1
|
Li X, Zhao L, Zhang B, Wang S. Berries and Their Active Compounds in Prevention of Age-Related Macular Degeneration. Antioxidants (Basel) 2024; 13:1558. [PMID: 39765886 PMCID: PMC11672879 DOI: 10.3390/antiox13121558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss in the elderly, significantly diminishing quality of life. Currently, there is no available treatment to reverse retinal degeneration and neuronal loss, prompting a focus on interventions that slow the progression of intermediate AMD and geographic atrophy. Berries are rich in bioactive compounds, including flavonoids, anthocyanins, carotenoids, and resveratrol, known for their antioxidant, anti-inflammatory, and anti-angiogenic properties. Preclinical studies suggest that extracts from various berries, such as aronia, honeysuckle, black currant, goji, and bilberry, can improve retinal health by reducing oxidative stress and inflammation. Although clinical trials are limited, emerging evidence indicates that dietary intake of these compounds may enhance visual function and slow the progression of AMD. This review summarizes findings from both animal studies and clinical trials to identify specific berries that have been validated to prevent or delay AMD progression, as well as those with potential therapeutic value. Furthermore, we examine the key phytochemicals present in these berries, their mechanisms of action on macular degeneration, and their distinct properties for therapeutic application. A deeper understanding of these characteristics could enable the rational appliance of berries, especially wolfberry, and berry-derived components, such as carotenoids and anthocyanins, to optimize better therapeutic outcomes in AMD management.
Collapse
Affiliation(s)
| | | | - Bowei Zhang
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (L.Z.)
| | - Shuo Wang
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (L.Z.)
| |
Collapse
|
2
|
Liang R, Song F, Liang Y, Fang Y, Wang J, Chen Y, Chen Z, Tan X, Dong J. A novel method for exploration and prediction of the bioactive target of rice bran-derived peptide (KF-8) by integrating computational methods and experiments. Food Funct 2024; 15:11875-11887. [PMID: 39529597 DOI: 10.1039/d4fo02493a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The investigation into the bioactive peptide's activity and target action poses a significant challenge in the field of food. An active peptide prepared from rice bran, KF-8, was confirmed to possess antioxidant activity in our previous study, but the specific target was unclear. This study used eight target prediction tools based on artificial intelligence and chemoinformatics to preliminarily screen potential antioxidant targets by integrating different computational methods. Then five different types of docking software were comparatively analyzed to further clarify their interaction sites and possible modes of action. The results showed that SIRT1 and CXCR4 are potential antioxidant targets of KF-8. Different docking software suggested that KF-8 interacts with SIRT1 and CXCR4 as major residues. Meanwhile, the results of Immunofluorescence co-localization experiments showed that the co-localization coefficients of KF-8 with SIRT1 and CXCR4 reached 0.5879 and 0.5684. This study provides new alternative means for the discovery of active peptide targets.
Collapse
Affiliation(s)
- Rui Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Fangliang Song
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Jianqiang Wang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Yajuan Chen
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Zhongxu Chen
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Xiaorong Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| |
Collapse
|
3
|
Ali Z, Rehman W, Rasheed L, Alzahrani AY, Ali N, Hussain R, Emwas AH, Jaremko M, Abdellattif MH. New 1,3,4-Thiadiazole Derivatives as α-Glucosidase Inhibitors: Design, Synthesis, DFT, ADME, and In Vitro Enzymatic Studies. ACS OMEGA 2024; 9:7480-7490. [PMID: 38405480 PMCID: PMC10882623 DOI: 10.1021/acsomega.3c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 02/27/2024]
Abstract
Diabetes is an emerging disorder in the world and is caused due to the imbalance of insulin production as well as serious effects on the body. In search of a better treatment for diabetes, we designed a novel class of 1,3,4-thiadiazole-bearing Schiff base analogues and assessed them for the α-glucosidase enzyme. In the series (1-12), compounds are synthesized and 3 analogues showed excellent inhibitory activity against α-glucosidase enzymes in the range of IC50 values of 18.10 ± 0.20 to 1.10 ± 0.10 μM. In this series, analogues 4, 8, and 9 show remarkable inhibition profile IC50 2.20 ± 0.10, 1.10 ± 0.10, and 1.30 ± 0.10 μM by using acarbose as a standard, whose IC50 is 11.50 ± 0.30 μM. The structure of the synthesized compounds was confirmed through various spectroscopic techniques, such as NMR and HREI-MS. Additionally, molecular docking, pharmacokinetics, cytotoxic evaluation, and density functional theory study were performed to investigate their behavior.
Collapse
Affiliation(s)
- Zahid Ali
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Wajid Rehman
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Liaqat Rasheed
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Abdullah Y. Alzahrani
- Department
of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir 61421, Saudi Arabia
| | - Nawab Ali
- Shanghai
Key Laboratory of Functional Materials Chemistry, School of Chemistry
and Molecular Engineering, East China University
of Science and Technology, Meilong Road130, Shanghai 200237, PR China
| | - Rafaqat Hussain
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Biological
and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magda H. Abdellattif
- Department
of Chemistry, Sciences College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
4
|
Shehab WS, Elsayed DA, Abdel Hamid AM, Assy MG, Mouneir SM, Hamed EO, Mousa SM, El-Bassyouni GT. CuO nanoparticles for green synthesis of significant anti-Helicobacter pylori compounds with in silico studies. Sci Rep 2024; 14:1608. [PMID: 38238369 PMCID: PMC10796945 DOI: 10.1038/s41598-024-51708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a universal health intimidation as mentioned by the World Health Organization. The primary causal agent linked to a number of illnesses, including inflammation and the development of stomach ulcers, is Helicobacter pylori. Since, H. pylori develops antibiotic resistance quickly, current H. pylori treatment approaches are becoming less effective. Our research aims to highlight novel formulation antibiotics using CuO-NPs as catalysts and studied their activity as anti-helicobacter pylori supported by computational studies (POM analysis and molecular docking) software. They were designed for anti-Helicobacter Pylori action. All compounds revealed a bactericidal effect better than the reference McFarland standards.
Collapse
Grants
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- Zagazig University
Collapse
Affiliation(s)
- Wesam S Shehab
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Doaa A Elsayed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Atef M Abdel Hamid
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed G Assy
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, 12211, Egypt
| | - Eman O Hamed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Sahar M Mousa
- Inorganic Chemistry Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Gehan T El-Bassyouni
- Ceramics and Building Materials Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
5
|
Ning Y, Wu Y, Zhou Q, Teng Y. The Effect of Quercetin in the Yishen Tongluo Jiedu Recipe on the Development of Prostate Cancer through the Akt1-related CXCL12/ CXCR4 Pathway. Comb Chem High Throughput Screen 2024; 27:863-876. [PMID: 37259219 DOI: 10.2174/1386207326666230530095355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND It remains a challenge to effectively treat prostate cancer (PCa) that affects global men's health. It is essential to find a natural alternative drug and explore its antitumor mechanism due to the serious toxic side effects of chemotherapy. METHODS The targets and signaling pathways were analyzed by network pharmacology and verified by molecular docking and LC-MS. The proliferation, apoptosis, invasion, and migration of DU145 cells were detected by the CCK-8 method, flow cytometry, and Transwell, respectively. The Bcl-2, caspase-3, CXCL12, and CXCR4 expressions and Akt1 phosphorylation were determined by Western blot. Akt1 overexpression was applied to identify the involvement of the Akt1- related CXCL12/CXCR4 pathway in regulating PCa. Nude mouse tumorigenesis was performed to analyze the effect of quercetin on PCa in vivo. RESULTS Network pharmacology analysis displayed that quercetin was the main active component of the Yishen Tongluo Jiedu recipe and Akt1 was the therapy target of PCa. LC-MS analysis showed that quercetin existed in the Yishen Tongluo Jiedu recipe, and molecular docking proved that quercetin bound to Akt1. Quercetin inhibited the proliferation of DU145 cells by upregulating caspase-3 and downregulating Bcl-2 expression, promoting apoptosis and reducing invasion and migration abilities. In vivo, quercetin downregulated CXCL12 and CXCR4 expressions and inhibited PCa development by the Akt1-related CXCL12/CXCR4 pathway. CONCLUSION As the active component of the Yishen Tongluo Jiedu recipe, quercetin inhibited PCa development through the Akt1-related CXCL12/CXCR4 pathway. This study provided a new idea for PCa treatment and a theoretical basis for further research.
Collapse
Affiliation(s)
- Yu Ning
- Department of Anesthesiology Surgery, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, China
| | - Yongrong Wu
- Academy of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410218, China
| | - Qing Zhou
- Surgery of traditional Chinese Medicine, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, China
| | - Yongjie Teng
- Department of Anesthesiology Surgery, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, China
| |
Collapse
|
6
|
Guzmán-Flores JM, Arevalo-Caro CM, Martínez-Esquivias F, Isiordia-Espinoza MA, Franco-de la Torre L. Molecular mechanism of curcumin on periodontitis: A pharmacological network study. J Oral Biosci 2023; 65:379-385. [PMID: 37595741 DOI: 10.1016/j.job.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE This study aimed to identify the molecular mechanism of curcumin on periodontitis based on a pharmacological network strategy. METHODS The potential therapeutic targets of curcumin and differentially expressed genes in periodontitis were identified. Subsequently, we extracted the molecules in common and analyzed them. A metabolic pathway enrichment and gene ontology analysis were performed and the protein-protein interaction network was inferred. These analyses allowed the identification of key proteins. Finally, a molecular docking of the main key proteins was performed with curcumin. RESULTS Our results showed that 55 genes are differentially expressed in periodontitis and are potential targets of curcumin. In addition, we observed that these genes participate in cell motility and immune response and are related to chemokine receptors (CXCRs) and enzymatic activity, such as arachidonate 5-lipoxygenase (ALOX5). We identified six key proteins, IL1B, CXCL8, CD44, MMP2, EGFR, and ITGAM; molecular docking revealed that these six proteins spontaneously bind to curcumin. CONCLUSION The results of this study helps us understand the molecular mechanism of curcumin in periodontitis. We propose that curcumin affects proinflammatory cytokines, ALOX5, and cell migration through chemokine receptors and acts on the cell membrane. Additionally, we identified six key proteins that are essential in this mechanism, all of which spontaneously bind to curcumin.
Collapse
Affiliation(s)
- Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Jalisco, Mexico.
| | - Catalina Maria Arevalo-Caro
- Grupo de Investigación en Periodoncia y Medicina Periodontal, Centro de Investigación y Extensión, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Jalisco, Mexico
| | - Mario Alberto Isiordia-Espinoza
- Instituto de Investigación en Ciencias Médicas, Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Jalisco, Mexico
| | - Lorenzo Franco-de la Torre
- Instituto de Investigación en Ciencias Médicas, Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Jalisco, Mexico
| |
Collapse
|
7
|
Alfaifi GH, Farghaly TA, Magda H. Abdellattif. Indenyl-thiazole and indenyl-formazan derivatives: Synthesis, anticancer screening studies, molecular-docking, and pharmacokinetic/ molin-spiration properties. PLoS One 2023; 18:e0274459. [PMID: 36857383 PMCID: PMC9977057 DOI: 10.1371/journal.pone.0274459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 03/02/2023] Open
Abstract
Two new series of thiazole and formazan linked to 5-Bromo-indan were synthesized, and their structures were assured based on all possible analytical techniques. The size of the tested derivatives was calculated from the XRD technique and found five derivatives 3, 10a, 14a, 15, and 16 on the nanosized scale. The two series were tested for their efficacy and toxicity as anti-colon and stomach cancers. Derivative 10d showed activity more than the two reference drugs used in the case of SNU-16. Surpislly, in the case of COLO205, five derivatives 4, 6c, 6d, 6e, and 10a are better than the two benchmarks used, and two derivatives, 14a and 14b more potent than cisplatin. All potent derivatives showed a strong fit with the active site of the two tested proteins (gastric cancer (PDB = 2BID) and colon cancer (PDB = 2A4L)) in the molecular docking study. The Pharmacophore and ADME studies of the new derivatives showed that most derivatives revealed promising bioactivity, which indicates the drug-likeness properties against kinase inhibitors, protease, and enzyme inhibitors. In addition, the ProTox-II showed that the four compounds 10d, 16, 6d, and 10a are predicted to have oral LD50 values ranging from 335 to 3500 mg/kg in a rat model with (1 s,4 s)-Eucalyptol bearing the highest values and quercetin holding the lowest one.
Collapse
Affiliation(s)
- Ghaidaa H. Alfaifi
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Thoraya A. Farghaly
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
8
|
Qian Y, Yin J, Ni J, Chen X, Shen Y. A Network Pharmacology Method Combined with Molecular Docking Verification to Explore the Therapeutic Mechanisms Underlying Simiao Pill Herbal Medicine against Hyperuricemia. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2507683. [PMID: 36817858 PMCID: PMC9935928 DOI: 10.1155/2023/2507683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 02/11/2023]
Abstract
Objective Hyperuricemia (HUA) is a common metabolic disease caused by disordered purine metabolism. We aim to reveal the mechanisms underlying the anti-HUA function of Simiao pill and provide therapeutic targets. Methods Simiao pill-related targets were obtained using Herbal Ingredients' Targets (HIT), Traditional Chinese Medicine Systems Pharmacology (TCMSP), and Traditional Chinese Medicine Integrated Database (TCMID). HUA-associated targets were retrieved from GeneCards, DisGeNET, and Therapeutic Targets Database (TTD). Protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, ggraph and igraph R packages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using ClusterProfiler. The top 10 core targets were identified through cytoHubba. Molecular docking was conducted using PyMOL and AutoDock high-performance liquid chromatograph (HPLC) analysis was performed to identify effective compounds of Simiao pill. Results Simiao pill-HUA target network contained 80 targets. The key targets were mainly involved in inflammatory responses. Insulin (INS), tumor necrosis factor (TNF), interleukin-6 (IL6), interleukin 1 beta (IL1B), vascular endothelial growth factor A (VEGFA), leptin (LEP), signal transducer and activator of transcription 3 (STAT3), C-C motif chemokine ligand 2 (CCL2), interleukin-10 (IL10), and toll like receptor 4 (TLR4) were the top 10 targets in the PPI network. GO analysis demonstrated the main implication of the targets in molecular responses, production, and metabolism. KEGG analysis revealed that Simiao pill might mitigate HUA through advanced glycation end-product- (AGE-) receptor for AGE- (RAGE-) and hypoxia-inducible factor-1- (HIF-1-) associated pathways. IL1B, IL6, IL10, TLR4, and TNF were finally determined as the promising targets of Simiao pill treating HUA. Through molecular docking and HPLC analysis, luteolin, quercetin, rutaecarpine, baicalin, and atractylenolide I were the main active compounds. Conclusions Simiao pill can mitigate HUA by restraining inflammation, mediating AGE-RAGE- and HIF-1-related pathways, and targeting IL1B, IL6, IL10, TLR4, and TNF.
Collapse
Affiliation(s)
- Yue Qian
- Rehabilitation Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou 310000, China
| | - Jiazhen Yin
- Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, China
| | - Juemin Ni
- Rehabilitation Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou 310000, China
| | - Xiaona Chen
- Rehabilitation Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou 310000, China
| | - Yan Shen
- Department of Nursing, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou 310000, China
| |
Collapse
|
9
|
Abd Emoniem N, Mukhtar RM, Ghaboosh H, Elshamly EM, Mohamed MA, Elsaman T, Alzain AA. Turning down PI3K/AKT/mTOR signalling pathway by natural products: an in silico multi-target approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:163-182. [PMID: 36853097 DOI: 10.1080/1062936x.2023.2181392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The PI3K/AKT/mTOR pathway is a significant target for cancer drug discovery. Many efforts have focused on discovering new inhibitors against key kinase proteins involved in this pathway for cancer treatment. PI3K/mTOR dual inhibitors, such as PKI-179, have been reported to be more effective than agents that act only on a single protein target. The present computational study aimed to discover triple target inhibitors against PI3K, AKT, and mTOR proteins. Accordingly, the PI3K protein bound with the ligand was used as input for e-pharmacophore modelling to generate the pharmacophore hypothesis and then screened for a library of 270,540 natural products from the Zinc database resulting in 57,220 compounds that matched the hypothesis. These compounds were then docked into the active site of PI3K, resulting in 292 compounds with better docking scores than the co-crystallized ligand. These compounds were re-docked into AKT and mTOR proteins. Besides, MM-GBSA binding free energy calculations, MD simulations, and ADMET prediction were carried out, leading to 5 potential triple-target inhibitors namely, ZINC000014644152, ZINC000014760695, ZINC000014644839, ZINC000095099451, and ZINC000005998557. In conclusion, these inhibitors may be possible leads for inhibiting PI3K/AKT/mTOR pathway, and they may be further evaluated in vitro and clinically as anticancer agents.
Collapse
Affiliation(s)
- N Abd Emoniem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - R M Mukhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - H Ghaboosh
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - E M Elshamly
- Department of Molecular Biotechnology, Hochschule Anhalt, Köthen, Germany
| | - M A Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - T Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - A A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
10
|
Multitarget Potential of Phytochemicals from Traditional Medicinal Tree, Terminalia arjuna (Roxb. ex DC.) Wight & Arnot as Potential Medicaments for Cardiovascular Disease: An In-Silico Approach. Molecules 2023; 28:molecules28031046. [PMID: 36770716 PMCID: PMC9920080 DOI: 10.3390/molecules28031046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Terminalia arjuna (Roxb. ex DC.) Wight & Arnot of the Combretaceae family is one of the most frequently approved and utilized medicinal trees in the traditional medicinal system, which was used for the treatment of a variety of diseases, including cardiovascular disorders. The present study aims to identify phytochemicals from T. arjuna, that do not exhibit any toxicity and have significant cardioprotective activity using an in-silico technique. Four different cardiovascular proteins, namely human angiotensin receptor (PDB ID: 4YAY), P38 mitogen-activated protein kinase (MAPK, PDB ID: 4DLI), 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-Co A) reductase (PDB ID: 1HW9), and human C-reactive protein (PDB ID: 1B09), were used as target proteins to identify potential inhibitors using a virtual screening of the phytochemicals in T. arjuna revealed casuarinin as a potential inhibitor of all selected target proteins with strong binding energy. Furthermore, MD simulations for a 100 ns time scale also revealed that most of the key protein contacts of all target proteins were retained throughout the simulation trajectories. Binding free energy calculations using the MM-GBSA approach also support a strong inhibitory effect of casuarinin on target proteins. Casuarinin's effective binding to these proteins lays the groundwork for the development of broad-spectrum drugs as well as the understanding of the underlying mechanism against cardiovascular diseases through in vivo and clinical studies.
Collapse
|
11
|
Alavi M, Mozafari MR, Ghaemi S, Ashengroph M, Hasanzadeh Davarani F, Mohammadabadi M. Interaction of Epigallocatechin Gallate and Quercetin with Spike Glycoprotein (S-Glycoprotein) of SARS-CoV-2: In Silico Study. Biomedicines 2022; 10:biomedicines10123074. [PMID: 36551830 PMCID: PMC9775955 DOI: 10.3390/biomedicines10123074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022] Open
Abstract
Severe acute respiratory syndrome (SARS)-CoV-2 from the family Coronaviridae is the cause of the outbreak of severe pneumonia, known as coronavirus disease 2019 (COVID-19), which was first recognized in 2019. Various potential antiviral drugs have been presented to hinder SARS-CoV-2 or treat COVID-19 disease. Side effects of these drugs are among the main complicated issues for patients. Natural compounds, specifically primary and secondary herbal metabolites, may be considered as alternative options to provide therapeutic activity and reduce cytotoxicity. Phenolic materials such as epigallocatechin gallate (EGCG, polyphenol) and quercetin have shown antibacterial, antifungal, antiviral, anticancer, and anti-inflammatory effects in vitro and in vivo. Therefore, in this study, molecular docking was applied to measure the docking property of epigallocatechin gallate and quercetin towards the transmembrane spike (S) glycoprotein of SARS-CoV-2. Results of the present study showed Vina scores of -9.9 and -8.3 obtained for EGCG and quercetin by CB-Dock. In the case of EGCG, four hydrogen bonds of OG1, OD2, O3, and O13 atoms interacted with the Threonine (THR778) and Aspartic acid (ASP867) amino acids of the spike glycoprotein (6VSB). According to these results, epigallocatechin gallate and quercetin can be considered potent therapeutic compounds for addressing viral diseases.
Collapse
Affiliation(s)
- Mehran Alavi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Kurdistan 6617715175, Iran
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran
- Correspondence: (M.A.); (M.R.M.)
| | - M. R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
- Correspondence: (M.A.); (M.R.M.)
| | - Saba Ghaemi
- Research Committee of Medical School, Alborz University of Medical Science, Karaj 3149779453, Iran
| | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, Kurdistan 6617715175, Iran
| | | | - Mohammadreza Mohammadabadi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran
| |
Collapse
|
12
|
Zheng L, Zhou Y, Yan T, Gong Z, Li Y, Chen S, Huang Y, Chi M. Quality Control of Oleum Cinnamomi Assisted by Network Pharmacology Strategy. Molecules 2022; 27:molecules27196391. [PMID: 36234930 PMCID: PMC9573265 DOI: 10.3390/molecules27196391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022] Open
Abstract
Oleum Cinnamomi is a traditional medicine used by the Hmong, the essential oil obtained from Fructus Cinnamomi, for the treatment of coronary heart disease. Information regarding the efficient quality control markers of it is lacking, which has become a bottleneck restricting its development and utilization. Here, an integrated qualitative analysis approach based on a GC-MS and network pharmacology strategy was applied to explore quality control markers for the assessment of Oleum Cinnamomi. Firstly, the compounds of Oleum Cinnamomi were detected by GC-MS. In total, 57 chemical components were identified, mainly monoterpenes and sesquiterpenes, accounting for 83.05% of total essential oil components. Secondly, network pharmacology was adopted to explore the compounds linked to target genes of coronary heart disease. Fifty-two compounds were found, indicating the effectiveness of Oleum Cinnamomi in the treatment of coronary heart disease. Among them, 10 compounds, including eucalyptol, were chosen as potential effective compounds in Oleum Cinnamomi. Thirdly, an established GC-MS SIM method was validated and applied for the simultaneous determination of the contents of these 10 compounds using 20 sample batches of Oleum Cinnamomi. It was preliminarily found that the contents of these 10 compounds differed in Oleum Cinnamomi from different origins. Finally, quantitative analyte data were analyzed using multivariate statistical analysis to determine Oleum Cinnamomi quality. Four compounds (eucalyptol, p-cymene, sabinene, β-pinene) were identified as chemical markers for quality control. Accordingly, this study provides new strategies to explore the quality control markers and develops a novel method for the quality assessment of Oleum Cinnamomi.
Collapse
Affiliation(s)
- Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Ting Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Siying Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- Correspondence: (Y.H.); (M.C.)
| | - Mingyan Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- Correspondence: (Y.H.); (M.C.)
| |
Collapse
|
13
|
Winnicki A, Gadd J, Ohanyan V, Hernandez G, Wang Y, Enrick M, McKillen H, Kiedrowski M, Kundu D, Kegecik K, Penn M, Chilian WM, Yin L, Dong F. Role of endothelial CXCR4 in the development of aortic valve stenosis. Front Cardiovasc Med 2022; 9:971321. [PMID: 36148060 PMCID: PMC9488705 DOI: 10.3389/fcvm.2022.971321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background CXCL12/CXCR4 signaling is essential in cardiac development and repair, however, its contribution to aortic valve stenosis (AVS) remains unclear. In this study, we tested the role of endothelial CXCR4 on the development of AVS. Materials and methods We generated CXCR4 endothelial cell-specific knockout mice (EC CXCR4 KO) by crossing CXCR4fl/fl mice with Tie2-Cre mice to study the role of endothelial cell CXCR4 in AVS. CXCR4fl/fl mice were used as controls. Echocardiography was used to assess the aortic valve and cardiac function. Heart samples containing the aortic valve were stained using Alizarin Red for detection of calcification. Masson’s trichrome staining was used for the detection of fibrosis. The apex of the heart samples was stained with wheat germ agglutinin (WGA) to visualize ventricular hypertrophy. Results Compared with the control group, the deletion of CXCR4 in endothelial cells led to significantly increased aortic valve peak velocity and aortic valve peak pressure gradient, with decreased aortic valve area and ejection fraction. EC CXCR4 KO mice also developed cardiac hypertrophy as evidenced by increased diastolic and systolic left ventricle posterior wall thickness (LVPW), cardiac myocyte size, and heart weight (HW) to body weight (BW) ratio. Our data also confirmed increased microcalcifications, interstitial fibrosis, and thickened valvular leaflets of the EC CXCR4 KO mice. Conclusion The data collected throughout this study suggest the deletion of CXCR4 in endothelial cells is linked to the development of aortic valve stenosis and left ventricular hypertrophy. The statistically significant parameters measured indicate that endothelial cell CXCR4 plays an important role in aortic valve development and function. We have compiled compelling evidence that EC CXCR4 KO mice can be used as a novel model for AVS.
Collapse
Affiliation(s)
- Anna Winnicki
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - James Gadd
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Gilbert Hernandez
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Yang Wang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Molly Enrick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Hannah McKillen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Matthew Kiedrowski
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Dipan Kundu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Karlina Kegecik
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Marc Penn
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
- Summa Cardiovascular Institute, Summa Health, Akron, OH, United States
| | - William M. Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
- Liya Yin,
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
- *Correspondence: Feng Dong,
| |
Collapse
|
14
|
Gomha SM, Riyadh SM, Huwaimel B, Zayed MEM, Abdellattif MH. Synthesis, Molecular Docking Study, and Cytotoxic Activity against MCF Cells of New Thiazole–Thiophene Scaffolds. Molecules 2022; 27:molecules27144639. [PMID: 35889511 PMCID: PMC9320749 DOI: 10.3390/molecules27144639] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/21/2022] Open
Abstract
Investigating novel compounds that may be useful in designing new, less toxic, selective, and potent breast anticancer agents is still the main challenge for medicinal chemists. Thus, in the present work, acetylthiophene was used as a building block to synthesize a novel series of thiazole-bearing thiophene derivatives. The structures of the synthesized compounds were elucidated based on elemental analysis and spectral measurements. The cytotoxic activities of the synthesized compounds were evaluated against MCF-7 tumor cells and compared to a cisplatin reference drug, and against the LLC-Mk2 normal cell line using the MTT assay, and the results revealed promising activities for compounds 4b and 13a. The active compounds were subjected to molecular modeling using MOE 2019, the pharmacokinetics were studied using SwissADME, and a toxicity radar was obtained from the biological screening data. The results obtained from the computational studies supported the results obtained from the anticancer biological studies.
Collapse
Affiliation(s)
- Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Correspondence:
| | - Sayed M. Riyadh
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
| | - Mohie E. M. Zayed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, P.O. Box 11099, Taif 21944, Saudi Arabia;
| |
Collapse
|
15
|
Production of human embryonic kidney 293T cells stably expressing C-X-C chemokine receptor type 4 (CXCR4) as a screening tool for anticancer lead compound targeting CXCR4. Life Sci 2022; 303:120661. [PMID: 35643380 DOI: 10.1016/j.lfs.2022.120661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
Abstract
AIM The C-X-C chemokine-receptor type 4 (CXCR4) is an emerging target for cancer drug discovery due to its high expression in cancer cells. The present study aimed to produce CXCR4 overexpressing HEK293T cells for a non-radioactive binding assay as a platform to identify drug candidates targeting CXCR4. MAIN METHODS HEK293T cells stably expressing human CXCR4 were constructed by transfection of CXCR4 plasmids from the human CXCR4 gene. The CXCR4 overexpressing HEK293T cells were obtained by fluorescence-activated sorting and verified by conducting the competition binding assay of a known CXCR4 inhibitor, AMD3100 (plerixafor), to determine the IC50 value against monoclonal anti-human CD184 (hCD184) antibody tagged with fluorescence probe, phycoerythrin (PE). The non-radioactive binding assay using CXCR4 overexpressing HEK293T cells and PE-anti hCD184 was applied as a platform for identifying the target of natural compounds that exhibited cytotoxicity against cancer cell lines. KEY FINDINGS The CXCR4 overexpressing HEK293T cells were produced with high expression (99.8%). The IC50 value of plerixafor determined by fluorescence tagged antibody-based competition assay using our developed cells agree with previously reported values using a radioligand binding assay. We observed no significant displacement of bound PE-anti-hCD184 by the test natural compounds which could be due to non-specific binding to other functional targets or organelles, low potency of the natural compounds, or binding to CXCR4 at deeper pockets. SIGNIFICANCE The verified non-radioactive binding assay can serve as an alternative screening tool for anticancer lead compounds targeting CXCR4 and an essential tool for proof of mechanism study in the drug discovery.
Collapse
|