1
|
Rajalekshmi R, Rai V, Agrawal DK. Deciphering Collagen Phenotype Dynamics Regulators: Insights from In-Silico Analysis. JOURNAL OF BIOINFORMATICS AND SYSTEMS BIOLOGY : OPEN ACCESS 2024; 7:169-181. [PMID: 39484658 PMCID: PMC11526781 DOI: 10.26502/jbsb.5107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Collagen (Col) types I and III are integral components in wound healing and tissue regeneration, influencing tissue development, homeostasis, and related pathologies. Col I and Col III expression changes during different stages of wound healing and understanding the regulation of collagen phenotype determination is crucial for unraveling the complexities of these processes. Transcription factors and microRNAs, directly and indirectly, play a critical role in regulating collagen expression, however, a comprehensive understanding of the factors regulating Col I and III phenotypes remains elusive. This critically analyzed published reports with focuses on various factors regulating the expression of Col I and Col III at the transcriptional and translational levels. We performed bioinformatics analysis with an input of proinflammatory mediators, growth factors, elastases, and matrix metalloproteinases and predicted transcription factors and microRNAs involved in the regulation of collagen expression. Network analysis revealed an interaction between genes, transcription factors, and microRNAs and provided a holistic view of the regulatory landscape governing collagen expression and unveils intricate interconnections. This analysis lays a founda-tional framework for guiding future research and therapeutic interventions to promote extracellular matrix remodeling, wound healing, and tissue regeneration after an injury by modulating collagen expression. In essence, this scientific groundwork offers a comprehensive exploration of the regulatory dynamics in collagen synthesis, serving as a valuable resource for advancing both basic research and clinical interventions in tissue repair.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| |
Collapse
|
2
|
Zhang X, Tian B, Cong X, Ning Z. Corilagin Alleviates Ang II-Induced Cardiac Fibrosis by Regulating the PTEN/AKT/mTOR Pathway. Dose Response 2024; 22:15593258241261198. [PMID: 39301185 PMCID: PMC11412214 DOI: 10.1177/15593258241261198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 09/22/2024] Open
Abstract
This research aimed to evaluate the therapeutic effect of corilagin (Cor) against angiotensin II (Ang II)-induced cardiac fibrosis and its underlying mechanisms. C57BL/6 mice (male, 8-10 weeks) received saline or Ang II (2.0 mg/kg/day) via subcutaneous infusion and intraperitoneal injection of Cor (30 mg/kg) for 28 days. Ang II induction increased the fibrotic area, whereas Cor treatment inhibited the fibrotic area significantly. Cor markedly reduced the Ang II-induced cardiac fibroblasts. Cor significantly inhibited Ang II-induced increase in expressions of smooth muscle alpha-actin (α-SMA), collagen I, collagen III, transforming growth factor beta 1 (TGF-β1), fibronectin, and connective tissue growth factor (CTGF). Cor suppressed the intracellular reactive oxygen species (ROS) production. Cor therapy reduced Ang II-induced malondialdehyde (MDA) content, whereas superoxide dismutase (SOD) and catalase (CAT) activities were increased (all, P < .001). Moreover, Ang II induction elevated the expression of phosphorylated phosphatase and tensin homolog (p-PTEN), phosphorylated protein kinase B (p-AKT) (Ser473) and phosphorylated mammalian target of rapamycin (p-mTOR) (Ser 2448), whereas Cor reduced their expressions. Cor treatment inhibited the migration ability of the cardiac fibroblast, whereas a PTEN inhibitor, VO-ohpic, increased the migration capability. Cor could have a protective effect against Ang II-induced cardiac fibrosis via inhibition of the PTEN/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Shanghai Health Medical College Affiliated Zhoupu Hospital), Shanghai, China
| | - Bei Tian
- Department of Nursing, Shanghai Pudong New Area Zhoupu Hospital (Shanghai Health Medical College Affiliated Zhoupu Hospital), Shanghai, China
| | - Xinpeng Cong
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Shanghai Health Medical College Affiliated Zhoupu Hospital), Shanghai, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Shanghai Health Medical College Affiliated Zhoupu Hospital), Shanghai, China
| |
Collapse
|
3
|
Yin Y, Koenitzer JR, Patra D, Dietmann S, Bayguinov P, Hagan AS, Ornitz DM. Identification of a myofibroblast differentiation program during neonatal lung development. Development 2024; 151:dev202659. [PMID: 38602479 PMCID: PMC11165721 DOI: 10.1242/dev.202659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFBs) and a stable but poorly described population of lipid-rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFBs). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single-cell RNA sequencing and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a MyoFB differentiation program that is distinct from other mesenchymal cell types and increases the known repertoire of mesenchymal cell types in the neonatal lung.
Collapse
Affiliation(s)
- Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey R. Koenitzer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Debabrata Patra
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sabine Dietmann
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter Bayguinov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew S. Hagan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Vijayakumar A, Wang M, Kailasam S. The Senescent Heart-"Age Doth Wither Its Infinite Variety". Int J Mol Sci 2024; 25:3581. [PMID: 38612393 PMCID: PMC11011282 DOI: 10.3390/ijms25073581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality world-wide. While many factors like smoking, hypertension, diabetes, dyslipidaemia, a sedentary lifestyle, and genetic factors can predispose to cardiovascular diseases, the natural process of aging is by itself a major determinant of the risk. Cardiac aging is marked by a conglomerate of cellular and molecular changes, exacerbated by age-driven decline in cardiac regeneration capacity. Although the phenotypes of cardiac aging are well characterised, the underlying molecular mechanisms are far less explored. Recent advances unequivocally link cardiovascular aging to the dysregulation of critical signalling pathways in cardiac fibroblasts, which compromises the critical role of these cells in maintaining the structural and functional integrity of the myocardium. Clearly, the identification of cardiac fibroblast-specific factors and mechanisms that regulate cardiac fibroblast function in the senescent myocardium is of immense importance. In this regard, recent studies show that Discoidin domain receptor 2 (DDR2), a collagen-activated receptor tyrosine kinase predominantly located in cardiac fibroblasts, has an obligate role in cardiac fibroblast function and cardiovascular fibrosis. Incisive studies on the molecular basis of cardiovascular aging and dysregulated fibroblast function in the senescent heart would pave the way for effective strategies to mitigate cardiovascular diseases in a rapidly growing elderly population.
Collapse
Affiliation(s)
- Anupama Vijayakumar
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyothi Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA;
| | - Shivakumar Kailasam
- Department of Biotechnology, University of Kerala, Kariavattom, Trivandrum 695581, India
| |
Collapse
|
5
|
Yin Y, Koenitzer JR, Patra D, Dietmann S, Bayguinov P, Hagan AS, Ornitz DM. Identification of a myofibroblast differentiation program during neonatal lung development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.28.573370. [PMID: 38234814 PMCID: PMC10793446 DOI: 10.1101/2023.12.28.573370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFB) and a stable but poorly described population of lipid rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFB). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single cell RNA sequencing, and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a myofibroblast differentiation program that is distinct form other mesenchymal cells types and increases the known repertoire of mesenchymal cell types in the neonatal lung.
Collapse
Affiliation(s)
- Yongjun Yin
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Debabrata Patra
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Sabine Dietmann
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO 63110
| | - Peter Bayguinov
- Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew S. Hagan
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - David M. Ornitz
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
6
|
Jayabalan M, Sankar S, Govindan M, Nagarathnam R, Ibrahim M. Effect of aqueous extract of Indigofera tinctoria ( Linn) on aging-induced inflammation and its associated left ventricular hypertrophy and fibrosis in the rat. 3 Biotech 2023; 13:407. [PMID: 37987026 PMCID: PMC10657343 DOI: 10.1007/s13205-023-03815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 10/15/2023] [Indexed: 11/22/2023] Open
Abstract
The aim of the present study is to investigate the ameliorative potential of the aqueous extract of Indigofera tinctoria (IT) in aging-induced inflammation and its associated cardiac hypertrophy and fibrosis. Young (3-month-old) and aged (24-26-month-old) male Wistar albino rats were grouped into young control, aged control, aged + IT, and young + IT. The animals in the supplementary groups received 200 mg/kg BWT of aqueous extract of IT orally once a day for 21 days. Aged animals showed prolonged QT interval and increased weight and volume of the heart with a thickening ventricular wall. Infiltration of leukocytes and increased cardiomyocyte diameter and decreased numerical density along with cardiomyocyte apoptosis and increased collagen accumulation were also seen in aged myocardium when compared to the young. The expression profile of various pro-inflammatory cytokines such as IL-6, IL-1β, TNF-α, NFκB, and iNOS was increased with a concomitant reduction in IL-10 expression in the aged compared to the young. In addition, a marked increase in ROS generation, TGF-β, and α-SMA levels is evident in the aged myocardium. These pathological changes were greatly reversed in aged animals supplemented with IT. Furthermore, the aged + IT group showed repression of pro-inflammatory markers with a subsequent increase in IL-10 expression. Contrarily, no marked changes were observed between young and young + IT groups. Taken together, it is concluded that the aqueous extract of Indigofera tinctoria suppresses cardiac fibrosis and hypertrophy by repressing the inflammation and its associated activation of TGFβ and myofibroblast conversion.
Collapse
Affiliation(s)
- Monisha Jayabalan
- Department of Anatomy, Dr. ALM Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113 India
| | - Suruthi Sankar
- Department of Anatomy, Dr. ALM Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113 India
| | - Muthukumar Govindan
- Unit of Plant Pathology, Center for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 Tamil Nadu India
| | - Radhakrishnan Nagarathnam
- Unit of Plant Pathology, Center for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 Tamil Nadu India
| | - Muhammed Ibrahim
- Department of Anatomy, Dr. ALM Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113 India
| |
Collapse
|
7
|
Mogharehabed F, Czubryt MP. The role of fibrosis in the pathophysiology of muscular dystrophy. Am J Physiol Cell Physiol 2023; 325:C1326-C1335. [PMID: 37781738 DOI: 10.1152/ajpcell.00196.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Muscular dystrophy exerts significant and dramatic impacts on affected patients, including progressive muscle wasting leading to lung and heart failure, and results in severely curtailed lifespan. Although the focus for many years has been on the dysfunction induced by the loss of function of dystrophin or related components of the striated muscle costamere, recent studies have demonstrated that accompanying pathologies, particularly muscle fibrosis, also contribute adversely to patient outcomes. A significant body of research has now shown that therapeutically targeting these accompanying pathologies via their underlying molecular mechanisms may provide novel approaches to patient management that can complement the current standard of care. In this review, we discuss the interplay between muscle fibrosis and muscular dystrophy pathology. A better understanding of these processes will contribute to improved patient care options, restoration of muscle function, and reduced patient morbidity and mortality.
Collapse
Affiliation(s)
- Farnaz Mogharehabed
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Huang AH, Galloway JL. Current and emerging technologies for defining and validating tendon cell fate. J Orthop Res 2023; 41:2082-2092. [PMID: 37211925 DOI: 10.1002/jor.25632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The tendon field has been flourishing in recent years with the advent of new tools and model systems. The recent ORS 2022 Tendon Section Conference brought together researchers from diverse disciplines and backgrounds, showcasing studies in biomechanics and tissue engineering to cell and developmental biology and using models from zebrafish and mouse to humans. This perspective aims to summarize progress in tendon research as it pertains to understanding and studying tendon cell fate. The successful integration of new technologies and approaches have the potential to further propel tendon research into a new renaissance of discovery. However, there are also limitations with the current methodologies that are important to consider when tackling research questions. Altogether, we will highlight recent advances and technologies and propose new avenues to explore tendon biology.
Collapse
Affiliation(s)
- Alice H Huang
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
| | - Jenna L Galloway
- Department of Orthopaedic Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Liu X, Burke RM, Lighthouse JK, Baker CD, Dirkx RA, Kang B, Chakraborty Y, Mickelsen DM, Twardowski J, Mello SS, Ashton JM, Small EM. p53 Regulates the Extent of Fibroblast Proliferation and Fibrosis in Left Ventricle Pressure Overload. Circ Res 2023; 133:271-287. [PMID: 37409456 PMCID: PMC10361635 DOI: 10.1161/circresaha.121.320324] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Cardiomyopathy is characterized by the pathological accumulation of resident cardiac fibroblasts that deposit ECM (extracellular matrix) and generate a fibrotic scar. However, the mechanisms that control the timing and extent of cardiac fibroblast proliferation and ECM production are not known, hampering the development of antifibrotic strategies to prevent heart failure. METHODS We used the Tcf21 (transcription factor 21)MerCreMer mouse line for fibroblast-specific lineage tracing and p53 (tumor protein p53) gene deletion. We characterized cardiac physiology and used single-cell RNA-sequencing and in vitro studies to investigate the p53-dependent mechanisms regulating cardiac fibroblast cell cycle and fibrosis in left ventricular pressure overload induced by transaortic constriction. RESULTS Cardiac fibroblast proliferation occurs primarily between days 7 and 14 following transaortic constriction in mice, correlating with alterations in p53-dependent gene expression. p53 deletion in fibroblasts led to a striking accumulation of Tcf21-lineage cardiac fibroblasts within the normal proliferative window and precipitated a robust fibrotic response to left ventricular pressure overload. However, excessive interstitial and perivascular fibrosis does not develop until after cardiac fibroblasts exit the cell cycle. Single-cell RNA sequencing revealed p53 null fibroblasts unexpectedly express lower levels of genes encoding important ECM proteins while they exhibit an inappropriately proliferative phenotype. in vitro studies establish a role for p53 in suppressing the proliferative fibroblast phenotype, which facilitates the expression and secretion of ECM proteins. Importantly, Cdkn2a (cyclin-dependent kinase inhibitor 2a) expression and the p16Ink4a-retinoblastoma cell cycle control pathway is induced in p53 null cardiac fibroblasts, which may eventually contribute to cell cycle exit and fulminant scar formation. CONCLUSIONS This study reveals a mechanism regulating cardiac fibroblast accumulation and ECM secretion, orchestrated in part by p53-dependent cell cycle control that governs the timing and extent of fibrosis in left ventricular pressure overload.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ryan M. Burke
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Janet K. Lighthouse
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Wegmans School of Pharmacy, Department of Pharmaceutical Sciences, St. John Fisher College, Rochester, NY, USA
| | - Cameron D. Baker
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ronald A. Dirkx
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Brian Kang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Yashoswini Chakraborty
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Deanne M. Mickelsen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jennifer Twardowski
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Stephano S. Mello
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - John M. Ashton
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eric M. Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642
| |
Collapse
|
10
|
Cziraki A, Nemeth Z, Szabados S, Nagy T, Szántó M, Nyakas C, Koller A. Morphological and Functional Remodeling of the Ischemic Heart Correlates with Homocysteine Levels. J Cardiovasc Dev Dis 2023; 10:jcdd10030122. [PMID: 36975886 PMCID: PMC10056082 DOI: 10.3390/jcdd10030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Background: Homocysteine (Hcy) is involved in various methylation processes, and its plasma level is increased in cardiac ischemia. Thus, we hypothesized that levels of homocysteine correlate with the morphological and functional remodeling of ischemic hearts. Thus, we aimed to measure the Hcy levels in the plasma and pericardial fluid (PF) and correlate them with morphological and functional changes in the ischemic hearts of humans. Methods: Concentration of total homocysteine (tHcy) and cardiac troponin-I (cTn-I) of plasma and PF were measured in patients undergoing coronary artery bypass graft (CABG) surgery (n = 14). Left-ventricular (LV) end-diastolic diameter (LVED), LV end-systolic diameter (LVES), right atrial, left atrial (LA) area, thickness of interventricular septum (IVS) and posterior wall, LV ejection fraction (LVEF), and right ventricular outflow tract end-diastolic area (RVOT EDA) of CABG and non-cardiac patients (NCP; n = 10) were determined by echocardiography, and LV mass was calculated (cLVM). Results: Positive correlations were found between Hcy levels of plasma and PF, tHcy levels and LVED, LVES and LA, and an inverse correlation was found between tHcy levels and LVEF. cLVM, IVS, and RVOT EDA were higher in CABG with elevated tHcy (>12 µM/L) compared to NCP. In addition, we found a higher cTn-I level in the PF compared to the plasma of CABG patients (0.08 ± 0.02 vs. 0.01 ± 0.003 ng/mL, p < 0.001), which was ~10 fold higher than the normal level. Conclusions: We propose that homocysteine is an important cardiac biomarker and may have an important role in the development of cardiac remodeling and dysfunction in chronic myocardial ischemia in humans.
Collapse
Affiliation(s)
- Attila Cziraki
- Heart Institute, Medical School and Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (A.C.)
| | - Zoltan Nemeth
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary
- Eötvös Loránd Research Network, Semmelweis University (ELRN-SU), Cerebrovascular and Neurocognitive Disorders Research Group, Department of Translational Medicine, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Sandor Szabados
- Heart Institute, Medical School and Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (A.C.)
| | - Tamas Nagy
- Department of Laboratory Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Márk Szántó
- Heart Institute, Medical School and Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (A.C.)
| | - Csaba Nyakas
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary
| | - Akos Koller
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary
- Eötvös Loránd Research Network, Semmelweis University (ELRN-SU), Cerebrovascular and Neurocognitive Disorders Research Group, Department of Translational Medicine, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
- Research Center for Sports Physiology, Hungarian University of Sports Science, 1123 Budapest, Hungary
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
- Correspondence: ; Tel.: +1-914-594-4085 or +36-70-902-0681
| |
Collapse
|
11
|
Citro V, Clerici M, Boccaccini AR, Della Porta G, Maffulli N, Forsyth NR. Tendon tissue engineering: An overview of biologics to promote tendon healing and repair. J Tissue Eng 2023; 14:20417314231196275. [PMID: 37719308 PMCID: PMC10501083 DOI: 10.1177/20417314231196275] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023] Open
Abstract
Tendons are dense connective tissues with a hierarchical polarized structure that respond to and adapt to the transmission of muscle contraction forces to the skeleton, enabling motion and maintaining posture. Tendon injuries, also known as tendinopathies, are becoming more common as populations age and participation in sports/leisure activities increases. The tendon has a poor ability to self-heal and regenerate given its intrinsic, constrained vascular supply and exposure to frequent, severe loading. There is a lack of understanding of the underlying pathophysiology, and it is not surprising that disorder-targeted medicines have only been partially effective at best. Recent tissue engineering approaches have emerged as a potential tool to drive tendon regeneration and healing. In this review, we investigated the physiochemical factors involved in tendon ontogeny and discussed their potential application in vitro to reproduce functional and self-renewing tendon tissue. We sought to understand whether stem cells are capable of forming tendons, how they can be directed towards the tenogenic lineage, and how their growth is regulated and monitored during the entire differentiation path. Finally, we showed recent developments in tendon tissue engineering, specifically the use of mesenchymal stem cells (MSCs), which can differentiate into tendon cells, as well as the potential role of extracellular vesicles (EVs) in tendon regeneration and their potential for use in accelerating the healing response after injury.
Collapse
Affiliation(s)
- Vera Citro
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Marta Clerici
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Interdepartmental Centre BIONAM, University of Salerno, via Giovanni Paolo I, Fisciano, Salerno, Italy
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Department of Trauma and Orthopaedic Surgery, University Hospital ‘San Giovanni di Dio e Ruggi D’Aragona’, Salerno, Italy
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Vice Principals’ Office, University of Aberdeen, Kings College, Aberdeen, UK
| |
Collapse
|
12
|
Nagalingam RS, Chattopadhyaya S, Al-Hattab DS, Cheung DYC, Schwartz LY, Jana S, Aroutiounova N, Ledingham DA, Moffatt TL, Landry NM, Bagchi RA, Dixon IMC, Wigle JT, Oudit GY, Kassiri Z, Jassal DS, Czubryt MP. Scleraxis and fibrosis in the pressure-overloaded heart. Eur Heart J 2022; 43:4739-4750. [PMID: 36200607 DOI: 10.1093/eurheartj/ehac362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 06/02/2022] [Accepted: 06/23/2022] [Indexed: 01/05/2023] Open
Abstract
AIMS In response to pro-fibrotic signals, scleraxis regulates cardiac fibroblast activation in vitro via transcriptional control of key fibrosis genes such as collagen and fibronectin; however, its role in vivo is unknown. The present study assessed the impact of scleraxis loss on fibroblast activation, cardiac fibrosis, and dysfunction in pressure overload-induced heart failure. METHODS AND RESULTS Scleraxis expression was upregulated in the hearts of non-ischemic dilated cardiomyopathy patients, and in mice subjected to pressure overload by transverse aortic constriction (TAC). Tamoxifen-inducible fibroblast-specific scleraxis knockout (Scx-fKO) completely attenuated cardiac fibrosis, and significantly improved cardiac systolic function and ventricular remodelling, following TAC compared to Scx+/+ TAC mice, concomitant with attenuation of fibroblast activation. Scleraxis deletion, after the establishment of cardiac fibrosis, attenuated the further functional decline observed in Scx+/+ mice, with a reduction in cardiac myofibroblasts. Notably, scleraxis knockout reduced pressure overload-induced mortality from 33% to zero, without affecting the degree of cardiac hypertrophy. Scleraxis directly regulated transcription of the myofibroblast marker periostin, and cardiac fibroblasts lacking scleraxis failed to upregulate periostin synthesis and secretion in response to pro-fibrotic transforming growth factor β. CONCLUSION Scleraxis governs fibroblast activation in pressure overload-induced heart failure, and scleraxis knockout attenuated fibrosis and improved cardiac function and survival. These findings identify scleraxis as a viable target for the development of novel anti-fibrotic treatments.
Collapse
Affiliation(s)
- Raghu S Nagalingam
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Sikta Chattopadhyaya
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Danah S Al-Hattab
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - David Y C Cheung
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Leah Y Schwartz
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Sayantan Jana
- Department of Physiology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Nina Aroutiounova
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - D Allison Ledingham
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Teri L Moffatt
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Natalie M Landry
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Rushita A Bagchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Ian M C Dixon
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Jeffrey T Wigle
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada.,Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Gavin Y Oudit
- Department of Physiology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada.,Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Davinder S Jassal
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada.,Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| |
Collapse
|
13
|
Affiliation(s)
- Alexander R H Hobby
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, RC2, Room 8014A, 12700 E. 19th Ave, Mail Stop B139, Aurora, CO 80045-0508, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, RC2, Room 8014A, 12700 E. 19th Ave, Mail Stop B139, Aurora, CO 80045-0508, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
14
|
Yuan J, Peng H, Mo B, Yin C, Fang G, Li Y, Wang Y, Chen R, Wang Q. Inhibition of Wdr5 Attenuates Ang-II-Induced Fibroblast-to-Myofibroblast Transition in Cardiac Fibrosis by Regulating Mdm2/P53/P21 Pathway. Biomolecules 2022; 12:1574. [PMID: 36358925 PMCID: PMC9687631 DOI: 10.3390/biom12111574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Cardiac fibrosis is an important pathological process in many diseases. Wdr5 catalyzes the trimethylation of lysine K4 on histone H3. The effects of Wdr5 on the cardiac fibrosis phenotype and the activation or transformation of cardiac fibroblasts were investigated by Ang-II-infused mice by osmotic mini-pump and isolated primary neonatal rat cardiac fibroblasts. We found that the Wdr5 expression and histone H3K4me3 modification were significantly increased in Ang-II-infused mice. By stimulating primary neonatal rat cardiac fibroblasts with Ang II, we detected that the expression of Wdr5 and H3K4me3 modification were also significantly increased. Two Wdr5-specific inhibitors, and the lentivirus that transfected Sh-Wdr5, were used to treat primary mouse cardiac fibroblasts, which not only inhibited the histone methylation by Wdr5 but also significantly reduced the activation and migration ability of Ang-II-treated fibroblasts. To explore its mechanism, we found that the inhibition of Wdr5 increased the expression of P53, P21. Cut&Tag-qPCR showed that the inhibition of Wdr5 significantly reduced the enrichment of H3K4me3 in the Mdm2 promoter region. For in vivo experiments, we finally proved that the Wdr5 inhibitor OICR9429 significantly reduced Ang-II-induced cardiac fibrosis and increased the expression of P21 in cardiac fibroblasts. Inhibition of Wdr5 may mediate cardiac fibroblast cycle arrest through the Mdm2/P53/P21 pathway and alleviate cardiac fibrosis.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Hong Peng
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Binfeng Mo
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Chengye Yin
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Guojian Fang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Yingze Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Yuepeng Wang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Renhua Chen
- Department of Cardiology, Quanzhou Hospital of Traditional Chinese Medicine, #388 SunJiang Road, Quanzhou 362000, China
| | - Qunshan Wang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| |
Collapse
|
15
|
Korcari A, Muscat S, McGinn E, Buckley MR, Loiselle AE. Depletion of Scleraxis-lineage cells during tendon healing transiently impairs multi-scale restoration of tendon structure during early healing. PLoS One 2022; 17:e0274227. [PMID: 36240193 PMCID: PMC9565440 DOI: 10.1371/journal.pone.0274227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Tendons are composed of a heterogeneous cell environment, with Scleraxis-lineage (ScxLin) cells being the predominant population. Although ScxLin cells are required for maintenance of tendon homeostasis, their functions during tendon healing are unknown. To this end, we first characterized the spatiotemporal dynamics of ScxLin cells during tendon healing, and identified that the overall ScxLin pool continuously expands up to early remodeling healing phase. To better define the function of ScxLin cells during the late proliferative phase of healing, we inducibly depleted ScxLin cells from day 14-18 post-surgery using the Scx-Cre; Rosa-DTR mouse model, with local administration of diphtheria toxin inducing apoptosis of ScxLin cells in the healing tendon. At D28 post-surgery, ScxLin cell depleted tendons (DTRScxLin) had substantial impairments in structure and function, relative to WT, demonstrating the importance of ScxLin cells during tendon healing. Next, bulk RNAseq was utilized to identify the underlying mechanisms that were impaired with depletion and revealed that ScxLin depletion induced molecular and morphological stagnation of the healing process at D28. However, this stagnation was transient, such that by D56 tendon mechanics in DTRScxLin were not significantly different than wildtype repairs. Collectively, these data offer fundamental knowledge on the dynamics and roles of ScxLin cells during tendon healing.
Collapse
Affiliation(s)
- Antonion Korcari
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States of America
| | - Samantha Muscat
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Elizabeth McGinn
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States of America
| | - Mark R. Buckley
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States of America
| | - Alayna E. Loiselle
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States of America
| |
Collapse
|
16
|
Luo J, Wu Y, Zhu X, Wang S, Zhang X, Ning Z. LOXL2 silencing suppresses angiotensin II-induced cardiac hypertrophy through the EMT process and TGF-β1/Smad3/NF-κB pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:964-969. [PMID: 36159334 PMCID: PMC9464345 DOI: 10.22038/ijbms.2022.63338.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/30/2022] [Indexed: 11/08/2022]
Abstract
Objectives Atrial fibrillation (AF) is a common arrhythmia with atrial myocyte hypertrophy linked with stroke, heart failure, and increased mortality. Lysyl oxidase-like 2 (LOXL2) involves the cross-linking of collagen in the extracellular matrix (ECM). In the present study, we investigated the roles and underlying mechanisms of LOXL2 on cardiomyocyte hypertrophy. Materials and Methods The expression of LOXL2 mRNA and protein were detected in angiotensin II (Ang II) treated rat cardiomyocytes H9c2 by RT-qPCR and western blot. Small interfering RNA (siRNA) mediated LOXL2 gene silencing was used to evaluate cardiac hypertrophy and related markers. Also, the protein expression of EMT markers and Smad3/NF-κB pathway was determined by western blot. Results Ang II significantly increased mRNA and protein expressions of LOXL2 and increased mRNA levels of myocardial hypertrophy markers, including ANP, BNP, and β-MHC in H9c2 cells. Silencing of LOXL2 significantly suppressed Ang II-induced hypertrophy and reversed the increase in ANP, BNP, and β-MHC mRNA levels. Also, EMT markers' expressions, as evidenced by increased E-cadherin and decreased vimentin, α-smooth muscle actin (α-SMA), fibroblast-specific protein (FSP), and collagen 1A1. Mechanistically, we found that LOXL2 silencing suppressed protein expressions of TGF-β1, p-Smad3, and p-NF-κB in Ang II-stimulated H9c2 cells. LOXL2 silencing also attenuated Ang II-induced increased expression and content of proinflammatory cytokines IL-1β (H) and TNF-α. Conclusion Our data speculated that LOXL2 might be a potential contributing factor to Ang II-induced cardiac hypertrophy, and TGF-β1/Smad3/NF-κB is involved in a signal axis and might be a potential strategy in treating cardiac hypertrophy.
Collapse
Affiliation(s)
- Jun Luo
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China,These authors contributed eqully to this work
| | - Yingbiao Wu
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China,These authors contributed eqully to this work
| | - Xi Zhu
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Saihua Wang
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Xiaogang Zhang
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Shanghai 201318, China,Corresponding author: Zhongping Ning. Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No.1500 Zhouyuan Road, Pudong New District, Shanghai 201318, China. Tel: +86-021-68135590;
| |
Collapse
|
17
|
Canadian Contributions in Fibroblast Biology. Cells 2022; 11:cells11152272. [PMID: 35892569 PMCID: PMC9331635 DOI: 10.3390/cells11152272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Fibroblasts are stromal cells found in virtually every tissue and organ of the body. For many years, these cells were often considered to be secondary in functional importance to parenchymal cells. Over the past 2 decades, focused research into the roles of fibroblasts has revealed important roles for these cells in the homeostasis of healthy tissue, and has demonstrated that activation of fibroblasts to myofibroblasts is a key step in disease initiation and progression in many tissues, with fibrosis now recognized as not only an outcome of disease, but also a central contributor to tissue dysfunction, particularly in the heart and lungs. With a growing understanding of both fibroblast and myofibroblast heterogeneity, and the deciphering of the humoral and mechanical cues that impact the phenotype of these cells, fibroblast biology is rapidly becoming a major focus in biomedical research. In this review, we provide an overview of fibroblast and myofibroblast biology, particularly in the heart, and including a discussion of pathophysiological processes such as fibrosis and scarring. We then discuss the central role of Canadian researchers in moving this field forwards, particularly in cardiac fibrosis, and highlight some of the major contributions of these individuals to our understanding of fibroblast and myofibroblast biology in health and disease.
Collapse
|
18
|
Cunha PS, Laranjo S, Heijman J, Oliveira MM. The Atrium in Atrial Fibrillation - A Clinical Review on How to Manage Atrial Fibrotic Substrates. Front Cardiovasc Med 2022; 9:879984. [PMID: 35859594 PMCID: PMC9289204 DOI: 10.3389/fcvm.2022.879984] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/03/2022] [Indexed: 12/27/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in the population and is associated with a significant clinical and economic burden. Rigorous assessment of the presence and degree of an atrial arrhythmic substrate is essential for determining treatment options, predicting long-term success after catheter ablation, and as a substrate critical in the pathophysiology of atrial thrombogenesis. Catheter ablation of AF has developed into an essential rhythm-control strategy. Nowadays is one of the most common cardiac ablation procedures performed worldwide, with its success inversely related to the extent of atrial structural disease. Although atrial substrate evaluation remains complex, several diagnostic resources allow for a more comprehensive assessment and quantification of the extent of left atrial structural remodeling and the presence of atrial fibrosis. In this review, we summarize the current knowledge on the pathophysiology, etiology, and electrophysiological aspects of atrial substrates promoting the development of AF. We also describe the risk factors for its development and how to diagnose its presence using imaging, electrocardiograms, and electroanatomic voltage mapping. Finally, we discuss recent data regarding fibrosis biomarkers that could help diagnose atrial fibrotic substrates.
Collapse
Affiliation(s)
- Pedro Silva Cunha
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Central Lisbon Hospital University Center, Lisbon, Portugal
- Lisbon School of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Sérgio Laranjo
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Central Lisbon Hospital University Center, Lisbon, Portugal
- Lisbon School of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Mário Martins Oliveira
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Central Lisbon Hospital University Center, Lisbon, Portugal
- Lisbon School of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Ground M, Waqanivavalagi S, Park YE, Callon K, Walker R, Milsom P, Cornish J. Fibroblast growth factor 2 inhibits myofibroblastic activation of valvular interstitial cells. PLoS One 2022; 17:e0270227. [PMID: 35714127 PMCID: PMC9205485 DOI: 10.1371/journal.pone.0270227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
Heart valve disease is a growing problem worldwide. Though very common in older adults, the mechanisms behind the development of the disease aren't well understood, and at present the only therapeutic option is valve replacement. Valvular interstitial cells (VICs) may hold the answer. These cells can undergo pathological differentiation into contractile myofibroblasts or osteoblasts, leading to thickening and calcification of the valve tissue. Our study aimed to characterise the effect of fibroblast growth factor 2 (FGF-2) on the differentiation potential of VICs. We isolated VICs from diseased human valves and treated these cells with FGF-2 and TGF-β to elucidate effect of these growth factors on several myofibroblastic outcomes, in particular immunocytochemistry and gene expression. We used TGF-β as a positive control for myofibroblastic differentiation. We found that FGF-2 promotes a 'quiescent-type' morphology and inhibits the formation of α-smooth muscle actin positive myofibroblasts. FGF-2 reduced the calcification potential of VICs, with a marked reduction in the number of calcific nodules. FGF-2 interrupted the 'canonical' TGF-β signalling pathway, reducing the nuclear translocation of the SMAD2/3 complex. The panel of genes assayed revealed that FGF-2 promoted a quiescent-type pattern of gene expression, with significant downregulations in typical myofibroblast markers α smooth muscle actin, extracellular matrix proteins, and scleraxis. We did not see evidence of osteoblast differentiation: neither matrix-type calcification nor changes in osteoblast associated gene expression were observed. Our findings show that FGF-2 can reverse the myofibroblastic phenotype of VICs isolated from diseased valves and inhibit the calcification potential of these cells.
Collapse
Affiliation(s)
- Marcus Ground
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Steve Waqanivavalagi
- Green Lane Cardiothoracic Surgery Unit, Auckland City Hospital, Auckland District Health Board, Grafton, New Zealand
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| | - Young-Eun Park
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| | - Karen Callon
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| | - Robert Walker
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Paget Milsom
- Green Lane Cardiothoracic Surgery Unit, Auckland City Hospital, Auckland District Health Board, Grafton, New Zealand
| | - Jillian Cornish
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| |
Collapse
|
20
|
Hao W, Li M, Cai Q, Wu S, Li X, He Q, Hu Y. Roles of NRF2 in Fibrotic Diseases: From Mechanisms to Therapeutic Approaches. Front Physiol 2022; 13:889792. [PMID: 35721561 PMCID: PMC9203969 DOI: 10.3389/fphys.2022.889792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Fibrosis is a persistent inflammatory response that causes scarring and tissue sclerosis by stimulating myofibroblasts to create significant quantities of extracellular matrix protein deposits in the tissue. Oxidative stress has also been linked to the development of fibrosis in several studies. The nuclear erythroid 2-related factor 2 (NRF2) transcription factor controls the expression of several detoxification and antioxidant genes. By binding to antioxidant response elements, NRF2 is activated by oxidative or electrophilic stress and promotes its target genes, resulting in a protective effect on cells. NRF2 is essential for cell survival under oxidative stress conditions. This review describes Kelch-like epichlorohydrin-associated protein 1 (KEAP1)/NRF2 signaling mechanisms and presents recent research advances regarding NRF2 and its involvement in primary fibrotic lesions such as pulmonary fibrosis, hepatic fibrosis, myocardial fibrosis, and renal fibrosis. The related antioxidant substances and drugs are described, along with the mechanisms by which KEAP1/NRF2 regulation positively affects the therapeutic response. Finally, the therapeutic prospects and potential value of NRF2 in fibrosis are summarized. Further studies on NRF2 may provide novel therapeutic approaches for fibrosis.
Collapse
Affiliation(s)
- Wenlong Hao
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Minghao Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qingmin Cai
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shiying Wu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiangyao Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Quanyu He
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongbin Hu
- Department of Pathology, Basic Medical School, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongbin Hu,
| |
Collapse
|
21
|
Chattopadhyaya S, Nagalingam RS, Ledingham DA, Moffatt TL, Al-Hattab DS, Narhan P, Stecy MT, O’Hara KA, Czubryt MP. Regulation of Cardiac Fibroblast GLS1 Expression by Scleraxis. Cells 2022; 11:cells11091471. [PMID: 35563778 PMCID: PMC9101234 DOI: 10.3390/cells11091471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Fibrosis is an energy-intensive process requiring the activation of fibroblasts to myofibroblasts, resulting in the increased synthesis of extracellular matrix proteins. Little is known about the transcriptional control of energy metabolism in cardiac fibroblast activation, but glutaminolysis has been implicated in liver and lung fibrosis. Here we explored how pro-fibrotic TGFβ and its effector scleraxis, which drive cardiac fibroblast activation, regulate genes involved in glutaminolysis, particularly the rate-limiting enzyme glutaminase (GLS1). The GLS1 inhibitor CB-839 attenuated TGFβ-induced fibroblast activation. Cardiac fibroblast activation to myofibroblasts by scleraxis overexpression increased glutaminolysis gene expression, including GLS1, while cardiac fibroblasts from scleraxis-null mice showed reduced expression. TGFβ induced GLS1 expression and increased intracellular glutamine and glutamate levels, indicative of increased glutaminolysis, but in scleraxis knockout cells, these measures were attenuated, and the response to TGFβ was lost. The knockdown of scleraxis in activated cardiac fibroblasts reduced GLS1 expression by 75%. Scleraxis transactivated the human GLS1 promoter in luciferase reporter assays, and this effect was dependent on a key scleraxis-binding E-box motif. These results implicate scleraxis-mediated GLS1 expression as a key regulator of glutaminolysis in cardiac fibroblast activation, and blocking scleraxis in this process may provide a means of starving fibroblasts of the energy required for fibrosis.
Collapse
Affiliation(s)
- Sikta Chattopadhyaya
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (S.C.); (R.S.N.); (D.A.L.); (T.L.M.); (D.S.A.-H.); (P.N.); (M.T.S.); (K.A.O.)
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Raghu S. Nagalingam
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (S.C.); (R.S.N.); (D.A.L.); (T.L.M.); (D.S.A.-H.); (P.N.); (M.T.S.); (K.A.O.)
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - D. Allison Ledingham
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (S.C.); (R.S.N.); (D.A.L.); (T.L.M.); (D.S.A.-H.); (P.N.); (M.T.S.); (K.A.O.)
| | - Teri L. Moffatt
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (S.C.); (R.S.N.); (D.A.L.); (T.L.M.); (D.S.A.-H.); (P.N.); (M.T.S.); (K.A.O.)
| | - Danah S. Al-Hattab
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (S.C.); (R.S.N.); (D.A.L.); (T.L.M.); (D.S.A.-H.); (P.N.); (M.T.S.); (K.A.O.)
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Pavit Narhan
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (S.C.); (R.S.N.); (D.A.L.); (T.L.M.); (D.S.A.-H.); (P.N.); (M.T.S.); (K.A.O.)
| | - Matthew T. Stecy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (S.C.); (R.S.N.); (D.A.L.); (T.L.M.); (D.S.A.-H.); (P.N.); (M.T.S.); (K.A.O.)
| | - Kimberley A. O’Hara
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (S.C.); (R.S.N.); (D.A.L.); (T.L.M.); (D.S.A.-H.); (P.N.); (M.T.S.); (K.A.O.)
| | - Michael P. Czubryt
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (S.C.); (R.S.N.); (D.A.L.); (T.L.M.); (D.S.A.-H.); (P.N.); (M.T.S.); (K.A.O.)
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: ; Tel.: +1-204-235-3719
| |
Collapse
|
22
|
Spiroski AM, McCracken IR, Thomson A, Magalhaes-Pinto M, Lalwani MK, Newton KJ, Miller E, Bénézech C, Hadoke P, Brittan M, Mountford JC, Beqqali A, Gray GA, Baker AH. Human embryonic stem cell-derived endothelial cell product injection attenuates cardiac remodeling in myocardial infarction. Front Cardiovasc Med 2022; 9:953211. [PMID: 36299872 PMCID: PMC9588936 DOI: 10.3389/fcvm.2022.953211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background Mechanisms contributing to tissue remodeling of the infarcted heart following cell-based therapy remain elusive. While cell-based interventions have the potential to influence the cardiac healing process, there is little direct evidence of preservation of functional myocardium. Aim The aim of the study was to investigate tissue remodeling in the infarcted heart following human embryonic stem cell-derived endothelial cell product (hESC-ECP) therapy. Materials and methods Following coronary artery ligation (CAL) to induce cardiac ischemia, we investigated infarct size at 1 day post-injection in media-injected controls (CALM, n = 11), hESC-ECP-injected mice (CALC, n = 10), and dead hESC-ECP-injected mice (CALD, n = 6); echocardiography-based functional outcomes 14 days post-injection in experimental (CALM, n = 13; CALC, n = 17) and SHAM surgical mice (n = 4); and mature infarct size (CALM and CALC, both n = 6). We investigated ligand-receptor interactions (LRIs) in hESC-ECP cell populations, incorporating a publicly available C57BL/6J mouse cardiomyocyte-free scRNAseq dataset with naive, 1 day, and 3 days post-CAL hearts. Results Human embryonic stem cell-derived endothelial cell product injection reduces the infarct area (CALM: 54.5 ± 5.0%, CALC: 21.3 ± 4.9%), and end-diastolic (CALM: 87.8 ± 8.9 uL, CALC: 63.3 ± 2.7 uL) and end-systolic ventricular volume (CALM: 56.4 ± 9.3 uL, CALC: 33.7 ± 2.6 uL). LRI analyses indicate an alternative immunomodulatory effect mediated via viable hESC-ECP-resident signaling. Conclusion Delivery of the live hESC-ECP following CAL modulates the wound healing response during acute pathological remodeling, reducing infarct area, and preserving functional myocardium in this relatively acute model. Potential intrinsic myocardial cellular/hESC-ECP interactions indicate that discreet immunomodulation could provide novel therapeutic avenues to improve cardiac outcomes following myocardial infarction.
Collapse
Affiliation(s)
- Ana-Mishel Spiroski
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- BHF Centre for Vascular Regeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian R. McCracken
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Adrian Thomson
- Edinburgh Preclinical Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | - Marlene Magalhaes-Pinto
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- BHF Centre for Vascular Regeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Mukesh K. Lalwani
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kathryn J. Newton
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Eileen Miller
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Cecile Bénézech
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Patrick Hadoke
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Mairi Brittan
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- BHF Centre for Vascular Regeneration, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Abdelaziz Beqqali
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Gillian A. Gray
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew H. Baker
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- BHF Centre for Vascular Regeneration, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Andrew H. Baker,
| |
Collapse
|
23
|
Dobie R, West CC, Henderson BEP, Wilson-Kanamori JR, Markose D, Kitto LJ, Portman JR, Beltran M, Sohrabi S, Akram AR, Ramachandran P, Yong LY, Davidson D, Henderson NC. Deciphering Mesenchymal Drivers of Human Dupuytren's Disease at Single-Cell Level. J Invest Dermatol 2022; 142:114-123.e8. [PMID: 34274346 DOI: 10.1016/j.jid.2021.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/21/2023]
Abstract
Dupuytren's disease (DD) is a common, progressive fibroproliferative disease affecting the palmar fascia of the hands, causing fingers to irreversibly flex toward the palm with significant loss of function. Surgical treatments are limited; therefore, effective new therapies for DD are urgently required. To identify the key cellular and molecular pathways driving DD, we employed single-cell RNA sequencing, profiling the transcriptomes of 35,250 human single cells from DD, nonpathogenic fascia, and healthy dermis. We identify a DD-specific population of pathogenic PDPN+/FAP+ mesenchymal cells displaying an elevated expression of fibrillar collagens and profibrogenic genes. In silico trajectory analysis reveals resident fibroblasts to be the source of this pathogenic population. To resolve the processes governing DD progression, genes differentially expressed during fibroblast differentiation were identified, including upregulated TNFRSF12A and transcription factor SCX. Knockdown of SCX and blockade of TNFRSF12A inhibited the proliferation and altered the profibrotic gene expression of cultured human FAP+ mesenchymal cells, demonstrating a functional role for these genes in DD. The power of single-cell RNA sequencing is utilized to identify the major pathogenic mesenchymal subpopulations driving DD and the key molecular pathways regulating the DD-specific myofibroblast phenotype. Using this precision medicine approach, inhibition of TNFRSF12A has shown potential clinical utility in the treatment of DD.
Collapse
Affiliation(s)
- Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom
| | - Chris C West
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom; Department of Plastic, Reconstructive and Burns Surgery, St John's Hospital, Livingston, United Kingdom; Department of Plastic, Reconstructive and Hand Surgery, Leeds General Infirmary, Leeds, United Kingdom
| | - Beth E P Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom
| | - John R Wilson-Kanamori
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom
| | - Dyana Markose
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom
| | - Laura J Kitto
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jordan R Portman
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mariana Beltran
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sadaf Sohrabi
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ahsan R Akram
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom
| | - Prakash Ramachandran
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom
| | - Li Yenn Yong
- Department of Plastic, Reconstructive and Burns Surgery, St John's Hospital, Livingston, United Kingdom
| | - Dominique Davidson
- Department of Plastic, Reconstructive and Burns Surgery, St John's Hospital, Livingston, United Kingdom
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom; MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
24
|
Pour-Ghaz I, Heckle M, Ifedili I, Kayali S, Nance C, Kabra R, Jha SK, Jefferies JL, Levine YC. Beyond Ejection Fraction: Novel Clinical Approaches Towards Sudden Cardiac Death Risk Stratification in Patients with Dilated Cardiomyopathy. Curr Cardiol Rev 2022; 18:e040821195265. [PMID: 34348632 PMCID: PMC9413734 DOI: 10.2174/1573403x17666210804125939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/16/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022] Open
Abstract
Implantable Cardioverter-Defibrillator (ICD) therapy is indicated for patients at risk for sudden cardiac death due to ventricular tachyarrhythmia. The most commonly used risk stratification algorithms use Left Ventricular Ejection Fraction (LVEF) to determine which patients qualify for ICD therapy, even though LVEF is a better marker of total mortality than ventricular tachyarrhythmias mortality. This review evaluates imaging tools and novel biomarkers proposed for better risk stratifying arrhythmic substrate, thereby identifying optimal ICD therapy candidates.
Collapse
MESH Headings
- Cardiomyopathy, Dilated/complications
- Cardiomyopathy, Dilated/therapy
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/prevention & control
- Defibrillators, Implantable
- Humans
- Risk Assessment/methods
- Risk Factors
- Stroke Volume
- Tachycardia, Ventricular/complications
- Tachycardia, Ventricular/therapy
- Ventricular Function, Left
Collapse
Affiliation(s)
- Issa Pour-Ghaz
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mark Heckle
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ikechukwu Ifedili
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sharif Kayali
- Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Christopher Nance
- Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Rajesh Kabra
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA
- Methodist Le Bonheur Healthcare, Memphis, TN, USA
| | - Sunil K. Jha
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA
- Methodist Le Bonheur Healthcare, Memphis, TN, USA
| | - John L. Jefferies
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA
- Methodist Le Bonheur Healthcare, Memphis, TN, USA
| | - Yehoshua C. Levine
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA
- Methodist Le Bonheur Healthcare, Memphis, TN, USA
| |
Collapse
|
25
|
Mesenchymal Stem Cells Therapies on Fibrotic Heart Diseases. Int J Mol Sci 2021; 22:ijms22147447. [PMID: 34299066 PMCID: PMC8307175 DOI: 10.3390/ijms22147447] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy is a promising alternative approach to heart diseases. The most prevalent source of multipotent stem cells, usually called somatic or adult stem cells (mesenchymal stromal/stem cells, MSCs) used in clinical trials is bone marrow (BM-MSCs), adipose tissue (AT-MSCs), umbilical cord (UC-MSCs) and placenta. Therapeutic use of MSCs in cardiovascular diseases is based on the benefits in reducing cardiac fibrosis and inflammation that compose the cardiac remodeling responsible for the maintenance of normal function, something which may end up causing progressive and irreversible dysfunction. Many factors lead to cardiac fibrosis and failure, and an effective therapy is lacking to reverse or attenuate this condition. Different approaches have been shown to be promising in surpassing the poor survival of transplanted cells in cardiac tissue to provide cardioprotection and prevent cardiac remodeling. This review includes the description of pre-clinical and clinical investigation of the therapeutic potential of MSCs in improving ventricular dysfunction consequent to diverse cardiac diseases.
Collapse
|
26
|
Garvin AM, De Both MD, Talboom JS, Lindsey ML, Huentelman MJ, Hale TM. Transient ACE (Angiotensin-Converting Enzyme) Inhibition Suppresses Future Fibrogenic Capacity and Heterogeneity of Cardiac Fibroblast Subpopulations. Hypertension 2021; 77:904-918. [PMID: 33486989 PMCID: PMC7878436 DOI: 10.1161/hypertensionaha.120.16352] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transient ACE (angiotensin-converting enzyme) inhibition in spontaneously hypertensive rats is known to protect against future injury-induced cardiac inflammation, fibrosis, and dysfunction; however, the mechanisms of protection have not been delineated. Here, we used single-cell RNA sequencing to test the hypothesis that transient ACE inhibitor treatment would induce a persistent shift in cardiac fibroblast subpopulations. Adult male spontaneously hypertensive rats (11 weeks old, hypertensive with cardiac hypertrophy) were treated for 2 weeks with an ACE inhibitor, enalapril (30 mg/kg per day, PO), or water (untreated spontaneously hypertensive rats) followed by a 2-week washout period (n=7/group). Cardiac fibroblasts were isolated from the left ventricle and subjected to single-cell RNA sequencing. Nine clusters of fibroblasts were identified, with 98% of cells in clusters 0 to 6. The transient treatment produced significant changes both within and across clusters. Cluster 1 depicted a highly fibrogenic gene profile, with cluster 6 serving as a gateway to cluster 1. Transient ACE inhibition depleted the gateway and expanded cluster 0, which was the least fibrogenic profile. Moreover, within cluster 1 fibroblasts, ACE inhibition reduced expression of individual fibrosis genes (eg, COL1A1, COL3A1, and FN1; all P<1×10-35). Clusters 2 to 5 reflected proliferative, moderately fibrogenic, translationally active, and less inflammatory subsets of fibroblasts, all of which exhibited attenuated fibrogenic gene expression after transient ACE inhibition. In conclusion, transient ACE inhibition shifts cardiac fibroblast subpopulations and degree of activation resulting in an overall reduced fibrogenic phenotype.
Collapse
Affiliation(s)
- Alexandra M Garvin
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Matthew D De Both
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Joshua S Talboom
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, and Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| |
Collapse
|
27
|
Garvin AM, Khokhar BS, Czubryt MP, Hale TM. RAS inhibition in resident fibroblast biology. Cell Signal 2020; 80:109903. [PMID: 33370581 DOI: 10.1016/j.cellsig.2020.109903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Angiotensin II (Ang II) is a primary mediator of profibrotic signaling in the heart and more specifically, the cardiac fibroblast. Ang II-mediated cardiomyocyte hypertrophy in combination with cardiac fibroblast proliferation, activation, and extracellular matrix production compromise cardiac function and increase mortality in humans. Profibrotic actions of Ang II are mediated by increasing production of fibrogenic mediators (e.g. transforming growth factor beta, scleraxis, osteopontin, and periostin), recruitment of immune cells, and via increased reactive oxygen species generation. Drugs that inhibit Ang II production or action, collectively referred to as renin angiotensin system (RAS) inhibitors, are first line therapeutics for heart failure. Moreover, transient RAS inhibition has been found to persistently alter hypertensive cardiac fibroblast responses to injury providing a useful tool to identify novel therapeutic targets. This review summarizes the profibrotic actions of Ang II and the known impact of RAS inhibition on cardiac fibroblast phenotype and cardiac remodeling.
Collapse
Affiliation(s)
- Alexandra M Garvin
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Bilal S Khokhar
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
28
|
Reichardt IM, Robeson KZ, Regnier M, Davis J. Controlling cardiac fibrosis through fibroblast state space modulation. Cell Signal 2020; 79:109888. [PMID: 33340659 DOI: 10.1016/j.cellsig.2020.109888] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
The transdifferentiation of cardiac fibroblasts into myofibroblasts after cardiac injury has traditionally been defined by a unidirectional continuum from quiescent fibroblasts, through activated fibroblasts, and finally to fibrotic-matrix producing myofibroblasts. However, recent lineage tracing and single cell RNA sequencing experiments have demonstrated that fibroblast transdifferentiation is much more complex. Growing evidence suggests that fibroblasts are more heterogenous than previously thought, and many new cell states have recently been identified. This review reexamines conventional fibroblast transdifferentiation paradigms with a dynamic state space lens, which could enable a more complex understanding of how fibroblast state dynamics alters fibrotic remodeling of the heart. This review will define cellular state space, how it relates to fibroblast state transitions, and how the canonical and non-canonical fibrotic signaling pathways modulate fibroblast cell state and cardiac fibrosis. Finally, this review explores the therapeutic potential of fibroblast state space modulation by p38 inhibition, yes-associated protein (YAP) inhibition, and fibroblast reprogramming.
Collapse
Affiliation(s)
- Isabella M Reichardt
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States.
| | - Kalen Z Robeson
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States.
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, United States; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, United States; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, United States.
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States; Department of Pathology, University of Washington, 850 Republican, #343, Seattle, WA 98109, United States; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, United States; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, United States; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, United States.
| |
Collapse
|
29
|
Citeroni MR, Ciardulli MC, Russo V, Della Porta G, Mauro A, El Khatib M, Di Mattia M, Galesso D, Barbera C, Forsyth NR, Maffulli N, Barboni B. In Vitro Innovation of Tendon Tissue Engineering Strategies. Int J Mol Sci 2020; 21:E6726. [PMID: 32937830 PMCID: PMC7555358 DOI: 10.3390/ijms21186726] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively affected. Adult tendons have a limited natural healing capacity, and often respond poorly to current treatments that frequently are focused on exercise, drug delivery, and surgical procedures. Therefore, it is of great importance to identify key molecular and cellular processes involved in the progression of tendinopathies to develop effective therapeutic strategies and drive the tissue toward regeneration. To treat tendon diseases and support tendon regeneration, cell-based therapy as well as tissue engineering approaches are considered options, though none can yet be considered conclusive in their reproduction of a safe and successful long-term solution for full microarchitecture and biomechanical tissue recovery. In vitro differentiation techniques are not yet fully validated. This review aims to compare different available tendon in vitro differentiation strategies to clarify the state of art regarding the differentiation process.
Collapse
Affiliation(s)
- Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano (SA), Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK;
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent ST5 5BG, UK
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| |
Collapse
|
30
|
Huang A, Li H, Zeng C, Chen W, Wei L, Liu Y, Qi X. Endogenous CCN5 Participates in Angiotensin II/TGF-β 1 Networking of Cardiac Fibrosis in High Angiotensin II-Induced Hypertensive Heart Failure. Front Pharmacol 2020; 11:1235. [PMID: 33013358 PMCID: PMC7494905 DOI: 10.3389/fphar.2020.01235] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/28/2020] [Indexed: 01/21/2023] Open
Abstract
Aberrant activation of angiotensin II (Ang II) accelerates hypertensive heart failure (HF); this has drawn worldwide attention. The complex Ang II/transforming growth factor (TGF)-β1 networking consists of central mechanisms underlying pro-fibrotic effects; however, this networking still remains unclear. Cellular communication network 5 (CCN5), known as secreted matricellular protein, mediates anti-fibrotic activity by inhibiting fibroblast-to-myofibroblast transition and the TGF-β1 signaling pathway. We hypothesized that endogenous CCN5 plays an essential role in TGF-β1/Ang II networking-induced cardiac fibrosis (CF), which accelerates the development of hypertensive HF. This study aimed to investigate the potential role of CCN5 in TGF-β1/Ang II networking-induced CF. Our clinical retrospective study demonstrated that serum CCN5 decreased in hypertensive patients, but significantly increased in hypertensive patients taking oral angiotensin-converting enzyme inhibitor (ACEI). A negative association was observed between CCN5 and Ang II in grade 2and 3 hypertensive patients receiving ACEI treatment. We further created an experimental model of high Ang II-induced hypertensive HF. CCN5 was downregulated in the spontaneously hypertensive rats (SHRs) and increased via the inhibition of Ang II production by ACEI. This CCN5 downregulation may activate the TGF-β1 signaling pathway, which promotes direct deposition of the extracellular matrix (ECM) and fibroblast-to-myofibroblast transition via activated Smad-3. Double immunofluorescence staining of CCN5 and cell markers of cardiac tissue cell types suggested that CCN5 was mainly expressed in the cardiac fibroblasts. Isolated cardiac fibroblasts were exposed to Ang II and transfected with small interfering RNA targeting CCN5. The expression of TGF-β1 together with Col Ia and Col IIIa was further promoted, and alpha-smooth muscle actin (α-SMA) was strongly expressed in the cardiac fibroblasts stimulated with Ang II and siRNA. In our study, we confirmed the anti-fibrotic ability of endogenous CCN5 in high Ang II-induced hypertensive HF. Elevated Ang II levels may decrease CCN5 expression, which subsequently activates TGF-β1 and finally promotes the direct deposition of the ECM and fibroblast-to-myofibroblast transition via Smad-3 activation. CCN5 may serve as a potential biomarker for estimating CF in hypertensive patients. A novel therapeutic target should be developed for stimulating endogenous CCN5 production.
Collapse
Affiliation(s)
- Anan Huang
- Nankai University School of Medicine, Tianjin, China.,Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Huihui Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chao Zeng
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Wanli Chen
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liping Wei
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Yue Liu
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Xin Qi
- Nankai University School of Medicine, Tianjin, China.,Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
31
|
Paterson YZ, Evans N, Kan S, Cribbs A, Henson FMD, Guest DJ. The transcription factor scleraxis differentially regulates gene expression in tenocytes isolated at different developmental stages. Mech Dev 2020; 163:103635. [PMID: 32795590 DOI: 10.1016/j.mod.2020.103635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023]
Abstract
The transcription factor scleraxis (SCX) is expressed throughout tendon development and plays a key role in directing tendon wound healing. However, little is known regarding its role in fetal or young postnatal tendons, stages in development that are known for their enhanced regenerative capabilities. Here we used RNA-sequencing to compare the transcriptome of adult and fetal tenocytes following SCX knockdown. SCX knockdown had a larger effect on gene expression in fetal tenocytes, affecting 477 genes in comparison to the 183 genes affected in adult tenocytes, indicating that scleraxis-dependent processes may differ in these two developmental stages. Gene ontology, network and pathway analysis revealed an overrepresentation of extracellular matrix (ECM) remodelling processes within both comparisons. These included several matrix metalloproteinases, proteoglycans and collagens, some of which were also investigated in SCX knockdown tenocytes from young postnatal foals. Using chromatin immunoprecipitation, we also identified novel genes that SCX differentially interacts with in adult and fetal tenocytes. These results indicate a role for SCX in modulating ECM synthesis and breakdown and provide a useful dataset for further study into SCX gene regulation.
Collapse
Affiliation(s)
- Y Z Paterson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK; Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK.
| | - N Evans
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK.
| | - S Kan
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK.
| | - A Cribbs
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK.
| | - F M D Henson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK; Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK.
| | - D J Guest
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK; Deptartment of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK.
| |
Collapse
|
32
|
MacLean J, Pasumarthi KBS. Characterization of primary adult mouse cardiac fibroblast cultures. Can J Physiol Pharmacol 2020; 98:861-869. [PMID: 32721222 DOI: 10.1139/cjpp-2020-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of cardiac fibroblasts (CFs) in disease states has been a focus of cardiovascular research over the past decade. Here, we briefly describe methods for isolation and characterization of CFs from adult mouse ventricles. Primary cultures were stained using antibodies for several marker proteins such as α-smooth muscle actin (αSMA), vimentin, and discoidin domain receptor 2 (DDR2) to confirm the identity of CFs or cardiac myofibroblasts (CMFs). Most cells in primary cultures consisted of CFs, with very low frequencies of endothelial cells, cardiomyocytes, and smooth muscle cells. We compared marker expression between cultures that were not passaged (P0) or passaged for few times (P1-3). When compared with P1-3 cultures, P0 cultures consistently displayed a lower percentage of cells positive for αSMA and DDR2, whereas vimentin expression was significantly higher in P0 cultures compared with P1-3 cultures. P0 cells were also smaller in area than P1-3 cells. Further, P1-3 mouse CFs were found to express both β1 and β2 adrenergic receptors (ARs) and β1ARs were more readily detected on the cell surface compared with β2ARs. In summary, mouse CF cultures underwent phenotype conversion into CMFs after passaging, consistent with what is seen with CF cultures from other species.
Collapse
Affiliation(s)
- Jessica MacLean
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kishore B S Pasumarthi
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
33
|
Ramírez-Aragón M, Hernández-Sánchez F, Rodríguez-Reyna TS, Buendía-Roldán I, Güitrón-Castillo G, Núñez-Alvarez CA, Hernández-Ramírez DF, Benavides-Suárez SA, Esquinca-González A, Torres-Machorro AL, Mendoza-Milla C. The Transcription Factor SCX is a Potential Serum Biomarker of Fibrotic Diseases. Int J Mol Sci 2020; 21:ijms21145012. [PMID: 32708589 PMCID: PMC7404299 DOI: 10.3390/ijms21145012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Fibrosing diseases are causes of morbidity and mortality around the world, and they are characterized by excessive extracellular matrix (ECM) accumulation. The bHLH transcription factor scleraxis (SCX) regulates the synthesis of ECM proteins in heart fibrosis. SCX expression was evaluated in lung fibroblasts and tissue derived from fibrotic disease patients and healthy controls. We also measured SCX in sera from 57 healthy controls, and 56 Idiopathic Pulmonary Fibrosis (IPF), 40 Hypersensitivity Pneumonitis (HP), and 100 Systemic Sclerosis (SSc) patients. We report high SCX expression in fibroblasts and tissue from IPF patients versus controls. High SCX-serum levels were observed in IPF (0.663 ± 0.559 ng/mL, p < 0.01) and SSc (0.611 ± 0.296 ng/mL, p < 0.001), versus controls (0.351 ± 0.207 ng/mL) and HP (0.323 ± 0.323 ng/mL). Serum levels of the SCX heterodimerization partner, TCF3, did not associate with fibrotic illness. IPF patients with severely affected respiratory capacities and late-stage SSc patients presenting anti-topoisomerase I antibodies and interstitial lung disease showed the highest SCX-serum levels. SCX gain-of-function induced the expression of alpha-smooth muscle actin (α-SMA/ACTA2) in fibroblasts when co-overexpressed with TCF3. As late and severe stages of the fibrotic processes correlated with high circulating SCX, we postulate it as a candidate biomarker of fibrosis and a potential therapeutic target.
Collapse
Affiliation(s)
- Miguel Ramírez-Aragón
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Belisario Domínguez Sección XVI, Alcaldía Tlalpan, Mexico City 14080, Mexico; (M.R.-A.); (I.B.-R.); (G.G.-C.)
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | - Fernando Hernández-Sánchez
- Departamento de Investigación en Virología y Micología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Belisario Domínguez Sección XVI, Alcaldía Tlalpan, Mexico City 14080, Mexico;
| | - Tatiana S. Rodríguez-Reyna
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga 15, Colonia Belisario Domínguez Sección XVI. Alcaldía Tlalpan, Mexico City 14080, Mexico; (T.S.R.-R.); (C.A.N.-A.); (D.F.H.-R.); (S.A.B.-S.); (A.E.-G.)
| | - Ivette Buendía-Roldán
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Belisario Domínguez Sección XVI, Alcaldía Tlalpan, Mexico City 14080, Mexico; (M.R.-A.); (I.B.-R.); (G.G.-C.)
| | - Gael Güitrón-Castillo
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Belisario Domínguez Sección XVI, Alcaldía Tlalpan, Mexico City 14080, Mexico; (M.R.-A.); (I.B.-R.); (G.G.-C.)
| | - Carlos A. Núñez-Alvarez
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga 15, Colonia Belisario Domínguez Sección XVI. Alcaldía Tlalpan, Mexico City 14080, Mexico; (T.S.R.-R.); (C.A.N.-A.); (D.F.H.-R.); (S.A.B.-S.); (A.E.-G.)
| | - Diego F. Hernández-Ramírez
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga 15, Colonia Belisario Domínguez Sección XVI. Alcaldía Tlalpan, Mexico City 14080, Mexico; (T.S.R.-R.); (C.A.N.-A.); (D.F.H.-R.); (S.A.B.-S.); (A.E.-G.)
| | - Sergio A. Benavides-Suárez
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga 15, Colonia Belisario Domínguez Sección XVI. Alcaldía Tlalpan, Mexico City 14080, Mexico; (T.S.R.-R.); (C.A.N.-A.); (D.F.H.-R.); (S.A.B.-S.); (A.E.-G.)
| | - Alexia Esquinca-González
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga 15, Colonia Belisario Domínguez Sección XVI. Alcaldía Tlalpan, Mexico City 14080, Mexico; (T.S.R.-R.); (C.A.N.-A.); (D.F.H.-R.); (S.A.B.-S.); (A.E.-G.)
| | - Ana Lilia Torres-Machorro
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Belisario Domínguez Sección XVI, Alcaldía Tlalpan, Mexico City 14080, Mexico; (M.R.-A.); (I.B.-R.); (G.G.-C.)
- Consejo Nacional de Ciencia y Tecnología and Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Belisario Domínguez Sección XVI, Alcaldía Tlalpan, Mexico City 14080, Mexico
- Correspondence: (A.L.T.-M.); (C.M.-M.); Tel.: +52-555-487-1700 (ext.5257) (A.L.T.-M. & C.M.-M.)
| | - Criselda Mendoza-Milla
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Belisario Domínguez Sección XVI, Alcaldía Tlalpan, Mexico City 14080, Mexico; (M.R.-A.); (I.B.-R.); (G.G.-C.)
- Correspondence: (A.L.T.-M.); (C.M.-M.); Tel.: +52-555-487-1700 (ext.5257) (A.L.T.-M. & C.M.-M.)
| |
Collapse
|
34
|
Abstract
Cardiac fibroblasts and fibrosis contribute to the pathogenesis of heart failure, a prevalent cause of mortality. Therefore, a majority of the existing information regarding cardiac fibroblasts is focused on their function and behavior after heart injury. Less is understood about the signaling and transcriptional networks required for the development and homeostatic roles of these cells. This review is devoted to describing our current understanding of cardiac fibroblast development. I detail cardiac fibroblast formation during embryogenesis including the discovery of a second embryonic origin for cardiac fibroblasts. Additional information is provided regarding the roles of the genes essential for cardiac fibroblast development. It should be noted that many questions remain regarding the cell-fate specification of these fibroblast progenitors, and it is hoped that this review will provide a basis for future studies regarding this topic.
Collapse
|
35
|
Havis E, Duprez D. EGR1 Transcription Factor is a Multifaceted Regulator of Matrix Production in Tendons and Other Connective Tissues. Int J Mol Sci 2020; 21:ijms21051664. [PMID: 32121305 PMCID: PMC7084410 DOI: 10.3390/ijms21051664] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
Although the transcription factor EGR1 is known as NGF1-A, TIS8, Krox24, zif/268, and ZENK, it still has many fewer names than biological functions. A broad range of signals induce Egr1 gene expression via numerous regulatory elements identified in the Egr1 promoter. EGR1 is also the target of multiple post-translational modifications, which modulate EGR1 transcriptional activity. Despite the myriad regulators of Egr1 transcription and translation, and the numerous biological functions identified for EGR1, the literature reveals a recurring theme of EGR1 transcriptional activity in connective tissues, regulating genes related to the extracellular matrix. Egr1 is expressed in different connective tissues, such as tendon (a dense connective tissue), cartilage and bone (supportive connective tissues), and adipose tissue (a loose connective tissue). Egr1 is involved in the development, homeostasis, and healing processes of these tissues, mainly via the regulation of extracellular matrix. In addition, Egr1 is often involved in the abnormal production of extracellular matrix in fibrotic conditions, and Egr1 deletion is seen as a target for therapeutic strategies to fight fibrotic conditions. This generic EGR1 function in matrix regulation has little-explored implications but is potentially important for tendon repair.
Collapse
|
36
|
Zhu A, Bews H, Cheung D, Nagalingam RS, Mittal I, Goyal V, Asselin CY, Kirkpatrick IDC, Czubryt MP, Jassal DS. Scleraxis as a prognostic marker of myocardial fibrosis in hypertrophic cardiomyopathy (SPARC) study. Can J Physiol Pharmacol 2020; 98:459-465. [PMID: 32027517 DOI: 10.1139/cjpp-2019-0636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interstitial fibrosis is a histopathological hallmark of hypertrophic cardiomyopathy (HCM). Although extracellular matrix (ECM) biomarkers, including matrix metalloproteinases, are overexpressed in HCM patients, they do not correlate with sudden cardiac death (SCD) risk. The objective of this study was to determine whether scleraxis, a transcription factor that regulates collagen gene expression, is detectable in HCM patients and correlates with disease burden. Between 2017 and 2018, a total of 46 HCM patients were enrolled (58 ± 14 years (31 males, 15 females)) with a mean 5 year SCD risk of 2.3% ± 1.3%. Cardiac MRI confirmed HCM in all patients with a mean interventricular septal thickness of 20 ± 2 mm. Late gadolinium enhancement (LGE) was present in 32 (70%) study participants occupying 18% ± 7% of the left ventricular (LV) myocardium. Serum scleraxis levels were significantly higher in the HCM patients by approximately twofold as compared to controls (0.76 ± 0.06 versus 0.32 ± 0.02 ng/mL, p < 0.05). No correlation was demonstrated between serum scleraxis levels and markers of disease severity in HCM patients, including maximum LV wall thickness, %LGE, and SCD risk factors. Serum scleraxis is elevated in the HCM population. Future studies are warranted to evaluate the prognostic value of scleraxis in identifying high-risk HCM patients who require aggressive management for prevention of SCD.
Collapse
Affiliation(s)
- Antonia Zhu
- Institute of Cardiovascular Sciences, St. Boniface Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Hilary Bews
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - David Cheung
- Institute of Cardiovascular Sciences, St. Boniface Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Raghu S Nagalingam
- Institute of Cardiovascular Sciences, St. Boniface Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.,Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Ishika Mittal
- Institute of Cardiovascular Sciences, St. Boniface Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Vineet Goyal
- Institute of Cardiovascular Sciences, St. Boniface Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Chantal Y Asselin
- Institute of Cardiovascular Sciences, St. Boniface Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Iain D C Kirkpatrick
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, St. Boniface Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.,Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Davinder S Jassal
- Institute of Cardiovascular Sciences, St. Boniface Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.,Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada.,Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada.,Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
37
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
38
|
Xie T, Wang Y, Deng N, Huang G, Taghavifar F, Geng Y, Liu N, Kulur V, Yao C, Chen P, Liu Z, Stripp B, Tang J, Liang J, Noble PW, Jiang D. Single-Cell Deconvolution of Fibroblast Heterogeneity in Mouse Pulmonary Fibrosis. Cell Rep 2019; 22:3625-3640. [PMID: 29590628 PMCID: PMC5908225 DOI: 10.1016/j.celrep.2018.03.010] [Citation(s) in RCA: 323] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 01/15/2023] Open
Abstract
Fibroblast heterogeneity has long been recognized in mouse and human lungs, homeostasis, and disease states. However, there is no common consensus on fibroblast subtypes, lineages, biological properties, signaling, and plasticity, which severely hampers our understanding of the mechanisms of fibrosis. To comprehensively classify fibroblast populations in the lung using an unbiased approach, single-cell RNA sequencing was performed with mesenchymal preparations from either uninjured or bleomycin-treated mouse lungs. Single-cell transcriptome analyses classified and defined six mesenchymal cell types in normal lung and seven in fibrotic lung. Furthermore, delineation of their differentiation trajectory was achieved by a machine learning method. This collection of single-cell transcriptomes and the distinct classification of fibroblast subsets provide a new resource for understanding the fibroblast landscape and the roles of fibroblasts in fibrotic diseases.
Collapse
Affiliation(s)
- Ting Xie
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Yizhou Wang
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nan Deng
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Guanling Huang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Forough Taghavifar
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yan Geng
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ningshan Liu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vrishika Kulur
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Changfu Yao
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Peter Chen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhengqiu Liu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry Stripp
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jie Tang
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jiurong Liang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W Noble
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Dianhua Jiang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
39
|
Landry N, Kavosh MS, Filomeno KL, Rattan SG, Czubryt MP, Dixon IMC. Ski drives an acute increase in MMP-9 gene expression and release in primary cardiac myofibroblasts. Physiol Rep 2019; 6:e13897. [PMID: 30488595 PMCID: PMC6429976 DOI: 10.14814/phy2.13897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Many etiologies of heart disease are characterized by expansion and remodeling of the cardiac extracellular matrix (ECM or matrix) which results in cardiac fibrosis. Cardiac fibrosis is mediated in cardiac fibroblasts by TGF‐β1/R‐Smad2/3 signaling. Matrix component proteins are synthesized by activated resident cardiac fibroblasts known as myofibroblasts (MFB). These events are causal to heart failure with diastolic dysfunction and reduced cardiac filling. We have shown that exogenous Ski, a TGF‐β1/Smad repressor, localizes in the cellular nucleus and deactivates cardiac myofibroblasts. This deactivation is associated with reduction of myofibroblast marker protein expression in vitro, including alpha smooth muscle actin (α‐SMA) and extracellular domain‐A (ED‐A) fibronectin. We hypothesize that Ski also acutely regulates MMP expression in cardiac MFB. While acute Ski overexpression in cardiac MFB in vitro was not associated with any change in intracellular MMP‐9 protein expression versus LacZ‐treated controls,exogenous Ski caused elevated MMP‐9 mRNA expression and increased MMP‐9 protein secretion versus controls. Zymographic analysis revealed increased MMP‐9‐specific gelatinase activity in myofibroblasts overexpressing Ski versus controls. Moreover, Ski expression was attended by reduced paxillin and focal adhesion kinase phosphorylation (FAK ‐ Tyr 397) versus controls. As myofibroblasts are hypersecretory and less motile relative to fibroblasts, Ski's reduction of paxillin and FAK expression may reflect the relative deactivation of myofibroblasts. Thus, in addition to its known antifibrotic effects, Ski overexpression elevates expression and extracellular secretion/release of MMP‐9 and thus may facilitate internal cytoskeletal remodeling as well as extracellular ECM components. Further, as acute TGF‐β1 treatment of primary cardiac MFB is known to cause rapid translocation of Ski to the nucleus, our data support an autoregulatory role for Ski in mediating cardiac ECM accumulation.
Collapse
Affiliation(s)
- Natalie Landry
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Morvarid S Kavosh
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Krista L Filomeno
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sunil G Rattan
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ian M C Dixon
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
40
|
Cardiac Fibroblast to Myofibroblast Phenotype Conversion-An Unexploited Therapeutic Target. J Cardiovasc Dev Dis 2019; 6:jcdd6030028. [PMID: 31426390 PMCID: PMC6787657 DOI: 10.3390/jcdd6030028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023] Open
Abstract
Fibrosis occurs when the synthesis of extracellular matrix outpaces its degradation, and over time can negatively impact tissue and organ function. In the case of cardiac fibrosis, contraction and relaxation of the heart can be impaired to the point of precipitating heart failure, while at the same time fibrosis can result in arrhythmias due to altered electrical properties of the myocardium. The critical event in the evolution of cardiac fibrosis is the phenotype conversion of cardiac fibroblasts to their overly-active counterparts, myofibroblasts: cells demarked by their expression of novel markers such as periostin, by their gain of contractile activity, and by their pronounced and prolonged increase in the production of extracellular matrix components such as collagens. The phenotype change is dramatic, and can be triggered by many stimuli, including mechanical force, inflammatory cytokines, and growth factors. This review will explore fibroblast to myofibroblast transition mechanisms and will consider the therapeutic potential of targeting this process as a means to arrest or even reverse cardiac fibrosis.
Collapse
|
41
|
Yang Y, Chen S, Tao L, Gan S, Luo H, Xu Y, Shen X. Inhibitory Effects of Oxymatrine on Transdifferentiation of Neonatal Rat Cardiac Fibroblasts to Myofibroblasts Induced by Aldosterone via Keap1/Nrf2 Signaling Pathways In Vitro. Med Sci Monit 2019; 25:5375-5388. [PMID: 31325292 PMCID: PMC6662943 DOI: 10.12659/msm.915542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Oxymatrine (OMT), a quinolizidine alkaloid derived from the traditional Chinese herb Radix Sophorae flavescentis, has widely reported pharmacological efficacy in treating cardiovascular dysfunction-related diseases. However, the underlying mechanism has been unclear. Here, we investigated the potential inhibitory effects and mechanism of OMT on transdifferentiation of cardiac fibroblast to myofibroblasts induced by aldosterone in vitro. Material/Methods The cardiac fibroblasts (CFBs) proliferation and migration capacity were evaluated by MTT assay, cell cycle assay, and scratch analysis, respectively. The protein expression of the Nrf2/Keap1 signal pathway, FN, Collagen I, Collagen III, α-SMA, CTGF, and mineralocorticoid receptor (MR) protein was detected by Western blot analysis. The mRNA expression of Nrf2 was detected by qRT-PCR. Immunofluorescence staining was used to observe the expression of α-SMA protein. Nrf2 siRNA was used to explore the role of Nrf2 in OMT-treated CFBs. GSH, SOD, and MDA levels and hydroxyproline content were measured by colorimetric assay with commercial kits. The DCFH-DA fluorescent probe was used to assess cellular ROS levels. Results OMT and Curcumin (an Nrf2 agonist) attenuated aldosterone (ALD)-induced proliferation and migration in CFBs, as well as the fibrosis-associated protein expression levels. Moreover, OMT activated Nrf2 and promoted the nucleus translocation of Nrf2. OMT alleviated the elevated levels of α-SMA, Collagen I, Collagen III, and CTGF, which were abrogated by the Nrf2 siRNA transfection. We also found that OMT decreased oxidative stress levels. Conclusions Our results confirm that OMT alleviates transdifferentiation of cardiac fibroblasts to myofibroblasts induced by aldosterone via activating the Nrf2/Keap1 pathway in vitro.
Collapse
Affiliation(s)
- Yu Yang
- The Department of Pharmacognosy (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Shiping Chen
- The Department of Pharmacognosy (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Ling Tao
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Shiquan Gan
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Hong Luo
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Yini Xu
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Xiangchun Shen
- The Department of Pharmacognosy (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| |
Collapse
|
42
|
Best KT, Loiselle AE. Scleraxis lineage cells contribute to organized bridging tissue during tendon healing and identify a subpopulation of resident tendon cells. FASEB J 2019; 33:8578-8587. [PMID: 30951381 DOI: 10.1096/fj.201900130rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During tendon healing, it is postulated that tendon cells drive tissue regeneration, whereas extrinsic cells drive pathologic scar formation. Tendon cells are frequently described as a homogenous, fibroblast population that is positive for the marker Scleraxis (Scx). It is controversial whether tendon cells localize within the forming scar tissue during adult tendon healing. We have previously demonstrated that S100 calcium-binding protein A4 (S100a4) is a driver of tendon scar formation and marks a subset of tendon cells. The relationship between Scx and S100a4 has not been explored. In this study, we assessed the localization of Scx lineage cells (ScxLin) following adult murine flexor tendon repair and established the relationship between Scx and S100a4 throughout both homeostasis and healing. We showed that adult ScxLin localize within the scar tissue and organize into a cellular bridge during tendon healing. Additionally, we demonstrate that markers Scx and S100a4 label distinct populations in tendon during homeostasis and healing, with Scx found in the organized bridging tissue and S100a4 localized throughout the entire scar region. These studies define a heterogeneous tendon cell environment and demonstrate discrete contributions of subpopulations during healing. These data enhance our understanding and ability to target the cellular environment of the tendon.-Best, K. T., Loiselle, A. E. Scleraxis lineage cells contribute to organized bridging tissue during tendon healing and identify a subpopulation of resident tendon cells.
Collapse
Affiliation(s)
- Katherine T Best
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
43
|
Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, Ho JW, Nordon RE, Harvey RP. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. eLife 2019; 8:43882. [PMID: 30912746 PMCID: PMC6459677 DOI: 10.7554/elife.43882] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Besides cardiomyocytes (CM), the heart contains numerous interstitial cell types which play key roles in heart repair, regeneration and disease, including fibroblast, vascular and immune cells. However, a comprehensive understanding of this interactive cell community is lacking. We performed single-cell RNA-sequencing of the total non-CM fraction and enriched (Pdgfra-GFP+) fibroblast lineage cells from murine hearts at days 3 and 7 post-sham or myocardial infarction (MI) surgery. Clustering of >30,000 single cells identified >30 populations representing nine cell lineages, including a previously undescribed fibroblast lineage trajectory present in both sham and MI hearts leading to a uniquely activated cell state defined in part by a strong anti-WNT transcriptome signature. We also uncovered novel myofibroblast subtypes expressing either pro-fibrotic or anti-fibrotic signatures. Our data highlight non-linear dynamics in myeloid and fibroblast lineages after cardiac injury, and provide an entry point for deeper analysis of cardiac homeostasis, inflammation, fibrosis, repair and regeneration. In our bodies, heart attacks lead to cell death and inflammation. This is then followed by a healing phase where the organ repairs itself. There are many types of heart cells, from muscle and pacemaker cells that help to create the beating motion, to so-called fibroblasts that act as a supporting network. Yet, it is still unclear how individual cells participate in the heart's response to injury. All cells possess the same genetic information, but they turn on or off different genes depending on the specific tasks that they need to perform. Spotting which genes are activated in individual cells can therefore provide clues about their exact roles in the body. Until recently, technological limitations meant that this information was difficult to access, because it was only possible to capture the global response of a group of cells in a sample. A new method called single-cell RNA sequencing is now allowing researchers to study the activities of many genes in thousands of individual cells at the same time. Here, Farbehi, Patrick et al. performed single-cell RNA sequencing on over 30,000 individual cells from healthy and injured mouse hearts. Computational approaches were then used to cluster cells into groups according to the activities of their genes. The experiments identified over 30 distinct sub-types of cell, including several that were previously unknown. For example, a group of fibroblasts that express a gene called Wif1 was discovered. Previous genetic studies have shown that Wif1 is essential for the heart's response to injury. Further experiments by Farbehi, Patrick et al. indicated that this new sub-type of cells may control the timing of the different aspects of heart repair after damage. Tens of millions of people around the world suffer from heart attacks and other heart diseases. Knowing how different types of heart cells participate in repair mechanisms may help to find new targets for drugs and other treatments.
Collapse
Affiliation(s)
- Nona Farbehi
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria, Australia.,Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia.,Graduate School of Biomedical Engineering, UNSW Sydney, Kensington, Australia
| | - Ralph Patrick
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria, Australia.,St. Vincent's Clinical School, UNSW Sydney, Kensington, Australia
| | - Aude Dorison
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria, Australia
| | - Munira Xaymardan
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria, Australia.,School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, Australia
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria, Australia.,St. Vincent's Clinical School, UNSW Sydney, Kensington, Australia
| | | | - Joshua Wk Ho
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,St. Vincent's Clinical School, UNSW Sydney, Kensington, Australia
| | - Robert E Nordon
- Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria, Australia.,Graduate School of Biomedical Engineering, UNSW Sydney, Kensington, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria, Australia.,School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington, Australia
| |
Collapse
|
44
|
miR-214 is Stretch-Sensitive in Aortic Valve and Inhibits Aortic Valve Calcification. Ann Biomed Eng 2019; 47:1106-1115. [PMID: 30671754 DOI: 10.1007/s10439-019-02206-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/12/2019] [Indexed: 02/06/2023]
Abstract
miR-214 has been recently found to be significantly downregulated in calcified human aortic valves (AVs). ER stress, especially the ATF4-mediated pathway, has also been shown to be significantly upregulated in calcific AV disease. Since elevated cyclic stretch is one of the major mechanical stimuli for AV calcification and ATF4 is a validated target of miR-214, we investigated the effect of cyclic stretch on miR-214 expression as well as those of ATF4 and two downstream genes (CHOP and BCL2L1). Porcine aortic valve (PAV) leaflets were cyclically stretched at 15% for 48 h in regular medium and for 1 week in osteogenic medium to simulate the early remodeling and late calcification stages of stretch-induced AV disease, respectively. For both stages, 10% cyclic stretch served as the physiological counterpart. RT-qPCR revealed that miR-214 expression was significantly downregulated during the late calcification stage, whereas the mRNA expression of ATF4 and BCL2L1 was upregulated and downregulated, respectively, during both early remodeling and late calcification stages. When PAV leaflets were statically transfected with miR-214 mimic in osteogenic medium for 2 weeks, calcification was significantly reduced compared to the control mimic case. This implies that miR-214 may have a protective role in stretch-induced calcific AV disease.
Collapse
|
45
|
Wang R, Lin J, Bagchi RA. Novel molecular therapeutic targets in cardiac fibrosis: a brief overview 1. Can J Physiol Pharmacol 2018; 97:246-256. [PMID: 30388374 DOI: 10.1139/cjpp-2018-0430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiac fibrosis, characterized by excessive accumulation of extracellular matrix, abolishes cardiac contractility, impairs cardiac function, and ultimately leads to heart failure. In recent years, significant evidence has emerged that supports the highly dynamic and responsive nature of the cardiac extracellular matrix. Although our knowledge of cardiac fibrosis has advanced tremendously over the past decade, there is still a lack of specific therapies owing to an incomplete understanding of the disease etiology and process. In this review, we attempt to highlight some of the recently investigated molecular determinants of ischemic and non-ischemic fibrotic remodeling of the myocardium that present as promising avenues for development of anti-fibrotic therapies.
Collapse
Affiliation(s)
- Ryan Wang
- a Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Justin Lin
- b Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Rushita A Bagchi
- c Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
46
|
Delgado Caceres M, Pfeifer CG, Docheva D. Understanding Tendons: Lessons from Transgenic Mouse Models. Stem Cells Dev 2018; 27:1161-1174. [PMID: 29978741 PMCID: PMC6121181 DOI: 10.1089/scd.2018.0121] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 12/26/2022] Open
Abstract
Tendons and ligaments are connective tissues that have been comparatively less studied than muscle and cartilage/bone, even though they are crucial for proper function of the musculoskeletal system. In tendon biology, considerable progress has been made in identifying tendon-specific genes (Scleraxis, Mohawk, and Tenomodulin) in the past decade. However, besides tendon function and the knowledge of a small number of important players in tendon biology, neither the ontogeny of the tenogenic lineage nor signaling cascades have been fully understood. This results in major drawbacks in treatment and repair options following tendon degeneration. In this review, we have systematically evaluated publications describing tendon-related genes, which were studied in depth and characterized by using knockout technologies and the subsequently generated transgenic mouse models (Tg) (knockout mice, KO). We report in a tabular manner, that from a total of 24 tendon-related genes, in 22 of the respective knockout mouse models, phenotypic changes were detected. Additionally, in some of the models it was described at which developmental stages these changes appeared and progressed. To summarize, only loss of Scleraxis and TGFβ signaling led to severe tendon developmental phenotypes, while mice deficient for various proteoglycans, Mohawk, EGR1 and 2, and Tenomodulin presented mild phenotypes. These data suggest that the tendon developmental system is well organized, orchestrated, and backed up; this is even more evident among the members of the proteoglycan family, where the compensatory effects are much clearer. In future, it will be of great importance to discover additional master tendon transcription factors and the genes that play crucial roles in tendon development. This would improve our understanding of the genetic makeup of tendons, and will increase the chances of generating tendon-specific drugs to advance overall treatment strategies.
Collapse
Affiliation(s)
- Manuel Delgado Caceres
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Christian G. Pfeifer
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
47
|
Al-Hattab DS, Safi HA, Nagalingam RS, Bagchi RA, Stecy MT, Czubryt MP. Scleraxis regulates Twist1 and Snai1 expression in the epithelial-to-mesenchymal transition. Am J Physiol Heart Circ Physiol 2018; 315:H658-H668. [DOI: 10.1152/ajpheart.00092.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Numerous physiological and pathological events, from organ development to cancer and fibrosis, are characterized by an epithelial-to-mesenchymal transition (EMT), whereby adherent epithelial cells convert to migratory mesenchymal cells. During cardiac development, proepicardial organ epithelial cells undergo EMT to generate fibroblasts. Subsequent stress or damage induces further phenotype conversion of fibroblasts to myofibroblasts, causing fibrosis via synthesis of an excessive extracellular matrix. We have previously shown that the transcription factor scleraxis is both sufficient and necessary for the conversion of cardiac fibroblasts to myofibroblasts and found that scleraxis knockout reduced cardiac fibroblast numbers by 50%, possibly via EMT attenuation. Scleraxis induced expression of the EMT transcriptional regulators Twist1 and Snai1 via an unknown mechanism. Here, we report that scleraxis binds to E-box consensus sequences within the Twist1 and Snai1 promoters to transactivate these genes directly. Scleraxis upregulates expression of both genes in A549 epithelial cells and in cardiac myofibroblasts. Transforming growth factor-β induces EMT, fibrosis, and scleraxis expression, and we found that transforming growth factor-β-mediated upregulation of Twist1 and Snai1 completely depends on the presence of scleraxis. Snai1 knockdown upregulated the epithelial marker E-cadherin; however, this effect was lost after scleraxis overexpression, suggesting that scleraxis may repress E-cadherin expression. Together, these results indicate that scleraxis can regulate EMT via direct transactivation of the Twist1 and Snai1 genes. Given the role of scleraxis in also driving the myofibroblast phenotype, scleraxis appears to be a critical controller of fibroblast genesis and fate in the myocardium and thus may play key roles in wound healing and fibrosis. NEW & NOTEWORTHY The molecular mechanism by which the transcription factor scleraxis mediates Twist1 and Snai1 gene expression was determined. These results reveal a novel means of transcriptional regulation of epithelial-to-mesenchymal transition and demonstrate that transforming growth factor-β-mediated epithelial-to-mesenchymal transition is dependent on scleraxis, providing a potential target for controlling this process.
Collapse
Affiliation(s)
- Danah S. Al-Hattab
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hamza A. Safi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Raghu S. Nagalingam
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rushita A. Bagchi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matthew T. Stecy
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael P. Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
48
|
Eadie AL, Titus AJ, Brunt KR. Getting to the heart of myofibroblast differentiation: implications for scleraxis in ECM remodeling and therapeutic targeting. Am J Physiol Heart Circ Physiol 2018; 315:H1232-H1235. [PMID: 29957021 DOI: 10.1152/ajpheart.00381.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ashley L Eadie
- Department of Pharmacology, Dalhousie University, Saint John, New Brunswick, Canada
| | - Allison J Titus
- Department of Pharmacology, Dalhousie University, Saint John, New Brunswick, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie University, Saint John, New Brunswick, Canada
| |
Collapse
|
49
|
Nichols AEC, Werre SR, Dahlgren LA. Transient Scleraxis Overexpression Combined with Cyclic Strain Enhances Ligament Cell Differentiation. Tissue Eng Part A 2018; 24:1444-1455. [PMID: 29644940 DOI: 10.1089/ten.tea.2017.0481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Efforts to generate tissue-engineered anterior cruciate ligament replacements are limited by a lack of methods to derive mature ligament cells. Viral overexpression of the tendon/ligament marker scleraxis (Scx) can drive cell differentiation; however, the use of viral vectors hampers translation to clinical use. In this study, C3H10T1/2 cells were transiently transfected with expression vectors containing the full-length murine Scx cDNA and cultured in three-dimensional collagen hydrogels under static or cyclic strain for up to 14 days. β-galactosidase (LacZ) transfected cells served as controls. Cell morphology and gene expression for ligament-related genes, in addition to contraction (hydrogel width), mechanical properties, and glycosaminoglycan (GAG) and DNA content of hydrogels, were quantified and compared over time, between Scx and LacZ groups, and between static and cyclically strained constructs. Increased Scx expression was maintained for the entire 14-day study in both static and cyclically strained constructs. In static culture, overexpression of Scx resulted in greater cell elongation and construct contraction compared to LacZ controls. There were no differences in gene expression, DNA, or GAG content between Scx and LacZ constructs cultured under static conditions and no differences in DNA content between Scx and LacZ constructs. When exposed to cyclic strain, Scx-overexpressing cells maintained the elongated phenotype exhibited in static constructs, increased GAG production compared to static culture, and increased expression of the ligament-related genes collagen type I, decorin, and tenascin-C compared to strained LacZ controls. Cyclically strained constructs containing Scx-overexpressing cells had increased maximum load and stiffness compared to LacZ controls. The maintenance of increased Scx expression throughout the 14 day study and subsequent increases in ligament marker gene expression and mechanical properties with cyclic, but not static strain, suggest that transient transfection may be a viable alternative to viral transduction of Scx for ligament engineering studies and support a synergistic effect of Scx and mechanical strain on driving early ligament cell differentiation.
Collapse
Affiliation(s)
- Anne E C Nichols
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine , Virginia Tech, Blacksburg, Virginia
| | - Stephen R Werre
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine , Virginia Tech, Blacksburg, Virginia
| | - Linda A Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine , Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
50
|
Nagalingam RS, Safi HA, Al-Hattab DS, Bagchi RA, Landry NM, Dixon IMC, Wigle JT, Czubryt MP. Regulation of cardiac fibroblast MMP2 gene expression by scleraxis. J Mol Cell Cardiol 2018; 120:64-73. [PMID: 29750994 DOI: 10.1016/j.yjmcc.2018.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/19/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022]
Abstract
Remodeling of the cardiac extracellular matrix is responsible for a number of the detrimental effects on heart function that arise secondary to hypertension, diabetes and myocardial infarction. This remodeling consists both of an increase in new matrix protein synthesis, and an increase in the expression of matrix metalloproteinases (MMPs) that degrade existing matrix structures. Previous studies utilizing knockout mice have demonstrated clearly that MMP2 plays a pathogenic role during matrix remodeling, thus it is important to understand the mechanisms that regulate MMP2 gene expression. We have shown that the transcription factor scleraxis is an important inducer of extracellular matrix gene expression in the heart that may also control MMP2 expression. In the present study, we demonstrate that scleraxis directly transactivates the proximal MMP2 gene promoter, resulting in increased histone acetylation, and identify a specific E-box sequence in the promoter to which scleraxis binds. Cardiac myo-fibroblasts isolated from scleraxis knockout mice exhibited dramatically decreased MMP2 expression; however, scleraxis over-expression in knockout cells could rescue this loss. We further show that regulation of MMP2 gene expression by the pro-fibrotic cytokine TGFβ occurs via a scleraxis-dependent mechanism: TGFβ induces recruitment of scleraxis to the MMP2 promoter, and TGFβ was unable to up-regulate MMP2 expression in cells lacking scleraxis due to either gene knockdown or knockout. These results reveal that scleraxis can exert control over both extracellular matrix synthesis and breakdown, and thus may contribute to matrix remodeling in wound healing and disease.
Collapse
Affiliation(s)
- Raghu S Nagalingam
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Hamza A Safi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Danah S Al-Hattab
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Rushita A Bagchi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Natalie M Landry
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Ian M C Dixon
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Jeffrey T Wigle
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.
| |
Collapse
|