1
|
Zheng Z, Ke L, Ye S, Shi P, Yao H. Pharmacological Mechanisms of Cryptotanshinone: Recent Advances in Cardiovascular, Cancer, and Neurological Disease Applications. Drug Des Devel Ther 2024; 18:6031-6060. [PMID: 39703195 PMCID: PMC11658958 DOI: 10.2147/dddt.s494555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Cryptotanshinone (CTS) is an important active ingredient of Salvia miltiorrhiza Bge. In recent years, its remarkable pharmacological effects have triggered extensive and in-depth studies. The aim of this study is to retrieve the latest research progress on CTS and provide prospects for future research. The selection of literature for inclusion, data extraction and methodological quality assessment were discussed. Studies included (1) physicochemical and ADME/Tox properties, (2) pharmacological effects and mechanism, (3) conclusion and bioinformatics analysis. A total of 915 titles and abstracts were screened, resulting in 184 papers used in this review; CTS has shown therapeutic effects on a variety of diseases by modulating multiple molecular pathways. For example, CTS primarily targets NF-κB pathway and MAPK pathway to have a therapeutic role in cardiovascular diseases; in cancer, CTS shows superior efficacy through the PI3K/Akt/mTOR pathway and the JAK/STAT pathway; CTS act on the Nrf2/HO-1 pathway to combat neurological diseases. In addition, key targets of CTS were predicted by bioinformatics analysis, referring to disease ontology (DO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis, with R Studio; AKT1, MAPK1, STAT3, P53 and EGFR are predicted to be the key targets of CTS against diseases. The key proteins were then docked by Autodock software to preliminarily assess their binding activities. This review provided new insights into research of CTS and its potential applications in the future, and especially the targets and directly binding modes for CTS are waiting to be investigated.
Collapse
Affiliation(s)
- Ziyao Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Shumin Ye
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
2
|
Guo W, Wu D, Li L, Lewis ED, Meydani SN. Increased Fruit and Vegetable Consumption Prevents Dysregulated Immune and Inflammatory Responses in High-Fat Diet-Induced Obese Mice. J Nutr 2024; 154:3144-3150. [PMID: 39154866 DOI: 10.1016/j.tjnut.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Obesity is often associated with impaired immune responses, including enlarged spleen, increased inflammation, and impaired T-cell-mediated function, which may lead to increased susceptibility to infections. Bioactive compounds found in various fruits and vegetables (F&V) have been shown to have strong anti-inflammatory effects. However, few prospective studies have examined the effects of F&V on preventing obesity-associated dysregulation of immune and inflammatory responses. OBJECTIVE The objective of this was to determine the impact of different levels of a mixture of F&V incorporated in a high-fat diet (HFD) on immune function changes in a diet-induced obesity animal model. METHODS Six-wk-old male C57BL/6J mice were randomly assigned to 1 of 5 groups (n = 12/group): matched low-fat control (LF, 10% kcal fat) or HFD (45% kcal fat) supplemented with 0%, 5%, 10%, or 15% (wt/wt) freeze-dried powder of the most consumed F&V (human equivalent of 0, 3, 5-7, 8-9 servings/d, respectively) for 20 wk. Spleen weight was recorded, and the immunophenotype of splenocytes was evaluated by flow cytometry. Ex vivo splenic lymphocyte proliferation was assessed by thymidine incorporation and serum cytokines concentrations were measured by Meso Scale Discovery. RESULTS Mice fed the HFD exhibited significantly higher spleen weight, decreased splenic CD8+ lymphocytes, suppressed T lymphocyte proliferation, and reduced serum IL-1ß and IFN-γ concentrations compared with those fed the LF diet. Feeding mice with the HFD supplemented with 10% or 15% F&V restored HFD-associated changes of these affected biomarkers compared with those fed HFD only. Furthermore, a significant correlation was found between immunologic markers and F&V level. CONCLUSIONS These results suggest that increased consumption of F&V has beneficial effects in preventing HFD-associated dysregulation of immune function.
Collapse
Affiliation(s)
- Weimin Guo
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States.
| | - Dayong Wu
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Lijun Li
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Erin D Lewis
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Simin Nikbin Meydani
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States.
| |
Collapse
|
3
|
Kang Q, He L, Zhang Y, Zhong Z, Tan W. Immune-inflammatory modulation by natural products derived from edible and medicinal herbs used in Chinese classical prescriptions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155684. [PMID: 38788391 DOI: 10.1016/j.phymed.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Edible and medicinal herbs1 (EMHs) refer to a class of substances with dual attribution of food and medicine. These substances are traditionally used as food and also listed in many international pharmacopoeias, including the European Pharmacopoeia, the United States Pharmacopoeia, and the Chinese Pharmacopoeia. Some classical formulas that are widely used in traditional Chinese medicine include a series of EMHs, which have been shown to be effective with obvious characteristics and advantages. Notably, these EMHs and Chinese classical prescriptions2 (CCPs) have also attracted attention in international herbal medicine research because of their low toxicity and high efficiency as well as the rich body of experience for their long-term clinical use. PURPOSE Our purpose is to explore the potential therapeutic effect of EMHs with immune-inflammatory modulation for the study of modern cancer drugs. STUDY DESIGN In the present study, we present a detailed account of some EMHs used in CCPs that have shown considerable research potential in studies exploring modern drugs with immune-inflammatory modulation. METHODS Approximately 500 publications in the past 30 years were collected from PubMed, Web of Science and ScienceDirect using the keywords, such as natural products, edible and medicinal herbs, Chinese medicine, classical prescription, immune-inflammatory, tumor microenvironment and some related synonyms. The active ingredients instead of herbal extracts or botanical mixtures were focused on and the research conducted over the past decade were discussed emphatically and analyzed comprehensively. RESULTS More than ten natural products derived from EMHs used in CCPs are discussed and their immune-inflammatory modulation activities, including enhancing antitumor immunity, regulating inflammatory signaling pathways, lowering the proportion of immunosuppressive cells, inhibiting the secretion of proinflammatory cytokines, immunosuppressive factors, and inflammatory mediators, are summarized. CONCLUSION Our findings demonstrate the immune-inflammatory modulating role of those EMHs used in CCPs and provide new ideas for cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Alqathama A. Natural products as promising modulators of breast cancer immunotherapy. Front Immunol 2024; 15:1410300. [PMID: 39050852 PMCID: PMC11266008 DOI: 10.3389/fimmu.2024.1410300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Breast cancer (BC) is the most common malignancy among women and is considered a major global health challenge worldwide due to its high incidence and mortality rates. Treatment strategies for BC is wide-ranging and include surgery, radiotherapy, chemotherapy, targeted hormonal therapy and immunotherapy. Immunotherapy has gained popularity recently and is often integrated as a component of personalized cancer care because it aims to strengthen the immune system and enable it to recognize and eradicate transformed cells. It has fewer side-effects and lower toxicity than other treatment strategies, such as chemotherapy. Many natural products are being investigated for a wide range of therapeutic pharmacological properties, such as immune system modulation and activity against infection, auto-immune disease, and cancer. This review presents an overview of the major immune response-related pathways in BC, followed by detailed explanation of how natural compounds can act as immunomodulatory agents against biomolecular targets. Research has been carried out on many forms of natural products, including extracts, isolated entities, synthetic derivatives, nanoparticles, and combinations of natural compounds. Findings have shown significant regulatory effects on immune cells and immune cytokines that lead to immunogenic cancer cell death, as well as upregulation of macrophages and CD+8 T cells, and increased natural killer cell and dendritic cell activity. Natural products have also been found to inhibit some immuno-suppressive cells such as Treg and myeloid-derived suppressor cells, and to decrease immunosuppressive factors such as TGF-β and IL-10. Also, some natural compounds have been found to target and hinder immune checkpoints such as PD-L1.
Collapse
Affiliation(s)
- Aljawharah Alqathama
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
5
|
Elsori D, Pandey P, Ramniwas S, Kumar R, Lakhanpal S, Rab SO, Siddiqui S, Singh A, Saeed M, Khan F. Naringenin as potent anticancer phytocompound in breast carcinoma: from mechanistic approach to nanoformulations based therapeutics. Front Pharmacol 2024; 15:1406619. [PMID: 38957397 PMCID: PMC11217354 DOI: 10.3389/fphar.2024.1406619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
The bioactive compounds present in citrus fruits are gaining broader acceptance in oncology. Numerous studies have deciphered naringenin's antioxidant and anticancer potential in human and animal studies. Naringenin (NGE) potentially suppresses cancer progression, thereby improving the health of cancer patients. The pleiotropic anticancer properties of naringenin include inhibition of the synthesis of growth factors and cytokines, inhibition of the cell cycle, and modification of several cellular signaling pathways. As an herbal remedy, naringenin has significant pharmacological properties, such as anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, and anti-cancer activities. The inactivation of carcinogens following treatment with pure naringenin, naringenin-loaded nanoparticles, and naringenin combined with anti-cancer agents was demonstrated by data in vitro and in vivo studies. These studies included colon cancer, lung neoplasms, breast cancer, leukemia and lymphoma, pancreatic cancer, prostate tumors, oral squamous cell carcinoma, liver cancer, brain tumors, skin cancer, cervical and ovarian cancers, bladder neoplasms, gastric cancer, and osteosarcoma. The effects of naringenin on processes related to inflammation, apoptosis, proliferation, angiogenesis, metastasis, and invasion in breast cancer are covered in this narrative review, along with its potential to develop novel and secure anticancer medications.
Collapse
Affiliation(s)
- Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Pratibha Pandey
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, India
| | - Seema Ramniwas
- University Centre of Research and Development, University Institute of Biotechnology, Chandigarh University Gharuan, Mohali, India
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Samra Siddiqui
- Department of Health Service Management, College of Public Health and Health Informatics, University of Ha’il, Ha’il, Saudi Arabia
| | - Ajay Singh
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Ha’il, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
6
|
Liu Z, Liu W, Han M, Wang M, Li Y, Yao Y, Duan Y. A comprehensive review of natural product-derived compounds acting on P2X7R: The promising therapeutic drugs in disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155334. [PMID: 38554573 DOI: 10.1016/j.phymed.2023.155334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 04/01/2024]
Abstract
BACKGROUND The P2X7 receptor (P2X7R) is known to play a significant role in regulating various pathological processes associated with immune regulation, neuroprotection, and inflammatory responses. It has emerged as a potential target for the treatment of diseases. In addition to chemically synthesized small molecule compounds, natural products have gained attention as an important source for discovering compounds that act on the P2X7R. PURPOSE To explore the research progress made in the field of natural product-derived compounds that act on the P2X7R. METHODS The methods employed in this review involved conducting a thorough search of databases, include PubMed, Web of Science and WIKTROP, to identify studies on natural product-derived compounds that interact with P2X7R. The selected studies were then analyzed to categorize the compounds based on their action on the receptor and to evaluate their therapeutic applications, chemical properties, and pharmacological actions. RESULTS The natural product-derived compounds acting on P2X7R can be classified into three categories: P2X7R antagonists, compounds inhibiting P2X7R expression, and compounds regulating the signaling pathway associated with P2X7R. Moreover, highlight the therapeutic applications, chemical properties and pharmacological actions of these compounds, and indicate areas that require further in-depth study. Finally, discuss the challenges of the natural products-derived compounds exploration, although utilizing compounds from natural products for new drug research offers unique advantages, problems related to solubility, content, and extraction processes still exist. CONCLUSION The detailed information in this review will facilitate further development of P2X7R antagonists and potential therapeutic strategies for P2X7R-associated disorders.
Collapse
Affiliation(s)
- Zhenling Liu
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Wenjin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingzhu Wang
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongfang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Pingyuan Laboratory (Zhengzhou University), Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongtao Duan
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
7
|
Zeng L, Mi K, Peng L, Wen H, Jiao T, Lyu X, Jiao T, Chen Y, Yuan J, Zhang L, Yang S. Identification and validation of LINC01322 as a potential prognostic biomarker and oncogene promoting tumor progression in lung adenocarcinoma. Int J Biochem Cell Biol 2024; 169:106552. [PMID: 38403048 DOI: 10.1016/j.biocel.2024.106552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Our study identified a novel long noncoding RNA, LINC01322, that acts as an oncogene in lung adenocarcinoma progression. Cytoplasmic and nuclear RNA purification assays indicated that LINC01322 was localized in the cytoplasm and nucleus. Gene set enrichment analysis revealed the involvement of LINC01322 in the regulation of cell proliferation, migration, and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway. LINC01322 may promote lung adenocarcinoma proliferation and migration through the Janus kinase/signal transducer and activator of transcription signaling pathway. In vitro experiments demonstrated that the knockdown of LINC01322 significantly suppressed lung adenocarcinoma cell proliferation, migration, and activation of the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway, whereas overexpression had the opposite effects. Inhibition of the Janus kinase 2/signal transducer and activator of transcription 3 pathway activity partially reversed the enhancement of cell proliferation and migration caused by LINC01322 overexpression. In vivo experiments further verified the oncogene role of LINC01322. Altogether, our findings suggest that LINC01322 promotes lung adenocarcinoma progression by activating the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway and that it could be a therapeutic target.
Collapse
Affiliation(s)
- Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ke Mi
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Peng
- Department of General surgery, the Second Affiliated Hospital of Lanzhou University, China
| | - Haimei Wen
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ting Jiao
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xin Lyu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tong Jiao
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jingyan Yuan
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Long Zhang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Tian L, Wang M, Wang Y, Li W, Yang Y. Naringenin ameliorates atopic dermatitis by inhibiting inflammation and enhancing immunity through the JAK2/STAT3 pathway. Genes Genomics 2024; 46:333-340. [PMID: 37837514 DOI: 10.1007/s13258-023-01457-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
OBJECTIVE Atopic dermatitis (AD) is an inflammatory skin disease. Naringenin (Nar) possesses an anti-inflammatory property. This paper attempts to discuss the functional mechanism of Nar in AD mice through the Janus kinase 2 (JAK2)/signal transducer and activation of transcription 3 (STAT3) pathway. METHODS Mouse models of DNFB-induced AD were established and treated with Nar, followed by intraperitoneal injection with the JAK2/STAT3 pathway activator Coumermycin A1. Dermatitis severity was scored and the thickness of right ear was measured. The pathological changes in dorsal skin tissues were observed by HE staining. The number of infiltrated mast cells and eosinophilic granulocytes was counted by TB staining. The serum IgE level and levels of TNF-α, IL-6, IFN-γ, IL-12, and IL-5 in dorsal skin tissues were measured by ELISA. The levels of p-JAK2, JAK2, p-STAT3, and STAT3 were determined by Western blot. RESULTS Nar decreased dermatitis scores and right ear thickness, alleviated skin lesions, and reduced the number of infiltrated mast cells and eosinophilic granulocytes in AD mice. The serum IgE level and levels of TNF-α, IL-6, IFN-γ, IL-12, and IL-5 in dorsal skin tissues of AD mice were diminished after Nar treatment in a dose-dependent manner. Nar inhibited the activation of the JAK2/STAT3 pathway. The activation of the JAK2/STAT3 pathway partially nullified the therapeutic function of Nar on AD mice. CONCLUSION Nar protects mice from AD by inhibiting inflammation and promoting immune responses through the inhibition of the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Limin Tian
- Dermatology Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Kunqu District, Baotou City, 014040, Inner Mongolia Autonomous Region, China
| | - Mengjie Wang
- Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Yangxingyun Wang
- Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Wei Li
- Dermatology Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Kunqu District, Baotou City, 014040, Inner Mongolia Autonomous Region, China
| | - Yuenan Yang
- Dermatology Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Kunqu District, Baotou City, 014040, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
9
|
Zarezadeh SM, Sharafi AM, Erabi G, Tabashiri A, Teymouri N, Mehrabi H, Golzan SA, Faridzadeh A, Abdollahifar Z, Sami N, Arabpour J, Rahimi Z, Ansari A, Abbasi MR, Azizi N, Tamimi A, Poudineh M, Deravi N. Natural STAT3 Inhibitors for Cancer Treatment: A Comprehensive Literature Review. Recent Pat Anticancer Drug Discov 2024; 19:403-502. [PMID: 37534488 DOI: 10.2174/1574892818666230803100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023]
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.
Collapse
Affiliation(s)
- Seyed Mahdi Zarezadeh
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Sharafi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Teymouri
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Mehrabi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyyed Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abdollahifar
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of New Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Zahra Rahimi
- School of Medicine, Zanjan University of Medical Sciences Zanjan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Nima Azizi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Noor G, Badruddeen, Akhtar J, Singh B, Ahmad M, Khan MI. An outlook on the target-based molecular mechanism of phytoconstituents as immunomodulators. Phytother Res 2023; 37:5058-5079. [PMID: 37528656 DOI: 10.1002/ptr.7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
The immune system is one of the essential defense mechanisms. Immune system inadequacy increases the risk of infections and cancer diseases, whereas over-activation of the immune system causes allergies or autoimmune disorders. Immunomodulators have been used in the treatment of immune-related diseases. There is growing interest in using herbal medicines as multicomponent agents to modulate the complex immune system in immune-related diseases. Many therapeutic phytochemicals showed immunomodulatory effects by various mechanisms. This mechanism includes stimulation of lymphoid cell, phagocytosis, macrophage, and cellular immune function enhancement. In addition increased antigen-specific immunoglobulin production, total white cell count, and inhibition of TNF-α, IFN-γ, NF-kB, IL-2, IL-6, IL-1β, and other cytokines that influenced the immune system. This review aims to overview, widely investigated plant-derived phytoconstituents by targeting cells to modulate cellular and humoral immunity in in vivo and in vitro. However, further high-quality research is needed to confirm the clinical efficacy of plant-based immunomodulators.
Collapse
Affiliation(s)
- Gazala Noor
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Badruddeen
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Juber Akhtar
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Bhuwanendra Singh
- Department of Pharmacognosy, S.D. College of Pharmacy and Vocational Studies, Muzaffarnagar, India
| | - Mohammad Ahmad
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Irfan Khan
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
11
|
Kan LLY, Chan BCL, Leung PC, Wong CK. Natural-Product-Derived Adjunctive Treatments to Conventional Therapy and Their Immunoregulatory Activities in Triple-Negative Breast Cancer. Molecules 2023; 28:5804. [PMID: 37570775 PMCID: PMC10421415 DOI: 10.3390/molecules28155804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an invasive and persistent subtype of breast cancer that is likely to be resistant to conventional treatments. The rise in immunotherapy has created new modalities to treat cancer, but due to high costs and unreliable efficacy, adjunctive and complementary treatments have sparked interest in enhancing the efficacy of currently available treatments. Natural products, which are bioactive compounds derived from natural sources, have historically been used to treat or ameliorate inflammatory diseases and symptoms. As TNBC patients have shown little to no response to immunotherapy, the potential of natural products as candidates for adjuvant immunotherapy is being explored, as well as their immunomodulatory effects on cancer. Due to the complexity of TNBC and the ever-changing tumor microenvironment, there are challenges in determining the feasibility of using natural products to enhance the efficacy or counteract the toxicity of conventional treatments. In view of technological advances in molecular docking, pharmaceutical networking, and new drug delivery systems, natural products show promise as potential candidates in adjunctive therapy. In this article, we summarize the mechanisms of action of selected natural-product-based bioactive compounds and analyze their roles and applications in combination treatments and immune regulation.
Collapse
Affiliation(s)
- Lea Ling-Yu Kan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ben Chung-Lap Chan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Adetunji JA, Fasae KD, Awe AI, Paimo OK, Adegoke AM, Akintunde JK, Sekhoacha MP. The protective roles of citrus flavonoids, naringenin, and naringin on endothelial cell dysfunction in diseases. Heliyon 2023; 9:e17166. [PMID: 37484296 PMCID: PMC10361329 DOI: 10.1016/j.heliyon.2023.e17166] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
The endothelial cells (ECs) make up the inner lining of blood vessels, acting as a barrier separating the blood and the tissues in several organs. ECs maintain endothelium integrity by controlling the constriction and relaxation of the vasculature, blood fluidity, adhesion, and migration. These actions of ECs are efficiently coordinated via an intricate signaling network connecting receptors, and a wide range of cellular macromolecules. ECs are naturally quiescent i.e.; they are not stimulated and do not proliferate. Upon infection or disease, ECs become activated, and this alteration is pivotal in the pathogenesis of a spectrum of human neurological, cardiovascular, diabetic, cancerous, and viral diseases. Considering the central position that ECs play in disease pathogenesis, therapeutic options have been targeted at improving ECs integrity, assembly, functioning, and health. The dietary intake of flavonoids present in citrus fruits has been associated with a reduced risk of endothelium dysfunction. Naringenin (NGN) and Naringin (NAR), major flavonoids in grapefruit, tomatoes, and oranges possess anti-inflammatory, antioxidant properties, and cell survival potentials, which improve the health of the vascular endothelium. In this review, we provide a comprehensive summary and present the advances in understanding of the mechanisms through which NGN and NAR modulate the biomarkers of vascular dysfunction and protect the endothelium against unresolved inflammation, oxidative stress, atherosclerosis, and angiogenesis. We also provide perspectives and suggest further studies that will help assess the efficacy of citrus flavonoids in the therapeutics of human vascular diseases.
Collapse
Affiliation(s)
- Joy A. Adetunji
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| | - Kehinde D. Fasae
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA
| | - Ayobami I. Awe
- Department of Biology, The Catholic University of America, Washington DC, USA
| | - Oluwatomiwa K. Paimo
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ayodeji M. Adegoke
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria
| | - Jacob K. Akintunde
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Mamello P. Sekhoacha
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|