1
|
Guo M, Zeng J, Li J, Jiang L, Wu X, Ren Z, Hu Z. Pharmacological Components and Mechanism Research on the Treatment of Myelosuppression after Chemotherapy with Danggui Jixueteng Decoction Based on Spectrum-Effect Relationships and Transcriptome Sequencing. ACS OMEGA 2024; 9:28926-28936. [PMID: 38973888 PMCID: PMC11223127 DOI: 10.1021/acsomega.4c03641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Danggui Jixueteng decoction (DJD) has been used to treat anemia for many years and has been shown to be effective. However, the mechanism of action and effective components are yet unknown. We want to search for pharmacodynamic components in DJD with therapeutic effects on myelosuppression after chemotherapy (MAC), utilizing a spectrum-effect connection study based on gray relational analysis and partial least-squares regression analysis. Transcriptome sequencing (RNA-Seq) was used to investigate the mechanism by which DJD treats MAC. In this study, fingerprints of different batches of DJD (S1-S10) were established by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS), after which the resulting shared peaks were screened and identified. A total of 21 common peaks were screened through the fingerprints of different batches of DJD, and the similarity of each profile was greater than 0.92. The 21 shared peaks were identified by comparison with the standard sample and searching on a MassLynx 4.1 workstation. The rat model of MAC was established by intraperitoneal injection of cyclophosphamide, and DJD treatment was carried out in parallel with the establishment of the model. White blood cell count, red blood cell count, platelet count, interleukin-3, hemoglobin concentration, granulocyte-macrophage colony-stimulating factor, and nucleated cell count were used as efficacy indicators. Pharmacodynamic results indicated that DJD could effectively improve the pharmacodynamic indices of MAC rats. The results of gray relational analysis demonstrated eight peaks with high correlation with efficacy, which were 2, 7, 10, 14, 15, 16, 18, and 21, and the partial least-squares regression analysis showed four peaks with variable importance in projection values greater than 1, which were 10, 12, 13, and 19. RNA-Seq was used to identify DEGs in rat bone marrow cells, Gene Ontology functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of DEGs were performed. The genes related to the effects of DJD on MAC were mainly involved in the phosphatidylinositol 3-kinase/serine-threonine kinase (PI3K-Akt) signaling pathway, the mitogen-activated protein kinase signaling pathway, actin cytoskeleton regulation, focal adhesion, and Rap1 signaling pathways. The results of the RNA-Seq study were confirmed by a qPCR experiment. The effective compounds of DJD against MAC include albiflorin, paeoniflorin, gallopaeoniflorin, salvianolic acid H/I, albiflorin R1, salvianolic acid B, salvianolic acid E, benzoylpaeoniflorin, and C12H18N5O4. The mechanism by which DJD prevents and treats MAC might involve the control of the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Mingxin Guo
- The
Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| | - Jiaqi Zeng
- The
Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| | - Jing Li
- Zibo
Central Hospital, Zibo 255000, China
| | - Luyao Jiang
- The
Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| | - Xia Wu
- Guangdong
Pharmaceutical University, Guangzhou 516006, China
| | - Zhanyun Ren
- The
Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| | - Zhiqiang Hu
- The
Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| |
Collapse
|
2
|
Kim TW. Paeoniflorin Induces ER Stress-Mediated Apoptotic Cell Death by Generating Nox4-Derived ROS under Radiation in Gastric Cancer. Nutrients 2023; 15:5092. [PMID: 38140352 PMCID: PMC10745742 DOI: 10.3390/nu15245092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Gastric cancer is one of the most prevalent cancer types worldwide, and its resistance to cancer therapies, such as chemotherapy and radiotherapy, has made treating it a major challenge. Paeoniflorin (PF) is one potential pharmacological treatment derived from paeony root. However, in cancer, the molecular mechanisms and biological functions of PF are still unclear. In the present study, we found that PF exerts anti-tumor effects in vivo and in vitro and induces apoptotic cell death through ER stress, calcium (Ca2+), and reactive oxygen species (ROS) release in gastric cancer cells. However, ROS inhibition by DPI and NAC blocks cell death and the PERK signaling pathway via the reduction of Nox4. Moreover, PF triggers a synergistic inhibitory effect of the epithelial-mesenchymal transition (EMT) process under radiation exposure in radiation-resistant gastric cancer cells. These findings indicate that PF-induced Ca2+ and ROS release overcomes radioresistance via ER stress and induces cell death under radiation in gastric cancer cells. Therefore, PF, in combination with radiation, may be a powerful strategy for gastric cancer therapy.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biopharmaceutical Engineering, Dongguk University-WISE, Gyeongju 38066, Republic of Korea
| |
Collapse
|
3
|
Dong Y, Toume K, Zhu S, Shi Y, Tamura T, Yoshimatsu K, Komatsu K. Metabolomics analysis of peony root using NMR spectroscopy and impact of the preprocessing method for NMR data in multivariate analysis. J Nat Med 2023; 77:792-816. [PMID: 37432536 DOI: 10.1007/s11418-023-01721-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/06/2023] [Indexed: 07/12/2023]
Abstract
Peony root is an important herbal drug used as an antispasmodic analgesic. To evaluate peony roots with different botanical origins, producing areas, and post-harvest processing, 1H NMR-based metabolomics analysis was employed. Five types of monoterpenoids, including albiflorin (4), paeoniflorin (6), and sulfonated paeoniflorin (25), and six other compounds, including 1,2,3,4,6-penta-O-galloyl-β-D-glucose (18), benzoic acid (21), gallic acid (22), and sucrose (26) were detected in the extracts of peony root samples. Among them, compounds 4, 6, 18, and total monoterpenoids including 21 were quantified by quantitative 1H NMR (qHNMR). Compound 25 was detected in 1H NMR spectra of sulfur-fumigated white peony root (WPR) extracts indicating that 1H NMR was a fast and effective method for identifying sulfur-fumigated WPR. The content of 26, the main factor affecting extract yield, increased significantly in peony root after low-temperature storage for one month, whereas that in WPR did not increase due to the boiling treatment after harvesting. We investigated the impact of preprocessing methods to such analysis for NMR data from commercial samples, resulting that the data matrix transformed from qHNMR spectra and normalized to internal standard were optimum for multivariate analysis. The multivariate analysis demonstrated that among commercial samples derived from P. lactiflora, peony root samples in Japanese market (PR) had high contents of 18 and 22, and red peony root (RPR) samples had high content of monoterpenoids represented by 6; and among RPR samples, those derived from P. veitchii showed higher contents of 18 and 22 than those from P. lactiflora. The 1H NMR-based metabolomics method coupled with qHNMR was useful for evaluation of peony root and would be applicable for other crude drugs.
Collapse
Affiliation(s)
- Yuzhuo Dong
- Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan
| | - Kazufumi Toume
- Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan.
| | - Shu Zhu
- Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan
| | - Yanhong Shi
- Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan
| | - Takayuki Tamura
- Center for Medicinal Plant Resources, Toyama Prefectural Institute for Pharmaceutical Research, 2732 Hirono, Kamiichi-Machi, Nakaniikawa-gun, Toyama, 930-0412, Japan
| | - Kayo Yoshimatsu
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Katsuko Komatsu
- Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
4
|
Ye XW, Liu MN, Wang X, Cheng SQ, Li CS, Bai YY, Yang LL, Wang XX, Wen J, Xu WJ, Zhang SY, Xu XF, Li XR. Exploring the common pathogenesis of Alzheimer's disease and type 2 diabetes mellitus via microarray data analysis. Front Aging Neurosci 2023; 15:1071391. [PMID: 36923118 PMCID: PMC10008874 DOI: 10.3389/fnagi.2023.1071391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Background Alzheimer's Disease (AD) and Type 2 Diabetes Mellitus (DM) have an increased incidence in modern society. Although more and more evidence has supported that DM is prone to AD, the interrelational mechanisms remain fully elucidated. Purpose The primary purpose of this study is to explore the shared pathophysiological mechanisms of AD and DM. Methods Download the expression matrix of AD and DM from the Gene Expression Omnibus (GEO) database with sequence numbers GSE97760 and GSE95849, respectively. The common differentially expressed genes (DEGs) were identified by limma package analysis. Then we analyzed the six kinds of module analysis: gene functional annotation, protein-protein interaction (PPI) network, potential drug screening, immune cell infiltration, hub genes identification and validation, and prediction of transcription factors (TFs). Results The subsequent analyses included 339 common DEGs, and the importance of immunity, hormone, cytokines, neurotransmitters, and insulin in these diseases was underscored by functional analysis. In addition, serotonergic synapse, ovarian steroidogenesis, estrogen signaling pathway, and regulation of lipolysis are closely related to both. DEGs were input into the CMap database to screen small molecule compounds with the potential to reverse AD and DM pathological functions. L-690488, exemestane, and BMS-345541 ranked top three among the screened small molecule compounds. Finally, 10 essential hub genes were identified using cytoHubba, including PTGS2, RAB10, LRRK2, SOS1, EEA1, NF1, RAB14, ADCY5, RAPGEF3, and PRKACG. For the characteristic Aβ and Tau pathology of AD, RAPGEF3 was associated significantly positively with AD and NF1 significantly negatively with AD. In addition, we also found ADCY5 and NF1 significant correlations with DM phenotypes. Other datasets verified that NF1, RAB14, ADCY5, and RAPGEF3 could be used as key markers of DM complicated with AD. Meanwhile, the immune cell infiltration score reflects the different cellular immune microenvironments of the two diseases. Conclusion The common pathogenesis of AD and DM was revealed in our research. These common pathways and hub genes directions for further exploration of the pathogenesis or treatment of these two diseases.
Collapse
Affiliation(s)
- Xian-Wen Ye
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Meng-Nan Liu
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shui-Qing Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Shuai Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Ying Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Lin Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Xing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Wen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wen-Juan Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Yan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Fang Xu
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Ri Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Yu W, Liang Z, Li Q, Liu Y, Liu X, Jiang L, Liu C, Zhang Y, Kang C, Yan J. The pharmacological validation of the Xiao-Jian-Zhong formula against ulcerative colitis by network pharmacology integrated with metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115647. [PMID: 35987415 DOI: 10.1016/j.jep.2022.115647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is pathologically characterized by an immune response accommodative insufficiency and dysbiosis accompanied by persistent epithelial barrier dysfunction, and is divided into ulcerative colitis (UC) and Crohn's disease (CD). Its progression increases the susceptibility to colitis-associated cancer (CAC), as well as other complications. The Xiao-Jian-Zhong (XJZ) formula has a historical application in the clinic to combat gastrointestinal disorders. AIM OF THE STUDY The investigation aimed to explore the molecular and cellular mechanisms of XJZ. MATERIALS AND METHODS Dextran sodium sulfate (DSS) was diluted in drinking water and given to mice for a week to establish murine models of experimental colitis, and the XJZ solution was administered for two weeks. Network pharmacology analysis and weighted gene co-expression network analysis (WGCNA) were utilized to predict the therapeutic role of XJZ against UC and CAC. 16S rRNA sequencing and untargeted metabolomics were conducted utilizing murine feces to examine the changes in the microbiome profile. Biochemical experiments were conducted to confirm the predicted functions. RESULTS XJZ treatment markedly attenuated DSS-induced experimental colitis progression, and the targets were enriched in inflammation, infection, and tumorigenesis, predicted by network pharmacology analysis. Based on The Cancer Genome Atlas (TCGA) database, the XJZ-targets were related to the survival probability in patients with colorectal cancer, underlying a potential therapeutic value in cancer intervention. Moreover, the XJZ therapy successfully rescued the decreased richness and diversity of microbiota, suppressed the potentially pathogenic phenotype of the gut microorganisms, and reversed the declined linoleic acid metabolism and increased cytochrome P450 activity in murine colitis models. Our in-vitro experiments confirmed that the XJZ treatment suppressed Caspase1-dependent pyroptosis and increased peroxisome proliferators-activated receptor-γ(PPAR-γ) expression in the colon, facilitated the alternative activation of macrophages (Mφs), inhibited tumor necrosis factor-α (TNFα)-induced reactive oxygen species (ROS) level in intestinal organoids (IOs), thereby favoring the mucosal healing. CONCLUSION The XJZ formula is efficacious for colitis by a prompt resolution of inflammation and dysbiosis, and by re-establishing a microbiome profile that favors re-epithelization, and prevents carcinogenesis.
Collapse
Affiliation(s)
- Wei Yu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Zhenghao Liang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Qi Li
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Yanzhi Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Xincheng Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Lu Jiang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Chen Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Yijia Zhang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Cai Kang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Jing Yan
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| |
Collapse
|
6
|
Validation of the Anticolitis Efficacy of the Jian-Wei-Yu-Yang Formula. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9110704. [PMID: 36091591 PMCID: PMC9451982 DOI: 10.1155/2022/9110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Background Inflammatory bowel disease (IBD) is a major cause of morbidity and mortality due to its repetitive remission and relapse. The Jian-Wei-Yu-Yang (JW) formula has a historical application in the clinic to combat gastrointestinal disorders. The investigation aimed to explore the molecular and cellular mechanisms of JW. Methods 2% dextran sodium sulfate (DSS) was diluted in drinking water and given to mice for 5 days to establish murine models of experimental colitis, and different doses of JW solution were administered for 14 days. Network pharmacology analysis and weighted gene co-expression network analysis (WGCNA) were utilized to predict the therapeutic role of JW against experimental colitis and colitis-associated colorectal cancer (CAC). 16S rRNA sequencing and untargeted metabolomics were conducted using murine feces. Western blotting, immunocytochemistry, and wound healing experiments were performed to confirm the molecular mechanisms. Results (1) Liquid chromatography with mass spectrometry was utilized to confirm the validity of the JW formula. The high dose of JW treatment markedly attenuated DSS-induced experimental colitis progression, and the targets were enriched in inflammation, infection, and tumorigenesis. (2) The JW targets were related to the survival probability in patients with colorectal cancer, underlying a potential therapeutic value in CRC intervention. (3) Moreover, the JW therapy successfully rescued the decreased richness and diversity of microbiota, suppressed the potentially pathogenic phenotype of the gut microorganisms, and increased cytochrome P450 activity in murine colitis models. (4) Our in vitro experiments confirmed that the JW treatment suppressed caspase3-dependent pyroptosis, hypoxia-inducible factor 1α (HIF1α), and interleukin-1b (IL-1b) in the colon; facilitated the alternative activation of macrophages (Mφs); and inhibited tumor necrosis factor-α (TNFα)-induced reactive oxygen species (ROS) level in intestinal organoids (IOs). Conclusion The JW capsule attenuated the progression of murine colitis by a prompt resolution of inflammation and bloody stool and by re-establishing a microbiome profile that favors re-epithelization and prevents carcinogenesis.
Collapse
|
7
|
The Pharmacological Mechanism of Xiyanping Injection for the Treatment of Novel Coronavirus Pneumonia (COVID-19): Based on Network Pharmacology Strategy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9152201. [PMID: 35818408 PMCID: PMC9271007 DOI: 10.1155/2022/9152201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
Purpose The possible mechanism of Xiyanping injection treatment COVID-19 is discussed through the network pharmacology. Methods Obtaining the chemical structure of Xiyanping injection through the patent application and obtaining control compounds I, II, III, IV, V, Yanhuning injection (VI, VII), Chuanhuning injection (VIII, IX), 10 compounds were analyzed by D3Targets-2019-nCoV. The human anti-COVID-19 gene in COVID-19 DisGeNET was intersected with the CTD Andrographolide target gene and then combined with D3Targets-2019-nCoV, resulting in 93 genes, using the Venny 2.1 platform. The PPI network was constructed by the String platform and Cytoscape 3.8.2 platform. The GO, KEGG, and tissue of the target were analyzed using the Metascape platform and DAVID platform. The gene expression in the respiratory system was analyzed using the ePlant platform. The CB-Dock is used for the docking verification and degree values of the first 20 genes. Results Finally, 1599 GO and 291 KEGG results were obtained. GO is mostly associated with the cell stress response to chemicals, the cell response to oxidative stress, and the cell response to reactive oxygen species. In total, 218 KEGG pathway concentrations were related to infection and other diseases and 73 signaling pathways mostly related to inflammation and immune pathways, such as TNF signaling pathway and MAPK signaling pathway. The molecular docking results show that Xiyanping injection, compound III, has a good docking relationship with 20 target proteins such as HSP90AA1. Tissue has 22 genes that are pooled in the lungs. Conclusion Xiyanping injection may inhibit the release of various inflammatory factors by inhibiting intracellular pathways such as MAPK and TNF. It acts on protein targets such as HSP90AA1 and plays a potential therapeutic role in COVID-19. Thus, compound III may be treated as a potential new drug for the treatment of COVID-19 and the Xiyanping injection may treat patients with COVID-19 infection.
Collapse
|
8
|
Zhao D, Zhang J, Zhu Y, He C, Fei W, Yue N, Wang C, Wang L. Study of Antidepressant-Like Effects of Albiflorin and Paeoniflorin Through Metabolomics From the Perspective of Cancer-Related Depression. Front Neurol 2022; 13:828612. [PMID: 35873784 PMCID: PMC9304767 DOI: 10.3389/fneur.2022.828612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Mental health has become a new challenge in cancer treatment, with a high prevalence of depression in patients with cancer. Albiflorin (AF) and paeoniflorinn (PF) are isomers extracted from the root of Paeoniae Radix Alba (Baishao in Chinese), belonging to the monoterpene glycosides, and multiple studies have been conducted on their antidepression and anti-cancer effects. However, the effects of AF and PF on cancer-related depression are unclear. Therefore, the current study aims to investigate whether the two isomers are able to exert antidepressant-like effects and understand the underlying mechanisms in a rat model, established by combining irradiation with chronic restraint stress and solitary confinement. Our results demonstrate a significant regulation of AF and PF in the pharmacodynamic index, including the peripheral blood, organ index, behavioral traits, and HPA axis, relative to control rats. In serum and cerebral cortex metabonomics analysis, AF and PF showed a significantly restorative trend in abnormal biomarkers and regulating ether lipid metabolism, alanine, aspartate, glutamate metabolism, tryptophan metabolism, carnitine metabolism, arachidonic acid metabolism, arginine and proline metabolism pathway. Eight potential biomarkers were further screened by means of receiver operating characteristic (ROC) analysis. The data indicate that AF and PF could effectively ameliorate a depression-like state in the model rats, and the mechanism may be associated with the regulation of the neuroendocrine immune system and disrupted metabolic pathways. Further experiments are warranted to comprehensively evaluate the antidepressant effects of AF and PF in cancer-related depression. This study provides a better insight into the action mechanisms of antidepression of TCM, and provides a new perspective for the therapy of cancer-related depression.
Collapse
Affiliation(s)
- Danping Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Jianjun Zhang
| | - Yingli Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng He
- Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Fei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Na Yue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chenglong Wang
- Ethnic Medicine Characteristic Diagnosis and Treatment Center, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Linyuan Wang
| |
Collapse
|
9
|
Ye XW, Wang HL, Cheng SQ, Xia LJ, Xu XF, Li XR. Network Pharmacology-Based Strategy to Investigate the Pharmacologic Mechanisms of Coptidis Rhizoma for the Treatment of Alzheimer's Disease. Front Aging Neurosci 2022; 14:890046. [PMID: 35795239 PMCID: PMC9252849 DOI: 10.3389/fnagi.2022.890046] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
BackgroundAlzheimer's disease (AD) is becoming a more prevalent public health issue in today's culture. The experimental study of Coptidis Rhizoma (CR) and its chemical components in AD treatment has been widely reported, but the principle of multi-level and multi-mechanism treatment of AD urgently needs to be clarified.ObjectiveThis study focuses on network pharmacology to clarify the mechanism of CR's multi-target impact on Alzheimer's disease.MethodsThe Phytochemical-compounds of CR have been accessed from the Traditional Chinese Medicine Database and Analysis Platform (TCMSP) and Symmap database or HPLC determination. The values of Oral Bioavailability (OB) ≥ 30% and Drug Like (DL) ≥ 0.18 or blood ingredient were used to screen the active components of CR; the interactive network of targets and compounds were constructed by STRING and Cytoscape platform, and the network was analyzed by Molecular Complex Detection (MCODE); Gene Ontology (GO) function, Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) and metabolic pathway enrichment of targets were carried out with Metascape, the Database for Annotation, Visualization and Integrated Discovery (DAVID) and MetaboAnalyst platform; Based on CytoHubba, the potential efficient targets were screened by Maximal Clique Centrality (MCC) and Degree, the correlation between potential efficient targets and amyloid β-protein (Aβ), Tau pathology was analyzed by Alzdata database, and the genes related to aging were analyzed by Aging Altas database, and finally, the core targets were obtained; the binding ability between ingredients and core targets evaluated by molecular docking, and the clinical significance of core targets was assessed with Gene Expression Omnibus (GEO) database.Results19 active components correspond to 267 therapeutic targets for AD, of which 69 is potentially effective; in module analysis, RELA, TRAF2, STAT3, and so on are the critical targets of each module; among the six core targets, RELA, MAPK8, STAT3, and TGFB1 have clinical therapeutic significance; GO function, including 3050 biological processes (BP), 257 molecular functions (MF), 184 cellular components (CC), whose functions are mainly related to antioxidation, regulation of apoptosis and cell composition; the HIF-1 signaling pathway, glutathione metabolism is the most significant result of 134 KEGG signal pathways and four metabolic pathways, respectively; most of the active components have an excellent affinity in docking with critical targets.ConclusionThe pharmacological target prediction of CR based on molecular network pharmacology paves the way for a multi-level networking strategy. The study of CR in AD treatment shows a bright prospect for curing neurodegenerative diseases.
Collapse
Affiliation(s)
- Xian-wen Ye
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hai-li Wang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Shui-qing Cheng
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Liang-jing Xia
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-fang Xu
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Xin-fang Xu
| | - Xiang-ri Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiang-ri Li
| |
Collapse
|
10
|
Li A, Wang H, Li Q, Dong W, Wang S, Wang A, Wang X, Gu Y. Shengxuebao Mixture for Iron Deficiency Anemia: A Meta-Analysis and Systematic Review. Complement Med Res 2022; 29:249-256. [PMID: 35193141 DOI: 10.1159/000523741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/19/2022] [Indexed: 11/19/2022]
Abstract
Objective Traditional Chinese medicine Shengxuebao Mixture (SXBM) has been approved for treating iron deficiency anemia (IDA) in China. This study aimed to collect evidence and quantify the effect of SXBM on IDA. Methods Seven online databases were surveyed up to July 13, 2021. Randomized controlled trials in which SXBM was combined with conventional therapies to treat IDA and compared with placebo or conventional therapies were included in the study. The red blood cell (RBC) count, hemoglobin (Hb) level, and serum ferritin (SF) level, and adverse events rate (AER) were evaluated. Results A total of 1108 patients from 8 trials were recruited. SXBM plus conventional therapy increased the Hb level [mean difference (MD) = 13.04, 95% confidence interval (CI) 8.37-17.7, P < 0.00001], RBC count (MD = 0.41, 95% CI 0.19-0.62, P = 0.002), and SF level (MD = 6.25, 95% CI 2.88-9.62, P = 0.0003),and AER [Risk Ratio(RR)=0.56 ,95% CI 0.36-0.86; P = 0.008]. Conclusions SXBM combined with conventional treatment seemed to be beneficial for patients with IDA. However, the harmlessness of SXBM were not confirmed due to insufficient trials and low methodological quality.Follow-up clinical studies should be cautiously designed, and more research is needed.
Collapse
Affiliation(s)
- Ailin Li
- Department of Traditional Chinese Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Haixia Wang
- Department of Traditional Chinese Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
- Weifang Medical University, Weifang, China
| | - Quan Li
- Weifang Medical University, Weifang, China
| | - Wenchao Dong
- Department of Traditional Chinese Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Shuqing Wang
- Department of Traditional Chinese Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Aiju Wang
- Department of Traditional Chinese Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xin Wang
- Weifang Medical University, Weifang, China
| | - Yuming Gu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
- Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
11
|
The Potential Hepatoprotective Effect of Paeoniae Radix Alba in Thioacetamide-Induced Acute Liver Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7904845. [PMID: 35126604 PMCID: PMC8816603 DOI: 10.1155/2022/7904845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/23/2022]
Abstract
Aim Acute liver injury (ALI) can occur for various reasons by induced inflammation and apoptosis of liver cells including hepatocytes, Kupffer cells, and hepatic stellate cells. Thioacetamide (TAA), which is a classic hepatotoxin, causes oxidative stress, membrane damage, and accumulation of lipid droplets and subsequently provokes consecutive liver injury. In the current study, we tested whether Paeoniae Radix Alba (PR) could alleviate TAA-induced ALI. Methods Thirty-five male rats were equally separated into five groups. The first group was the normal group, which received distilled water only. The remaining four groups received intraperitoneal TAA (200 mg/kg) for 3 days to induce ALI. The four groups were divided into the control group (no treatment), silymarin-treated, 100 mg/kg PR-treated, and 200 mg/kg PR-treated. The efficacy of PR against hepatotoxicity was evaluated in terms of the serum biochemical index and protein expression associated with inflammation and apoptosis. Moreover, the dissected livers were analyzed by hematoxylin and eosin stain. Results PR alleviated liver dysfunction as evidenced by decreased levels of aspartate aminotransferase, alanine aminotransferase, and ammonia. Phosphorylated AMP-activated protein kinase (AMPK) and Sirtuin 1 (Sirt1) levels were obviously decreased in the TAA control group, whereas PR reversed these changes. PR also prevented deteriorative effects through inhibition of inflammation and apoptosis via nuclear transcription factor-kappa Bp65 (NF-κBp65) inactivation. Moreover, we found that the hepatoprotective effect of PR pretreatment was mediated by restoration of histopathological changes. Conclusion PR efficiently blocked both the inflammatory response and apoptosis through activating the AMPK/Sirt1/NF-κBp65 pathway. Therefore, PR is considered a potential therapeutic agent against ALI.
Collapse
|
12
|
Jin T, Zhou Z, Zhou J, Ouyang W, Wu Z. The Potential Effects of Dielectric Barrier Discharge Plasma on the Extraction Efficiency of Bioactive Compounds in Radix Paeoniae Alba. Front Nutr 2021; 8:735742. [PMID: 34765630 PMCID: PMC8576355 DOI: 10.3389/fnut.2021.735742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Radix paeoniae alba (RPA) is a kind of herbal medicine of traditional Chinese medicine (TCM) that is widely used for the treatment of liver diseases and rheumatoid arthritis in clinical practice. As a result of the low extraction efficiency of RPA by the conventional method, many patients are given high dosages. In this study, four exposure doses of dielectric barrier discharge (DBD) plasma (0, 60, 120, and 180 s) were applied to modify the extraction efficiency of paeoniflorin, benzoylpaeoniflorin, tannic acid, gallic acid, 2′-hydroxy-4′-methoxyacetophenone, and polysaccharide in RPA. Finally, the application of plasma for 180 s exhibited a 24.6% and 12.0% (p < 0.001) increase of tannic acid and polysaccharide contents, however, a 2.1% (p < 0.05) and 5.4% (p < 0.001) reduction of paeoniflorin and gallic acid composition, respectively, and no significant difference (p > 0.05) in results obtained from benzoylpaeoniflorin and 2′-hydroxy-4′-methoxyacetophenone contents. Our results of scanning electron microscopy (SEM), automatic specific surface area and pore analyzer, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) indicated that DBD plasma can etch the surface and undergo graft polymerization by reactive species thereby changing the water/oil holding capacity and eventually changing the extraction efficiency of bioactive compounds in RPA. Overall, our observations provide a scientific foundation for modifying the extraction efficiency of bioactive ingredients related to the pharmacological activities of RPA.
Collapse
Affiliation(s)
- Tao Jin
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | | | - Jian Zhou
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Wenchong Ouyang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China.,Key Laboratory of Geospace Environment, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
13
|
Based on UPLC-Q-TOF-MS/MS, Systematic Network Pharmacology, and Molecular Docking to Explore the Potential Mechanism of Fructus Aurantii for Major Depression Disorder. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6486287. [PMID: 34659436 PMCID: PMC8519718 DOI: 10.1155/2021/6486287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022]
Abstract
Background Major Depression Disorder (MDD) is a common mental disease that has become one of the world's major medical diseases. Currently, the Fructus Aurantii (FA) has been widely used to treat depression. However, the active substance ingredients and potential mechanisms of the shell antidepression have not yet been clarified. Method First, we used ultraperformance liquid chromatography-quadrupole/time-of-flight tandem mass (UPLC-QTOF-MS/MS) technology to identify the chemical composition of the FA. Then, it is predicted for active ingredients, pharmaceutical disease target screening by DiscoveryStudio 2016 (DS), Metascape, and other databases, PPI network diagram, and FC core pathway. Finally, the system network pharmacology results are verified by molecular contact verification. Results Forty-six compounds in FA were identified, and twelve active ingredients were determined. Various database information, PPI network analysis of 41 intersections, and 20 core targets including DRD2, MTOR, FASP3, and PIK3P1 were integrated. Finally, the MDD treatment is indicated by molecular docking, and the most relevant potential signal pathway is the PI3K-Akt signaling pathway.
Collapse
|
14
|
Ye XW, Deng YL, Zhang X, Liu MM, Liu Y, Xie YT, Wan Q, Huang M, Zhang T, Xi JH, Zhang JL. Study on the Mechanism of treating COVID-19 with Shenqi Wan based on Network Pharmacology. Drug Dev Ind Pharm 2021; 47:1279-1289. [PMID: 34605344 DOI: 10.1080/03639045.2021.1989453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Through the method of network pharmacology, the active components and targets of Shenqi wan (SQW) were excavated, the relationship with COVID-19 was discussed, and the possible mechanism of SQW in the treatment of COVID-19 was revealed from the aspects of multi-components, multi-targets, and multi-pathways. METHODS Firstly, the active components of SQW were screened from TCMSP and the 2020 edition of Chinese Pharmacopoeia, and the related targets of the components were obtained. Then the disease targets related to COVID-19 were screened from GeneCards and OMIM. Venny was used to map the relationship between component-target and disease-target, and String was used to analyzing the interaction of common targets. The network was constructed and analyzed by Cytoscape, the function of GO and KEGG genes was enriched by Metascape, and the molecular docking was verified by CB-Dock. RESULTS Finally, 45 active components of SQW were obtained, and 72 potential targets were related to COVID-19, ACE2, IL6, NOS3, and CRP may be the key targets. GO enrichment of 1715 projects, such as lipopolysaccharide stress response, active oxygen metabolism, positive regulation of cell migration, and other GO enrichment. 136 KEGG pathways were obtained, TNF signaling pathway, IL-17 signaling pathway, HIF-1 signaling pathway. Molecular docking showed that kaempferol, quercetin, luteolin, astragaloside, calyx isoflavone glucoside, matrine, and other COVID-19-related targets such as ACE2, 3CLpro, PLpro, PTGS2 have good binding ability. CONCLUSION According to the above results, it is suggested that SQW may play a role in the treatment of COVID-19 by directly or indirectly combining kaempferol, quercetin, and luteolin with ACE2, 3CLpro, PLpro, and PTGS2 to regulate multiple biological functions and signaling pathways.
Collapse
Affiliation(s)
- Xian-Wen Ye
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Ya-Ling Deng
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xia Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Min-Min Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Ying Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Ya-Ting Xie
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Quan Wan
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Min Huang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Tao Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jia-He Xi
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jin-Lian Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
15
|
Deng Y, Ye X, Chen Y, Ren H, Xia L, Liu Y, Liu M, Liu H, Zhang H, Wang K, Zhang J, Zhang Z. Chemical Characteristics of Platycodon grandiflorum and its Mechanism in Lung Cancer Treatment. Front Pharmacol 2021; 11:609825. [PMID: 33643040 PMCID: PMC7906976 DOI: 10.3389/fphar.2020.609825] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: The technology, network pharmacology and molecular docking technology of the ultra performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) were used to explore the potential molecular mechanism of Platycodon grandiflorum (PG) in the treatment of lung cancer (LC). Methods: UPLC-Q-TOF-MS/MS technology was used to analyze the ingredients of PG and the potential LC targets were obtained from the Traditional Chinese Medicine Systems Pharmacology database, and the Analysis Platform (TCMSP), GeneCards and other databases. The interaction network of the drug-disease targets was constructed with the additional use of STRING 11.0. The pathway enrichment analysis was carried out using Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) in Metascape, and then the “Drug-Ingredients-Targets-Pathways-Disease” (D-I-T-P-D) network was constructed using Cytoscape v3.7.1. Finally, the Discovery Studio 2016 (DS) software was used to evaluate the molecular docking. Results: Forty-seven compounds in PG, including triterpenoid saponins, steroidal saponins and flavonoids, were identified and nine main bioactive components including platycodin D were screened. According to the method of data mining, 545 potential drug targets and 2,664 disease-related targets were collected. The results of topological analysis revealed 20 core targets including caspase 3 (CASP3) and prostaglandin-endoperoxide synthase 2 (PTGS2) suggesting that the potential signaling pathway potentially involved in the treatment of LC included MAPK signaling pathway and P13K-AKT signaling pathway. The results of molecular docking proved that the bound of the ingredients with potential key targets was excellent. Conclusion: The results in this study provided a novel insight in the exploration of the mechanism of action of PG against LC.
Collapse
Affiliation(s)
- Yaling Deng
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xianwen Ye
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yufan Chen
- Patient Service Center, Ganzhou People's Hospital, Ganzhou, China
| | - Hongmin Ren
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lanting Xia
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ying Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Minmin Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Haiping Liu
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Huangang Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Kairui Wang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jinlian Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhongwei Zhang
- School of Pharmacy, Youjiang Medical University for Nationalities, Guangxi, China
| |
Collapse
|
16
|
Zhang Y, Xie Y, Yu B, Yuan C, Yuan Z, Hong Z, Wu H, Yang Y. Network Pharmacology Integrated Molecular Docking Analysis of Potential Common Mechanisms of Shu-Feng-Jie-Du Capsule in the Treatment of SARS, MERS, and COVID-19. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20972914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Shu-Feng-Jie-Du Capsules (SFJDCs) have been clinically proven to have a good therapeutic effect on COVID-19 in China. This study aimed to analyze the common mechanisms of SFJDC in the treatment of severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and COVID-19 via network pharmacology and molecular docking. We further explored the potential application value of SFJDC in the treatment of coronavirus infection. All components of SFJDC were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. The viral associated targets of the active components were forecast using the Pharmmapper database and GeneCards. The Database for Annotation, Visualization, and Integrated Discovery and KOBAS 3.0 system were used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of SFJDC’s core targets. Further, the protein–protein interaction network was built using STRING database. The herb–component network and component–target–pathway network were constructed using Cytoscape 3.7.2. The core active components of SFJDC were docked with core targets and COVID-19 coronavirus 3 Cl hydrolase and angiotensin-converting enzyme 2 (ACE2) via Discovery Studio 2016 software. A total of 110 active components were filtered from SFJDC, with 47 core targets, including epidermal growth factor receptor, mitogen-activated protein kinase 1, mitogen-activated protein kinase 3, and interleukin 6. There were 416 GO items in the GO enrichment analysis ( P < .05) and 57 signaling pathways ( P < .05) in KEGG, mainly including pathways in cancer, pancreatic cancer, colorectal cancer, apoptosis, and neurotrophin signaling pathway, among others. The results of molecular docking showed that luteolin and rhein had a higher docking score with 3 Cl, ACE2, and core targets of SFJDC for antiviral effect. SFJDC is characterized by multicomponent, multitarget, and multisignaling pathways for the treatment of coronavirus infection. The mechanism of action of SFJDC in the treatment of MERS, SARS, and COVID-19 may be associated with the regulation of genes coexpressed with ACE2 and immune- related signaling pathways.
Collapse
Affiliation(s)
- Ying Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yi Xie
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Bing Yu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Chong Yuan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zixin Yuan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zongchao Hong
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Hezhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, China
| | - Yanfang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, China
| |
Collapse
|
17
|
Deng Y, Ren H, Ye X, Xia L, Liu M, Liu Y, Yang M, Yang S, Ye X, Zhang J. Integrated Phytochemical Analysis Based on UPLC-Q-TOF-MS/MS, Network Pharmacology, and Experiment Verification to Explore the Potential Mechanism of Platycodon grandiflorum for Chronic Bronchitis. Front Pharmacol 2020; 11:564131. [PMID: 33013400 PMCID: PMC7506058 DOI: 10.3389/fphar.2020.564131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2022] Open
Abstract
Background and Aim Platycodon grandiflorum (PG) has been widely used for treating chronic bronchitis (CB). However, the material basis and underlying mechanism of action of PG against CB have not yet been elucidated. Methods To analyze the ingredients in PG, ultraperformance liquid chromatography-quadrupole-time-of-flight tandem mass (UPLC-Q-TOF-MS/MS) technology was performed. Subsequently, using data mining and network pharmacology methodology, combined with Discovery Studio 2016 (DS), Cytoscape v3.7.1, and other software, active ingredients, drug-disease targets, and key pathways of PG in the treatment of CB were evaluated. Finally, the reliability of the core targets was evaluated using molecular docking technology and in vitro studies. Results A total of 36 compounds were identified in PG. According to the basic properties of the compounds, 10 major active ingredients, including platycodin D, were obtained. Based on the data mining approach, the Traditional Chinese Medicine Systems Pharmacology Database, and the Analysis Platform (TCMSP), GeneCards, and other databases were used to obtain targets related to the active ingredients of PG and CB. Network analysis was performed on 144 overlapping gene symbols, and twenty core targets, including interleukin-6 (IL-6) and tumor necrosis factor (TNF), which indicated that the potential signaling pathway that was most relevant to the treatment of CB was the IL-17 signaling pathway. Conclusion In this study, ingredient analysis, network pharmacology analysis, and experiment verification were combined, and revealed that PG can be used to treat CB by reducing inflammation. Our findings provide novel insight into the mechanism of action of Chinese medicine. Furthermore, our data are of value for the research and development of novel drugs and the application thereof.
Collapse
Affiliation(s)
- Yaling Deng
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hongmin Ren
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xianwen Ye
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lanting Xia
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Minmin Liu
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ying Liu
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Songhong Yang
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xide Ye
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jinlian Zhang
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
18
|
Wang Y, Peng M. Research Progress on Classical Traditional Chinese Medicine Jieyu Pills in the Treatment of Depression. Neuropsychiatr Dis Treat 2020; 16:3023-3033. [PMID: 33324063 PMCID: PMC7733407 DOI: 10.2147/ndt.s282384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Depression is a common clinical psychological disease, which is called "yu zheng" in traditional Chinese medicine (TCM). TCM has a long history in the treatment of depression (yu zheng), which has unique advantages. Jieyu pill (JYP), a classical TCM formula, has been widely used for treating depression because of its clear clinical efficacy, low side effects, and high compliance. In this review, we systematically introduce recent clinical and animal experimental studies on JYP and depression, and review the pharmacological mechanism and active ingredients of JYP, as well as its clinical application in depression therapy. This systematic review provides a deep understanding of TCM prescriptions, pharmacological mechanisms, and disease-medicine interactions, and lays the foundation for developing new treatments for depression.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Miao Peng
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|