3
|
Nami M, Thatcher R, Kashou N, Lopes D, Lobo M, Bolanos JF, Morris K, Sadri M, Bustos T, Sanchez GE, Mohd-Yusof A, Fiallos J, Dye J, Guo X, Peatfield N, Asiryan M, Mayuku-Dore A, Krakauskaite S, Soler EP, Cramer SC, Besio WG, Berenyi A, Tripathi M, Hagedorn D, Ingemanson M, Gombosev M, Liker M, Salimpour Y, Mortazavi M, Braverman E, Prichep LS, Chopra D, Eliashiv DS, Hariri R, Tiwari A, Green K, Cormier J, Hussain N, Tarhan N, Sipple D, Roy M, Yu JS, Filler A, Chen M, Wheeler C, Ashford JW, Blum K, Zelinsky D, Yamamoto V, Kateb B. A Proposed Brain-, Spine-, and Mental- Health Screening Methodology (NEUROSCREEN) for Healthcare Systems: Position of the Society for Brain Mapping and Therapeutics. J Alzheimers Dis 2022; 86:21-42. [PMID: 35034899 DOI: 10.3233/jad-215240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The COVID-19 pandemic has accelerated neurological, mental health disorders, and neurocognitive issues. However, there is a lack of inexpensive and efficient brain evaluation and screening systems. As a result, a considerable fraction of patients with neurocognitive or psychobehavioral predicaments either do not get timely diagnosed or fail to receive personalized treatment plans. This is especially true in the elderly populations, wherein only 16% of seniors say they receive regular cognitive evaluations. Therefore, there is a great need for development of an optimized clinical brain screening workflow methodology like what is already in existence for prostate and breast exams. Such a methodology should be designed to facilitate objective early detection and cost-effective treatment of such disorders. In this paper we have reviewed the existing clinical protocols, recent technological advances and suggested reliable clinical workflows for brain screening. Such protocols range from questionnaires and smartphone apps to multi-modality brain mapping and advanced imaging where applicable. To that end, the Society for Brain Mapping and Therapeutics (SBMT) proposes the Brain, Spine and Mental Health Screening (NEUROSCREEN) as a multi-faceted approach. Beside other assessment tools, NEUROSCREEN employs smartphone guided cognitive assessments and quantitative electroencephalography (qEEG) as well as potential genetic testing for cognitive decline risk as inexpensive and effective screening tools to facilitate objective diagnosis, monitor disease progression, and guide personalized treatment interventions. Operationalizing NEUROSCREEN is expected to result in reduced healthcare costs and improving quality of life at national and later, global scales.
Collapse
Affiliation(s)
- Mohammad Nami
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Neuroscience Center, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama.,Department of Neuroscience, School of Advanced Medical Sciences and Technologies, and Dana Brain Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran.,Inclusive Brain Health and BrainLabs International, Swiss Alternative Medicine, Geneva, Switzerland
| | - Robert Thatcher
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Applied Neuroscience, Inc., St Petersburg, FL, USA
| | - Nasser Kashou
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Dahabada Lopes
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Maria Lobo
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Joe F Bolanos
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Kevin Morris
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Melody Sadri
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Teshia Bustos
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Gilberto E Sanchez
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Alena Mohd-Yusof
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - John Fiallos
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Justin Dye
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| | - Xiaofan Guo
- Department of Neurology, Loma Linda University, CA, USA
| | | | - Milena Asiryan
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Alero Mayuku-Dore
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Solventa Krakauskaite
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Ernesto Palmero Soler
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Steven C Cramer
- Department of Neurology, UCLA, and California Rehabilitation Institute, Los Angeles, CA, USA
| | - Walter G Besio
- Electrical Computer and Biomedical Engineering Department and Interdisciplinary Neuroscience Program, University of Rhode Island, RI, USA
| | - Antal Berenyi
- The Neuroscience Institute, New York University, New York, NY, USA
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | - Mark Liker
- Department of Neurosurgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yousef Salimpour
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Dawn S Eliashiv
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,UCLA David Geffen, School of Medicine, Department of Neurology, Los Angeles, CA, USA
| | - Robert Hariri
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Celularity Corporation, Warren, NJ, USA.,Weill Cornell School of Medicine, Department of Neurosurgery, New York, NY, USA.,Brain Technology and Innovation Park, Los Angeles, CA, USA
| | - Ambooj Tiwari
- Departments of Neurology, Radiology & Neurosurgery - NYU Grossman School of Medicine, New York, NY, USA
| | - Ken Green
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Jason Cormier
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Lafayette Surgical Specialty Hospital, Lafayette, LA, USA
| | - Namath Hussain
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Department of Psychiatry, Faculty of Medicine, Uskudar University, Turkey
| | - Nevzat Tarhan
- Department of Psychiatry, Faculty of Medicine, Uskudar University, Turkey
| | - Daniel Sipple
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Midwest Spine and Brain Institute, Roseville, MN, USA
| | - Michael Roy
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Uniformed Services University Health Science (USUHS), Baltimore, MD, USA
| | - John S Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aaron Filler
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Institute for Nerve Medicine, Santa Monica, CA, USA.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mike Chen
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Department of Neurosurgery, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Chris Wheeler
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | | | - Kenneth Blum
- Division of Addiction Research, Center for Psychiatry, Medicine, and Primary Care, Western Health Sciences, Pomona, CA, USA
| | | | - Vicky Yamamoto
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,USC Keck School of Medicine, The USC Caruso Department of Otolaryngology-Head and Neck Surgery, Los Angeles, CA, USA.,USC-Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Babak Kateb
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Loma Linda University, Department of Neurosurgery, Loma Linda, CA, USA.,National Center for NanoBioElectronic (NCNBE), Los Angeles, CA, USA.,Brain Technology and Innovation Park, Los Angeles, CA, USA
| |
Collapse
|
5
|
Slater K, Williams JA, Karwath A, Fanning H, Ball S, Schofield PN, Hoehndorf R, Gkoutos GV. Multi-faceted semantic clustering with text-derived phenotypes. Comput Biol Med 2021; 138:104904. [PMID: 34600327 PMCID: PMC8573608 DOI: 10.1016/j.compbiomed.2021.104904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/03/2023]
Abstract
Identification of ontology concepts in clinical narrative text enables the creation of phenotype profiles that can be associated with clinical entities, such as patients or drugs. Constructing patient phenotype profiles using formal ontologies enables their analysis via semantic similarity, in turn enabling the use of background knowledge in clustering or classification analyses. However, traditional semantic similarity approaches collapse complex relationships between patient phenotypes into a unitary similarity scores for each pair of patients. Moreover, single scores may be based only on matching terms with the greatest information content (IC), ignoring other dimensions of patient similarity. This process necessarily leads to a loss of information in the resulting representation of patient similarity, and is especially apparent when using very large text-derived and highly multi-morbid phenotype profiles. Moreover, it renders finding a biological explanation for similarity very difficult; the black box problem. In this article, we explore the generation of multiple semantic similarity scores for patients based on different facets of their phenotypic manifestation, which we define through different sub-graphs in the Human Phenotype Ontology. We further present a new methodology for deriving sets of qualitative class descriptions for groups of entities described by ontology terms. Leveraging this strategy to obtain meaningful explanations for our semantic clusters alongside other evaluation techniques, we show that semantic clustering with ontology-derived facets enables the representation, and thus identification of, clinically relevant phenotype relationships not easily recoverable using overall clustering alone. In this way, we demonstrate the potential of faceted semantic clustering for gaining a deeper and more nuanced understanding of text-derived patient phenotypes.
Collapse
Affiliation(s)
- Karin Slater
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, UK; Institute of Translational Medicine, University Hospitals Birmingham, NHS Foundation Trust, UK; MRC Health Data Research UK (HDR UK) Midlands, UK; University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK.
| | - John A Williams
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, UK; Institute of Translational Medicine, University Hospitals Birmingham, NHS Foundation Trust, UK; University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK
| | - Andreas Karwath
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, UK; Institute of Translational Medicine, University Hospitals Birmingham, NHS Foundation Trust, UK; MRC Health Data Research UK (HDR UK) Midlands, UK; University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK
| | - Hilary Fanning
- Institute of Translational Medicine, University Hospitals Birmingham, NHS Foundation Trust, UK; University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK
| | - Simon Ball
- Institute of Translational Medicine, University Hospitals Birmingham, NHS Foundation Trust, UK; University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK
| | - Paul N Schofield
- Dept of Physiology, Development, and Neuroscience, University of Cambridge, UK
| | - Robert Hoehndorf
- Computer, Electrical and Mathematical Sciences & Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Saudi Arabia
| | - Georgios V Gkoutos
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, UK; Institute of Translational Medicine, University Hospitals Birmingham, NHS Foundation Trust, UK; NIHR Experimental Cancer Medicine Centre, UK; NIHR Surgical Reconstruction and Microbiology Research Centre, UK; NIHR Biomedical Research Centre, UK; MRC Health Data Research UK (HDR UK) Midlands, UK; University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK
| |
Collapse
|
6
|
Huang Y, Wang N, Zhang Z, Liu H, Fei X, Wei L, Chen H. Patient Representation From Structured Electronic Medical Records Based on Embedding Technique: Development and Validation Study. JMIR Med Inform 2021; 9:e19905. [PMID: 34297000 PMCID: PMC8367145 DOI: 10.2196/19905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/18/2020] [Accepted: 06/05/2021] [Indexed: 01/22/2023] Open
Abstract
Background The secondary use of structured electronic medical record (sEMR) data has become a challenge due to the diversity, sparsity, and high dimensionality of the data representation. Constructing an effective representation for sEMR data is becoming more and more crucial for subsequent data applications. Objective We aimed to apply the embedding technique used in the natural language processing domain for the sEMR data representation and to explore the feasibility and superiority of the embedding-based feature and patient representations in clinical application. Methods The entire training corpus consisted of records of 104,752 hospitalized patients with 13,757 medical concepts of disease diagnoses, physical examinations and procedures, laboratory tests, medications, etc. Each medical concept was embedded into a 200-dimensional real number vector using the Skip-gram algorithm with some adaptive changes from shuffling the medical concepts in a record 20 times. The average of vectors for all medical concepts in a patient record represented the patient. For embedding-based feature representation evaluation, we used the cosine similarities among the medical concept vectors to capture the latent clinical associations among the medical concepts. We further conducted a clustering analysis on stroke patients to evaluate and compare the embedding-based patient representations. The Hopkins statistic, Silhouette index (SI), and Davies-Bouldin index were used for the unsupervised evaluation, and the precision, recall, and F1 score were used for the supervised evaluation. Results The dimension of patient representation was reduced from 13,757 to 200 using the embedding-based representation. The average cosine similarity of the selected disease (subarachnoid hemorrhage) and its 15 clinically relevant medical concepts was 0.973. Stroke patients were clustered into two clusters with the highest SI (0.852). Clustering analyses conducted on patients with the embedding representations showed higher applicability (Hopkins statistic 0.931), higher aggregation (SI 0.862), and lower dispersion (Davies-Bouldin index 0.551) than those conducted on patients with reference representation methods. The clustering solutions for patients with the embedding-based representation achieved the highest F1 scores of 0.944 and 0.717 for two clusters. Conclusions The feature-level embedding-based representations can reflect the potential clinical associations among medical concepts effectively. The patient-level embedding-based representation is easy to use as continuous input to standard machine learning algorithms and can bring performance improvements. It is expected that the embedding-based representation will be helpful in a wide range of secondary uses of sEMR data.
Collapse
Affiliation(s)
- Yanqun Huang
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Ni Wang
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Zhiqiang Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Honglei Liu
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xiaolu Fei
- Information Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lan Wei
- Information Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hui Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| |
Collapse
|