analyzed in blood collected from cardiotoxic rats. The tissue oxidative stress markers included protein, glutathione s-transferase specific activity, catalase activity, total glutathione, and malondialdehyde levels were measured in cardiac and brain homogenate of the respective groups. Results Berberis lyceum methanolic extract has the potential to reduce the doxorubicin-induced cardiotoxicity and cisplatin-induced neurotoxicity significantly (*p<0.05) by reducing the serum markers and oxidative stress parameters. Histopathological analysis exhibited a marked improvement in the morphology of cardiac and brain tissues. Conclusion It is concluded that methanolic extract of Berberis lyceum root bark has the potential to protect and reverse anticancer drugs induced cardiotoxicity and neurotoxicity.
Collapse
Affiliation(s)
- Sidra Qurat-Ul-Ain
- University College of Pharmacy, University of the Punjab Lahore, Pakisatn
| | - Anwar Rukhsana
- University College of Pharmacy, University of the Punjab Lahore, Pakisatn
| | - Sahar Isma Tariq
- University of the Punjab, University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Ashiq Kanwal
- Superior University, Faculty of Pharmaceutical Sciences Superior College, Superior University 17-km Raiwind Road Lahore, Pakistan
| |
Collapse
|
9
|
Adhikari A, Asdaq SMB, Al Hawaj MA, Chakraborty M, Thapa G, Bhuyan NR, Imran M, Alshammari MK, Alshehri MM, Harshan AA, Alanazi A, Alhazmi BD, Sreeharsha N. Anticancer Drug-Induced Cardiotoxicity: Insights and Pharmacogenetics. Pharmaceuticals (Basel) 2021; 14:ph14100970. [PMID: 34681194 PMCID: PMC8539940 DOI: 10.3390/ph14100970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022] Open
Abstract
The advancement in therapy has provided a dramatic improvement in the rate of recovery among cancer patients. However, this improved survival is also associated with enhanced risks for cardiovascular manifestations, including hypertension, arrhythmias, and heart failure. The cardiotoxicity induced by chemotherapy is a life-threatening consequence that restricts the use of several chemotherapy drugs in clinical practice. This article addresses the prevalence of cardiotoxicity mediated by commonly used chemotherapeutic and immunotherapeutic agents. The role of susceptible genes and radiation therapy in the occurrence of cardiotoxicity is also reviewed. This review also emphasizes the protective role of antioxidants and future perspectives in anticancer drug-induced cardiotoxicities.
Collapse
Affiliation(s)
- Archana Adhikari
- Pharmacology Department, Himalayan Pharmacy Institute Majhitar, Rangpo 737136, Sikkim, India; (A.A.); (G.T.)
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
- Correspondence: (S.M.B.A.); (M.C.)
| | - Maitham A. Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Hofuf 31982, Saudi Arabia;
| | - Manodeep Chakraborty
- Pharmacology Department, Himalayan Pharmacy Institute Majhitar, Rangpo 737136, Sikkim, India; (A.A.); (G.T.)
- Correspondence: (S.M.B.A.); (M.C.)
| | - Gayatri Thapa
- Pharmacology Department, Himalayan Pharmacy Institute Majhitar, Rangpo 737136, Sikkim, India; (A.A.); (G.T.)
| | - Nihar Ranjan Bhuyan
- Department of Pharmaceutical Analysis, Himalayan Pharmacy Institute, Majhitar, Rangpo 737136, Sikkim, India;
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | | | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia;
| | - Aishah Ali Harshan
- Department of Pharmaceutical Care, Northern Area Armed Forces Hospital, King Khalid Military City Hospital, Hafr Al-Batin 39745, Saudi Arabia;
| | - Abeer Alanazi
- Department of Pharmaceutical Care, First Health Cluster in Eastern Province, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia;
| | | | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa-31982, Saudi Arabia;
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bengaluru 560035, Karnataka, India
| |
Collapse
|
10
|
Afsar T, Razak S, Aldisi D, Shabbir M, Almajwal A, Al Kheraif AA, Arshad M. Acacia hydaspica R. Parker ethyl-acetate extract abrogates cisplatin-induced nephrotoxicity by targeting ROS and inflammatory cytokines. Sci Rep 2021; 11:17248. [PMID: 34446789 PMCID: PMC8390681 DOI: 10.1038/s41598-021-96509-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Cisplatin (CisPT) is a chemotherapeutic drug that outcomes in adverse effects. In this study, we examined the effect of A. hydaspica ethyl acetate extract (AHE) in an animal model of cisplatin-induced acute kidney injury (AKI). 36 male Sprague Dawley rats were used in the AKI rat model, and CisPT (7.5 mg/kg BW, i.p) single dose was given. In the pretreatment module, AHE (400 mg/kgBW/day, p.o) was given for 7 days before and after CisPT injection. While in the post-treatment group AHE was administered for 7 days after a single CisPT shot. The standard group received silymarin (100 mg/kg BW, p.o) for 7 days before and after CisPT injection. In HCT 116 tumor xenografts (n = 32) two groups of mice were pretreated with 400 mg/kg AHE orally for 7 days and two groups were treated with distilled water. On day 7 of pretreatment one distilled water and one AHE pretreated group were injected i.p with 15 mg/kg bw dose followed by another dose of CisPT 2 wk later. AHE groups were additionally treated with 400 mg/kg AHE for 3 days/week for 2 weeks. CisPT significantly deteriorated renal function parameters, i.e., PH, specific gravity, total protein, albumin, urea, creatinine, uric acid, globulin and blood urea nitrogen. CisPT treatment increased oxidative stress markers, while lower renal antioxidant enzymes. AHE pretreatment ameliorates significantly (p < 0.0001) CisPT-induced alterations in serum and urine markers for kidney function. Furthermore, AHE pretreatment more efficiently (p < 0.001) decreases oxidative stress markers, attenuate NF-κB, and IL-6 protein and mRNA expression by augmenting antioxidant enzyme levels compared to post-treatment. The histological observations verified the protective effect of AHE. In tumor xenograft mice, AHE treatment significantly reduced CisPT induced oxidative stress while it did not interfere with the anticancer efficacy of cisplatin as shown by significance (p < 0.001) decrease in tumor size after treatment. A. hydaspica AHE might provide a prospective adjuvant that precludes CisPT-induced nephrotoxicity without compromising its antitumor potential.
Collapse
Affiliation(s)
- Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Dara Aldisi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Maria Shabbir
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulaziz Abdullah Al Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Arshad
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
El-Sheikh AAK, Khired Z. Morphine Deteriorates Cisplatin-Induced Cardiotoxicity in Rats and Induces Dose-Dependent Cisplatin Chemoresistance in MCF-7 Human Breast Cancer Cells. Cardiovasc Toxicol 2021; 21:553-562. [PMID: 33796943 DOI: 10.1007/s12012-021-09646-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/18/2021] [Indexed: 12/22/2022]
Abstract
Morphine (MOR) is a strong analgesic that is often used in treatment of severe pains during cancer treatment, and thus might be concomitantly used with anticancer drugs as cisplatin (CP). The aim of the current study was to investigate the mechanisms by which MOR can affect CP-induced cardiotoxicity and to explore effects of MOR on the cytotoxic efficacy of CP. MOR (10 mg/kg/day i.p.) was administered to rats for 10 days, with or without 7.5 mg/kg CP single i.p. dose at day 5 of the experiment. In addition, MOR and/or CP were administered to MCF-7 cells to test their cytotoxicity. Compared to control, CP caused cardiotoxic effects manifested by significant increase in serum enzymatic markers; creatine kinase-MB and lactate dehydrogenase, with histopathological cardiac damage. In addition, CP caused cardiac oxidative stress, manifested by significant increased tissue lipid peroxidation product; malondialdehyde and nitric oxide, with significant decrease in tissue antioxidants as reduced glutathione, superoxide dismutase and catalase compared to control. Furthermore, CP significantly increased tissue proinflammatory cytokines; TNF-α and IL-6, as well as upregulated the apoptotic marker; caspase 3 compared to control. MOR/CP combination significantly deteriorated all tested parameters compared to CP alone. In MCF-7 breast cancer cells, administration of MOR in concentrations of 0.1, 1, 10 or 30 μM concomitantly with 1 or 10 μM CP caused dose-dependent reduction in CP-induced cytotoxicity in vitro. In conclusion, MOR administration might deteriorate CP-induced cardiotoxicity during cancer chemotherapy through oxidant, pro-inflammatory and apoptotic mechanisms, and might reduce CP chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
- Department of Pharmacology, Faculty of Medicine, Minia University, El Minia, 61511, Egypt.
| | - Zenat Khired
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
12
|
Khadrawy YA, Hosny EN, El-Gizawy MM, Sawie HG, Aboul Ezz HS. The Effect of Curcumin Nanoparticles on Cisplatin-Induced Cardiotoxicity in Male Wistar Albino Rats. Cardiovasc Toxicol 2021; 21:433-443. [PMID: 33548025 DOI: 10.1007/s12012-021-09636-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 01/06/2023]
Abstract
The cardiotoxicity of chemotherapeutic drugs as cisplatin has become a major issue in recent years. The present study investigates the efficacy of curcumin nanoparticles against the cardiotoxic effects of cisplatin by assessment of oxidative stress parameters, Na+,K+-ATPase, acetylcholinesterase (AchE) and tumor necrosis factor-alpha (TNF-α) in cardiac tissue in addition to serum lactate dehydrogenase (LDH). Rats were divided into three groups: control rats that received saline for 14 days; cisplatin-treated rats that received a single intraperitoneal (i.p.) injection of cisplatin (12 mg/kg) followed by a daily oral administration of saline (0.9%) for 14 days and rats treated with a single i.p. injection of cisplatin (12 mg/kg) followed by a daily oral administration of curcumin nanoparticles (50 mg/kg) for 14 days. Cisplatin resulted in a significant increase in lipid peroxidation, nitric oxide (NO), and TNF-α and a significant decrease in reduced glutathione (GSH) levels and Na+, K+- ATPase activity. Moreover, significant increases in cardiac AchE and serum lactate dehydrogenase activities were recorded. Treatment of cisplatin-injected animals with curcumin nanoparticles ameliorated all the alterations induced by cisplatin in the heart of rats. This suggests that curcumin nanoparticles can be used as an important therapeutic adjuvant in chemotherapeutic and other toxicities mediated by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yasser A Khadrawy
- Medical Physiology Department, Medical Division, National Research Centre, El-Behouth St., Giza, Egypt.
| | - Eman N Hosny
- Medical Physiology Department, Medical Division, National Research Centre, El-Behouth St., Giza, Egypt
| | - Mayada M El-Gizawy
- Medical Physiology Department, Medical Division, National Research Centre, El-Behouth St., Giza, Egypt
| | - Hussein G Sawie
- Medical Physiology Department, Medical Division, National Research Centre, El-Behouth St., Giza, Egypt
| | - Heba S Aboul Ezz
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Afsar T, Razak S, Almajwal A, Shabbir M, Khan MR. Correction to: Evaluating the protective potency of Acacia hydaspica R. Parker on histological and biochemical changes induced by Cisplatin in the cardiac tissue of rats. BMC Complement Med Ther 2020; 20:326. [PMID: 33109164 PMCID: PMC7592504 DOI: 10.1186/s12906-020-03117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
An amendment to this paper has been published and can be accessed via the original article.
Collapse
|
14
|
Doxorubicin-induced alterations in kidney functioning, oxidative stress, DNA damage, and renal tissue morphology; Improvement by Acacia hydaspica tannin-rich ethyl acetate fraction. Saudi J Biol Sci 2020; 27:2251-2260. [PMID: 32884406 PMCID: PMC7451730 DOI: 10.1016/j.sjbs.2020.07.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline drug used for cancer treatment. However, its treatment is contiguous with toxic effects. We examined the nephroprotective potential of A. hydaspica polyphenol-rich ethyl acetate extract (AHE) against DOX persuaded nephrotoxicity. 36 male Sprague Dawley rats were randomly assorted into 6 groups. Control group received saline; DOX group: 3 mg/kg b.w. dosage of DOX intraperitoneally for 6 weeks (single dose/week). In co-treatment groups, 200 and 400 mg/kg b.w AHE was given orally for 6 weeks in concomitant with DOX (3 mg/kg b.w, i.p. injection per week) respectively. Standard group received silymarin 400 mg/kg b.w daily + DOX (single dose/week). Biochemical kidney function tests, oxidative stress markers, genotoxicity, antioxidant enzyme status, and histopathological changes were examined. DOX caused significant body weight loss and decrease kidney weight. DOX-induced marked deterioration in renal function indicators in both urine and serum, i.e., PH, specific gravity, total protein, albumin, urea, creatinine, uric acid, globulin, blood urea nitrogen, etc. Also, DOX treatment increases renal tissue oxidative stress markers, while lower antioxidant enzymes in tissue along with degenerative alterations in the renal tissue compared to control rats. AHE co-treatment ameliorates DOX-prompted changes in serum and urine chemistry. Likewise, AHE treatment decreases sensitive markers of oxidative stress and prevented DNA damages by enhancing antioxidant enzyme levels. DOX induction in rats also caused DNA fragmentation which was restored by AHE co-treatment. Moreover, the histological observations evidenced that AHE effectively rescued the kidney tissue from DOX interceded oxidative damage. Our results suggest that co-treatment of AHE markedly improve DOX-induced deleterious effects in a dose-dependent manner. The potency of AHE co-treatment at 400 mg/kg dose is similar to silymarin. These outcomes revealed that A. hydaspica AHE extract might serve as a potential adjuvant that avoids DOX-induced nephrotoxicity.
Collapse
Key Words
- AHE, Acacia hydaspica ethyl acetate extract
- CAT, catalase
- DOX, doxorubicin
- Doxorubicin
- GPx, glutathione peroxidase
- GR, glutathione reductase
- GST, glutathione S transferase
- Genotoxicity
- H2O2, hydrogen peroxide
- Histopathology
- Kidney function
- MDA, malondialdehyde
- NO, nitric oxide
- Nephrotoxicity
- Oxidative stress markers
- POD, peroxidase
- QR, quinone reductase
- RBCs, red blood cells
- SOD, superoxide dismutase
- WBCs, white blood cells
- γ-GT, Gamma Glutamyl Transferase
Collapse
|
15
|
Clerodendrum volubile Ethanol Leaf Extract: A Potential Antidote to Doxorubicin-Induced Cardiotoxicity in Rats. J Toxicol 2020; 2020:8859716. [PMID: 32714390 PMCID: PMC7355376 DOI: 10.1155/2020/8859716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 01/09/2023] Open
Abstract
Doxorubicin is widely applied in hematological and solid tumor treatment but limited by its off-target cardiotoxicity. Thus, cardioprotective potential and mechanism(s) of CVE in DOX-induced cardiotoxicity were investigated using cardiac and oxidative stress markers and histopathological endpoints. 50–400 mg/kg/day CVE in 5% DMSO in distilled water were investigated in Wistar rats intraperitoneally injected with 2.5 mg/kg DOX on alternate days for 14 days, using serum troponin I and LDH, complete lipid profile, cardiac tissue oxidative stress marker assays, and histopathological examination of DOX-treated cardiac tissue. Preliminary qualitative and quantitative assays of CVE's secondary metabolites were also conducted. Phytochemical analyses revealed the presence of flavonoids (34.79 ± 0.37 mg/100 mg dry extract), alkaloids (36.73 ± 0.27 mg/100 mg dry extract), reducing sugars (07.78 ± 0.09 mg/100 mg dry extract), and cardiac glycosides (24.55 ± 0.12 mg/100 mg dry extract). 50–400 mg/kg/day CVE significantly attenuated increases in the serum LDH and troponin I levels. Similarly, the CVE dose unrelatedly decreased serum TG and VLDL-c levels without significant alterations in the serum TC, HDL-c, and LDL-c levels. Also, CVE profoundly attenuated alterations in the cardiac tissue oxidative stress markers' activities while improving DOX-associated cardiac histological lesions that were possibly mediated via free radical scavenging and/or antioxidant mechanisms. Overall, CVE may play a significant therapeutic role in the management of DOX-induced cardiotoxicity in humans.
Collapse
|
16
|
Abstract
To investigate combined effect of the anticancer drug cisplatin (CP) and the opiate analgesic morphine (MOR) on liver, rats were administered MOR (10 mg/kg/day i.p. for 10 days), with or without CP (7.5 mg/kg i.p. once at day 5 of the study). MOR or CP alone caused deterioration of liver function tests and induced damage to histological architecture of liver. In addition, each drug alone caused hepatic oxidative stress, as evident by significant increase of malondialdehyde and nitric oxide, as well as the significant decrease in GSH, catalase and SOD compared to control. Administration of either MOR or CP also caused liver inflammation, evident by the increase in the pro-inflammatory cytokines; TNF-α and IL-6. In addition, either MOR or CP induced liver apoptosis, as shown by significant increase in expression of the pro-apoptotic marker; caspase 3 compared to control. Either MOR or CP also caused up-regulation of the efflux transporter P-glycoprotein (P-gp). Combining MOR with CP caused deterioration in all parameters tested compared to CP alone. Thus, treatment with MOR worsened CP-induced hepatotoxicity through oxidative stress, inflammation and apoptosis mechanisms. In addition, both drugs contributed to the up-regulation of P-gp, which might be a new mechanism for their hepatotoxic effects.
Collapse
|