1
|
Yu SS, Zhang Q, Zheng LY, Xie QP, Wang JJ, Dou W. The miR-31b targets arylsulfatase B to regulate the ovarian development of Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2024. [PMID: 39494722 DOI: 10.1002/ps.8513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Reproduction is the basis of insect population growth and evolution, and encompasses ovarian development, reproductive behavior, and fecundity. Bactrocera dorsalis is a globally significant agricultural pest that is subject to quarantine, with mated females that can lay over 3000 eggs. The post-transcriptional regulation of ovarian development remains unclear. Here, miR-31b is shown to be involved in regulating Bactrocera dorsalis ovarian development. RESULTS CRISPR/Cas9 was used to generate miR-31b loss-of-function mutations in Bactrocera dorsalis. The removal of miR-31b resulted in severely impaired ovarian development in adults, with phenotypes that included dramatically reduced egg production and hatching rates. The relationship between miR-31b and its target gene arylsulfatase B (ARSB) was subsequently identified using the methods of bioinformatics, transcriptomic sequencing, quantitative polymerase chain reaction (qPCR), RNA pull-down and dual-luciferase reporter assay. Finally, miR-31b was confirmed to bind the target gene arylsulfatase B to affect metabolism and thereby further hindered ovarian development of Bactrocera dorsalis. CONCLUSION Overall, these results provide new insights into molecular mechanisms at the post-transcriptional level in regulating ovarian development and insect reproduction, consequently providing potential targets to control arthropod pests through the reproductive strategy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shan-Shan Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Southwest University, Chongqing, China
| | - Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Southwest University, Chongqing, China
| | - Li-Yuan Zheng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Southwest University, Chongqing, China
| | - Qian-Ping Xie
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Yao Z, Sun X, Wu X, Zhu F, Huang J, Zhang W, Ma W, Hua H, Lin Y. Functional and evolutionary analysis of key enzymes triacylglycerol lipase, glycogen hydrolases in the glycerol and glucose biosynthesis pathway and cellular chaperones for freeze-tolerance of the Rice stem borer, Chilo suppressalis. Int J Biol Macromol 2024; 282:136861. [PMID: 39490866 DOI: 10.1016/j.ijbiomac.2024.136861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Freeze-tolerance is an important physiological trait for terrestrial environmental adaptation and intraspecific geographic-lineage diversification in ectothermic animals, yet there remains a lack of systematic studies on its underlying genetic mechanisms and evolution. To address this problem, we employed the widely distributed rice pest, the Chilo suppressalis, as a model to explore the genetic mechanisms and evolutionary history of freeze-tolerance. First, we systematically characterized its antifreeze mechanisms by performing functional validation of potential key genes in laboratory-reared lines. This revealed the functional roles of glycerol biosynthesis in freeze-tolerance, including the triacylglycerol-originated pathway via triacylglycerol lipase (Tgl) hydrolysis and the glycogen-originated pathway via α-amylase (Aa) and maltase (Ma) hydrolysis, as well as the roles of the cellular chaperones Hsc70 and Hsf1. Then, we investigated the evolution of freeze-tolerance by collecting representative geographical samples and performing population genetic analyses, which suggested differentiated strategies of cold adaptation in different geographic populations. Taken together, our findings demonstrate the functional basis of cold resistance in Chilo suppressalis and reveal the evolutionary history of freeze-tolerance in natural populations, providing insights into organismal freeze-tolerance and clues for pest control.
Collapse
Affiliation(s)
- Zhuotian Yao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Xiujia Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Xiaoshuang Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Fengqin Zhu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Jianhua Huang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Hongxia Hua
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Chantab K, Rao Z, Zheng X, Han R, Cao L. Ascarosides and Symbiotic Bacteria of Entomopathogenic Nematodes Regulate Host Immune Response in Galleria mellonella Larvae. INSECTS 2024; 15:514. [PMID: 39057246 PMCID: PMC11277396 DOI: 10.3390/insects15070514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Insects protect themselves through their immune systems. Entomopathogenic nematodes and their bacterial symbionts are widely used for the biocontrol of economically important pests. Ascarosides are pheromones that regulate nematode behaviors, such as aggregation, avoidance, mating, dispersal, and dauer recovery and formation. However, whether ascarosides influence the immune response of insects remains unexplored. In this study, we co-injected ascarosides and symbiotic Photorhabdus luminescens subsp. kayaii H06 bacteria derived from Heterorhabditis bacteriophora H06 into the last instar larvae of Galleria mellonella. We recorded larval mortality and analyzed the expressions of AMPs, ROS/RNS, and LPSs. Our results revealed a process in which ascarosides, acting as enhancers of the symbiotic bacteria, co-induced G. mellonella immunity by significantly increasing oxidative stress responses and secreting AMPs (gallerimycin, gloverin, and cecropin). This led to a reduction in color intensity and the symbiotic bacteria load, ultimately resulting in delayed host mortality compared to either ascarosides or symbiotic bacteria. These findings demonstrate the cross-kingdom regulation of insects and symbiotic bacteria by nematode pheromones. Furthermore, our results suggest that G. mellonella larvae may employ nematode pheromones secreted by IJs to modulate insect immunity during early infection, particularly in the presence of symbiotic bacteria, for enhancing resistance to invasive bacteria in the hemolymph.
Collapse
Affiliation(s)
- Kanjana Chantab
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
- Department of Plant Sciences, Faculty of Agriculture and Technology, Rajamangala University of Technology Isan, Surin 32000, Thailand
| | - Zhongchen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
| | - Xuehong Zheng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
| |
Collapse
|
4
|
Xing L, Liu B, Yu D, Tang X, Sun J, Zhang B. A near-complete genome assembly of Monochamus alternatus a major vector beetle of pinewood nematode. Sci Data 2024; 11:312. [PMID: 38531927 DOI: 10.1038/s41597-024-03150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The Japanese sawyer beetle, Monochamus alternatus, is not only one of the most important wood boring pest itself, but also a major vector of the invasive pinewood nematode (PWN), which is the causal agent of the devastative pine wilt disease (PWD) and threats the global pine forest. Here, we present a near-complete genome of M. alternatus at the chromosome level. The assembled genome was 792.05 Mb with contig N50 length of 55.99 Mb, which is the largest N50 size among the sequenced Coleoptera insects currently. 99.57% of sequence was anchored onto ten pseudochromosomes (one X-chromosome and nine autosomes), and the final genome harbored only 13 gaps. BUSCO evaluation revealed the presence of 99.0% of complete core genes. Thus, our genome assembly represented the highest-contiguity genome assembly as well as high completeness in insects so far. We identified 20,471 protein-coding genes, of which 20,070 (98.04%) were functionally annotated. The genome assembly of M. alternatus provides a valuable resource for exploring the evolution of the symbiosis between PWN and the vector insects.
Collapse
Affiliation(s)
- Longsheng Xing
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Dunyang Yu
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xuan Tang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jianghua Sun
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Bin Zhang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
5
|
Xue D, Yang Y, Fang L, Wang S, Wu Y. Trehalose 6-phosphate synthase gene rdtps1 contributes to thermal acclimation in Rhyzopertha dominica. BMC Genomics 2024; 25:172. [PMID: 38350857 PMCID: PMC10863172 DOI: 10.1186/s12864-024-10028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The lesser grain borer (Rhyzopertha dominica), a worldwide primary pest of stored grain, causes serious economic losses and threatens stored food safety. R. dominica can respond to changes in temperature, especially the adaptability to heat. In this study, transcriptome analysis of R. dominica exposed to different temperatures was performed to elucidate differences in gene expression and the underling molecular mechanism. RESULTS Isoform-sequencing generated 17,721,200 raw reads and yielded 20,416 full-length transcripts. A total of 18,880 (92.48%) transcripts were annotated. We extracted RNA from R. dominica reared at 5 °C (cold stress), 15 °C (cold stress), 27 °C (ambient temperature) and 40 °C (heat stress) for RNA-seq. Compared to those of control insects reared at 27 °C, 119, 342, and 875 differentially expressed genes (DEGs) were identified at 5 °C, 15 °C, and 40 °C, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that pathways associated with "fatty acid metabolism", "fatty acid biosynthesis", "AMPK signaling pathway", "neuroactive ligand receptor interaction", and "longevity regulating pathway-multiple species" were significantly enriched. The functional annotation revealed that the genes encoding heat shock proteins (HSPs), fatty acid synthase (FAS), phospholipases (PLA), trehalose transporter (TPST), trehalose 6-phosphate synthase (TPS), and vitellogenin (Vg) were most likely involved in temperature regulation, which was also validated by RT-qPCR. Seven candidate genes (rdhsp1, rdfas1, rdpla1, rdtpst1, rdtps1, rdvg1, and rdP450) were silenced in the RNA interference (RNAi) assay. RNAi of each candidate gene suggested that inhibiting rdtps1 expression significantly decreased the trehalose level and survival rate of R. dominica at 40 °C. CONCLUSIONS These results indicated that trehalose contributes to the high temperature resistance of R. dominica. Our study elucidates the molecular mechanisms underlying heat tolerance and provides a potential target for the pest management in R. dominica.
Collapse
Affiliation(s)
- Dingrong Xue
- National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, 100037, Beijing, China
| | - Yan Yang
- National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, 100037, Beijing, China
- Henan Collaborative Innovation Center for Grain Storage Security, School of Food and Strategic Reserves, Henan University of Technology, 450001, Zhengzhou, China
| | - Liwei Fang
- Department of Microbiology and Immunology, University of Illinois Chicago, 60612, Chicago, USA
| | - Shibo Wang
- National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, 100037, Beijing, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Yi Wu
- National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, 100037, Beijing, China.
| |
Collapse
|
6
|
Li J, Zhang D, Zhang Z, Meng S, Wang B, Li Z, Liu X, Zhang S. miR-2765 Modulates the Seasonal Polyphenism in Cacopsylla chinensis by Targeting a Novel Cold Rreceptor CcTRPC3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:140-152. [PMID: 38118125 DOI: 10.1021/acs.jafc.3c05429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Polyphenism is a beneficial way in organisms to better cope with changing circumstances and is a hot topic in entomology, evolutionary biology, and ecology. Until now, this phenomenon has been proven to be season-, density-, and diet-dependent; however, there are very few reports on temperature regulation. Cacopsylla chinensis showed seasonal polyphenism, namely as summer- and winter-form, with obvious diversity in phenotypic characteristics in response to seasonal variation. Previous studies have found that low temperature in autumn is an extremely important element in inducing summer-form change to winter-form, but the underlying regulatory mechanism is still a mystery. Herein, we provided the initial evidence that the third instar of the summer-form is the critical period for developing to the winter-form, and 10 °C induces this transition by affecting the total pigment, chitin level, and thickness of the cuticle. Second, CcTPRC3 was proven to function as a novel cold receptor to control this seasonal polyphenism. Moreover, miR-2765 was found to mediate seasonal polyphenism by inhibiting CcTRPC3 expression. Last, we found that cuticle binding proteins CcCPR4 and CcCPR9 function as the downstream signals of CcTRPC3 to regulate the seasonal polyphenism in C. chinensis. In conclusion, our results displayed a novel signal pathway of miR-2765 and CcTRPC3 for the regulation of seasonal polyphenism in C. chinensis. These findings provide insights into the comprehensive analysis of insect polyphenism and are useful in developing potential strategies to block the phase transition for the pest control of C. chinensis.
Collapse
Affiliation(s)
- Jianying Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Dongyue Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Zhixian Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Shili Meng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Bo Wang
- Sanya Institute of China Agricultural University, 572025 Sanya City, Hainan Province, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
- Sanya Institute of China Agricultural University, 572025 Sanya City, Hainan Province, China
| |
Collapse
|
7
|
Zhang S, Li J, Zhang D, Zhang Z, Meng S, Li Z, Liu X. miR-252 targeting temperature receptor CcTRPM to mediate the transition from summer-form to winter-form of Cacopsylla chinensis. eLife 2023; 12:RP88744. [PMID: 37965868 PMCID: PMC10651175 DOI: 10.7554/elife.88744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Temperature determines the geographical distribution of organisms and affects the outbreak and damage of pests. Insects seasonal polyphenism is a successful strategy adopted by some species to adapt the changeable external environment. Cacopsylla chinensis (Yang & Li) showed two seasonal morphotypes, summer-form and winter-form, with significant differences in morphological characteristics. Low temperature is the key environmental factor to induce its transition from summer-form to winter-form. However, the detailed molecular mechanism remains unknown. Here, we firstly confirmed that low temperature of 10 °C induced the transition from summer-form to winter-form by affecting the cuticle thickness and chitin content. Subsequently, we demonstrated that CcTRPM functions as a temperature receptor to regulate this transition. In addition, miR-252 was identified to mediate the expression of CcTRPM to involve in this morphological transition. Finally, we found CcTre1 and CcCHS1, two rate-limiting enzymes of insect chitin biosyntheis, act as the critical down-stream signal of CcTRPM in mediating this behavioral transition. Taken together, our results revealed that a signal transduction cascade mediates the seasonal polyphenism in C. chinensis. These findings not only lay a solid foundation for fully clarifying the ecological adaptation mechanism of C. chinensis outbreak, but also broaden our understanding about insect polymorphism.
Collapse
Affiliation(s)
- Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Jianying Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Dongyue Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Zhixian Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Shili Meng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| |
Collapse
|
8
|
Zhao L, Zhou J, Chen J, Zhang X, Zhang H, Guo L, Li D, Ning J, Wang X, Jin W, Mai K, Abraham E, Butcher R, Sun J. A chemical signal that promotes insect survival via thermogenesis. RESEARCH SQUARE 2023:rs.3.rs-2756320. [PMID: 37214941 PMCID: PMC10197781 DOI: 10.21203/rs.3.rs-2756320/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cold-activated thermogenesis of brown adipose tissues (BAT) is vital for the survival of animals under cold stress and also inhibits the development of tumours. The development of small-molecule tools that target thermogenesis pathways could lead to novel therapies against cold, obesity, and even cancer. Here, we identify a chemical signal that is produced in beetles in the winter to activate fat thermogenesis. This hormone elevates the basal body temperature by increasing cellular mitochondrial density and uncoupling in order to promote beetle survival. We demonstrate that this hormone activates UCP4- mediated uncoupled respiration through adipokinetic hormone receptor (AKHR). This signal serves as a novel fat-burning activator that utilizes a conserved mechanism to promote thermogenesis not only in beetles, nematode and flies, but also in mice, protecting the mice against cold and tumor growth. This hormone represents a new strategy to manipulate fat thermogenesis.
Collapse
Affiliation(s)
- Lilin Zhao
- Institute of Zoology, Chinese Academy of Sciences
| | - Jiao Zhou
- Institute of Zoology, Chinese Academy of Sciences
| | - Junxian Chen
- Institute of Zoology, Chinese Academy of Sciences
| | | | | | | | - Defeng Li
- Institute of Microbiology, Chinese Academy of Sciences
| | - Jing Ning
- Institute of Zoology, Chinese Academy of Sciences
| | - Xinchen Wang
- Institute of Zoology, Chinese Academy of Sciences
| | - Wanzhu Jin
- Institute of Zoology, Chinese Academy of Sciences
| | - Kevin Mai
- Department of Chemistry, University of Florida
| | | | | | | |
Collapse
|
9
|
Yang M, Li G, Yu L, Du S, Jiang D, Chu X, Wang K, Wu S, Wang R, Zhang F, Hu X. Temperature and metal ions regulate larval diapause termination via the 20-hydroxyecdysone and juvenile hormone pathways in Monochamus alternatus. PEST MANAGEMENT SCIENCE 2023; 79:437-446. [PMID: 36177945 DOI: 10.1002/ps.7212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Diapause allows insects to survive harsh environments, and its termination is crucial for their normal development after diapause. However, little is known about the regulatory pathways and signals involved in insect diapause termination. RESULTS We discovered that high temperature (25 °C) influenced larval diapause termination in Monochamus alternatus. Likewise, metal ions (Ca2+ ) promoted diapause termination by reducing diapause duration. We combined transcriptomic and metabolomic analyses to investigate changes in gene expression and metabolism in diapause-terminated larvae treated with high temperature (MaHt) and metal ions (MaCa). Hormone biosynthesis and metabolism contained the highest proportion of significant differentially expressed genes (DEGs) in the two groups. 20-hydroxyecdysone (20E) and juvenile hormone (JH) were closely related to diapause termination in M. alternatus. RNA interference (RNAi) experiments verified that 20E biosynthesis (CYP314a1) and degradation (CYP18a1), JH biosynthesis (FOHSDR-1) and degradation (JHEH) genes affected the larval diapause duration significantly. In addition, dysfunction of CYP314a1 resulted in increased larval mortality (P < 0.01), reduced pupation rate and emergence rate (P < 0.05). Enzyme-linked immunosorbent assay (ELISA) analysis showed that the ecdysone content decreased after dsCYP314a1 injection and JH content increased after dsJHEH injection. CONCLUSION The results indicate that genes CYP314a1, CYP18a1, FOHSDR-1 and JHEH mediated 20E and JH biosynthesis and degradation to regulate diapause termination in M. alternatus. We elucidated the molecular mechanism underlying the regulation of diapause termination and provided a basis for the prevention and control of M. alternatus infestation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meijiao Yang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoqiang Li
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lu Yu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shijie Du
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Di Jiang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu Chu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Wang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songqing Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rong Wang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feiping Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xia Hu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Deng J, Xu W, Lv G, Yuan H, Zhang QH, Wickham JD, Xu L, Zhang L. Associated bacteria of a pine sawyer beetle confer resistance to entomopathogenic fungi via fungal growth inhibition. ENVIRONMENTAL MICROBIOME 2022; 17:47. [PMID: 36085246 PMCID: PMC9463743 DOI: 10.1186/s40793-022-00443-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND The entomopathogenic Beauveria bassiana is a popular fungus used to control the Japanese pine sawyer, Monochamus alternatus Hope, the key vector of pine wood nematode (Bursaphelenchus xylophilus) that is the causal agent of pine wilt disease, resulting in devastating losses of pines in China and Portugal. However, recent studies have demonstrated that some insect-associated bacteria might decrease fungal toxicity and further undermine its biological control efficacy against M. alternatus. Thus, it is of great significance to uncover whether and how associated bacteria of M. alternatus become involved in the infection process of B. bassiana. RESULTS Here, we show that axenic M. alternatus larvae died significantly faster than non-axenic larvae infected by four increasing concentrations of B. bassiana spores (Log-rank test, P < 0.001). The infection of B. bassiana significantly changed the richness and structure of the beetle-associated bacterial community both on the cuticle and in the guts of M. alternatus; meanwhile, the abundance of Pseudomonas and Serratia bacteria were significantly enriched as shown by qPCR. Furthermore, these two bacteria genera showed a strong inhibitory activity against B. bassiana (One-way ANOVA, P < 0.001) by reducing the fungal conidial germination and growth rather than regulating host immunity. CONCLUSIONS This study highlights the role of insect-associated bacteria in the interaction between pest insects and entomopathogenic fungi, which should be taken into consideration when developing microbial-based pest control strategies.
Collapse
Affiliation(s)
- Jundan Deng
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei, 230036, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Weikang Xu
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guochang Lv
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei, 230036, China
| | - Hang Yuan
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei, 230036, China
| | - Qing-He Zhang
- Sterling International, Inc., Spokane, WA, 99216, USA
| | - Jacob D Wickham
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prospect, Moscow, Russia, 119071
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Longwa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
11
|
Agwunobi DO, Pei T, Bai R, Wang Z, Shi X, Zhang M, Yu Z, Liu J. miR-2a and miR-279 are functionally associated with cold tolerance in Dermacentor silvarum (Acari: Ixodidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100946. [PMID: 34872025 DOI: 10.1016/j.cbd.2021.100946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
Ticks are obligate blood-sucking ectoparasites that can attack mammals, birds, reptiles as well as amphibians. Dermacentor silvarum, an important vector of various pathogenic bacteria, viruses, and protozoans, is widely distributed in China. MicroRNAs (miRNAs) are ~22 nucleotide non-coding small RNA molecules, involved in the regulation of various physiological and cellular processes. Previous studies demonstrated the vital roles of miRNAs during the reproduction and development of ticks, whereas, the regulatory/functional roles of microRNAs during the cold response of ticks remain unexplored. Here, we identified and functionally explored D. silvarum miRNAs involved in cold response to gain further understanding of the molecular regulatory mechanisms underlying cold stress in ticks. The microRNA libraries of D. silvarum were established via high-throughput sequencing after exposure to different cold treatments. A total of 147 miRNAs, including 44 known miRNAs and 103 new miRNAs, were identified. The verification of six highly differentially expressed miRNAs (miR-2a, miR-5305, miR-7, miR-279, miR-993, and novel-3) via RT-qPCR were consistent with the high-throughput sequence results. miR-2a peaked by day 6 and miR-279 expression was lowest by day 3 after cold treatment. The potential target genes of miR-2a and miR-279 were the glycogen phosphorylase (GPase) gene and serine gene, respectively. After injecting D. silvarum ticks with miR-2a and miR-279 antagonists, their respective target genes were up-regulated and vice-versa after injection with the agonists. These results indicated that these two miRNAs and their target genes may be involved in the cold response of D. silvarum ticks.
Collapse
Affiliation(s)
- Desmond O Agwunobi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Tingwei Pei
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ruwei Bai
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zihao Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xinyue Shi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Miao Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
12
|
Ben Youssef M, Christelle Ouédraogo B, Bastarache P, Dumas P, Moffat CE, Vickruck JL, Morin PJ. Exposure to Temperature and Insecticides Modulates the Expression of Small Noncoding RNA-Associated Transcripts in the Colorado Potato Beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:23. [PMID: 35172010 PMCID: PMC8849280 DOI: 10.1093/jisesa/ieac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 06/14/2023]
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is an insect that can adapt to various challenges, including temperature fluctuations or select insecticide treatments. This pest is also an ongoing threat to the potato industry. Small noncoding RNAs such as miRNAs, which can control posttranscriptionally the expression of various genes, and piRNAs, which can notably impact mRNA turnover, are modulated in insects under different conditions. Unfortunately, information regarding the expression status of key players involved in their synthesis and function is for the most part lacking. The current study thus aims at assessing the levels of such targets in L. decemlineata exposed to hot and cold temperatures as well as treated to the insecticides chlorantraniliprole, clothianidin, imidacloprid, and spinosad. Transcript expression levels of Ago1, Ago2, Ago3, Dcr2a, Dcr2b, Expo-5, Siwi-1, and Siwi-2, components of pathways associated with small noncoding RNA production or function, were measured by qRT-PCR and revealed modulation of select transcripts in response to temperature challenges and to select insecticides. RNAi-mediated reduction of Ago2 transcript levels in L. decemlineata injected with Ago2-targeting dsRNA and exposed to cold and warm temperatures was also conducted. Changes in survival rates were observed for the latter condition in dsRNA- versus saline-injected insects. These results showcase the differential expression of select targets involved in small noncoding RNA homeostasis and provide leads for the subsequent assessment of their involvement during stress response in L. decemlineata using RNAi-based approaches.
Collapse
Affiliation(s)
- Mariem Ben Youssef
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Brigitte Christelle Ouédraogo
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Pierre Bastarache
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Pascal Dumas
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Chandra E Moffat
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Jessica L Vickruck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| |
Collapse
|
13
|
Zhao M, Wickham JD, Zhao L, Sun J. Major ascaroside pheromone component asc-C5 influences reproductive plasticity among isolates of the invasive species pinewood nematode. Integr Zool 2020; 16:893-907. [PMID: 33264496 DOI: 10.1111/1749-4877.12512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pheromones are communication chemicals and regulatory signals used by animals and represent unique tools for organisms to mediate behaviors and make "decisions" to maximize their fitness. Phenotypic plasticity refers to the innate capacity of a species to tolerate a greater breadth of environmental conditions across which it adapts to improve its survival, reproduction, and fitness. The pinewood nematode, Bursaphelenchus xylophilus, an invasive nematode species, was accidentally introduced from North America into Japan, China, and Europe; however, few studies have investigated its pheromones and phenotypic plasticity as a natural model. Here, we demonstrated a novel phenomenon, in which nematodes under the condition of pheromone presence triggered increased reproduction in invasive strains (JP1, JP2, CN1, CN2, EU1, and EU2), while it simultaneously decreased reproduction in native strains (US1 and US2). The bidirectional effect on fecundity, mediated by presence/absence of pheromones, is henceforth termed pheromone-regulative reproductive plasticity (PRRP). We further found that synthetic ascaroside asc-C5 (ascr#9), the major pheromone component, plays a leading role in PRRP and identified 2 candidate receptor genes, Bxydaf-38 and Bxysrd-10, involved in perceiving asc-C5. These results suggest that plasticity of reproductive responses to pheromones in pinewood nematode may increase its fitness in novel environments following introduction. This opens up a new perspective for invasion biology and presents a novel strategy of invasion, suggesting that pheromones, in addition to their traditional roles in chemical signaling, can influence the reproductive phenotype among native and invasive isolates. In addition, this novel mechanism could broadly explain, through comparative studies of native and invasive populations of animals, a potential underlying factor behind of the success of other biological invasions.
Collapse
Affiliation(s)
- Meiping Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jacob D Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|