1
|
Ma YN, Yang CJ, Zhang CC, Sun YX, Yao XD, Liu X, Li XX, Wang HL, Wang H, Wang T, Wang XD, Zhang C, Su YA, Li JT, Si TM. Prefrontal parvalbumin interneurons mediate CRHR1-dependent early-life stress-induced cognitive deficits in adolescent male mice. Mol Psychiatry 2024:10.1038/s41380-024-02845-6. [PMID: 39578519 DOI: 10.1038/s41380-024-02845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
Cognitive impairment, a core symptom of psychiatric disorders, is frequently observed in adolescents exposed to early-life stress (ES). However, the underlying neural mechanisms are unclear, and therapeutic efficacy is limited. Targeting parvalbumin-expressing interneurons (PVIs) in the medial prefrontal cortex (mPFC), we report that ES reduces mPFC PVI activity, which causally mediated ES-induced cognitive deficits in adolescent male mice through chemogenetic and optogenetic experiments. To understand the possible causes of PVI activity reduction following ES, we then demonstrated that ES upregulated corticotropin-releasing hormone (CRH) receptor 1 [CRHR1, mainly expressed in pyramidal neurons (PNs)] and reduced activity of local pyramidal neurons (PNs) and their excitatory inputs to PVIs. The subsequent genetic manipulation experiments (CRHR1 knockout, CRH overexpression, and chemogenetics) highlight that ES-induced PVI activity reduction may result from CRHR1 upregulation and PN activity downregulation and that PVIs play indispensable roles in CRHR1- or PN-mediated cognitive deficits induced by ES. These results suggest that ES-induced cognitive deficits could be attributed to the prefrontal CRHR1-PN-PVI pathway. Finally, treatment with antalarmin (a CRHR1 antagonist) and environmental enrichment successfully restored the PVI activity and cognitive deficits induced by ES. These findings reveal the neurobiological mechanisms underlying ES-induced cognitive deficits in adolescent male mice and highlight the therapeutic potentials of PVIs in stress-related cognitive deficits in adolescent individuals.
Collapse
Affiliation(s)
- Yu-Nu Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Chao-Juan Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Chen-Chen Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ya-Xin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xing-Duo Yao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiao Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xue-Xin Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hong-Li Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Han Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ting Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| |
Collapse
|
2
|
Pan G, Zhao B, Zhang M, Guo Y, Yan Y, Dai D, Zhang X, Yang H, Ni J, Huang Z, Li X, Duan S. Nucleus Accumbens Corticotropin-Releasing Hormone Neurons Projecting to the Bed Nucleus of the Stria Terminalis Promote Wakefulness and Positive Affective State. Neurosci Bull 2024; 40:1602-1620. [PMID: 38980648 PMCID: PMC11607243 DOI: 10.1007/s12264-024-01233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/02/2024] [Indexed: 07/10/2024] Open
Abstract
The nucleus accumbens (NAc) plays an important role in various emotional and motivational behaviors that rely on heightened wakefulness. However, the neural mechanisms underlying the relationship between arousal and emotion regulation in NAc remain unclear. Here, we investigated the roles of a specific subset of inhibitory corticotropin-releasing hormone neurons in the NAc (NAcCRH) in regulating arousal and emotional behaviors in mice. We found an increased activity of NAcCRH neurons during wakefulness and rewarding stimulation. Activation of NAcCRH neurons converts NREM or REM sleep to wakefulness, while inhibition of these neurons attenuates wakefulness. Remarkably, activation of NAcCRH neurons induces a place preference response (PPR) and decreased basal anxiety level, whereas their inactivation induces a place aversion response and anxious state. NAcCRH neurons are identified as the major NAc projection neurons to the bed nucleus of the stria terminalis (BNST). Furthermore, activation of the NAcCRH-BNST pathway similarly induced wakefulness and positive emotional behaviors. Taken together, we identified a basal forebrain CRH pathway that promotes the arousal associated with positive affective states.
Collapse
Affiliation(s)
- Gaojie Pan
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Bing Zhao
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Mutian Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, and Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China
| | - Yanan Guo
- Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
| | - Yuhua Yan
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Dan Dai
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiaoxi Zhang
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hui Yang
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jinfei Ni
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhili Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, and Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China
| | - Xia Li
- Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| | - Shumin Duan
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310030, China.
| |
Collapse
|
3
|
Li X, Du Y, Huang JF, Li WW, Song W, Fan RN, Zhou H, Jiang T, Lu CG, Guan Z, Wang XF, Gong H, Li XN, Li A, Fu L, Sun YG. Link Brain-Wide Projectome to Neuronal Dynamics in the Mouse Brain. Neurosci Bull 2024; 40:1621-1634. [PMID: 38819707 PMCID: PMC11607363 DOI: 10.1007/s12264-024-01232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 06/01/2024] Open
Abstract
Knowledge about the neuronal dynamics and the projectome are both essential for understanding how the neuronal network functions in concert. However, it remains challenging to obtain the neural activity and the brain-wide projectome for the same neurons, especially for neurons in subcortical brain regions. Here, by combining in vivo microscopy and high-definition fluorescence micro-optical sectioning tomography, we have developed strategies for mapping the brain-wide projectome of functionally relevant neurons in the somatosensory cortex, the dorsal hippocampus, and the substantia nigra pars compacta. More importantly, we also developed a strategy to achieve acquiring the neural dynamic and brain-wide projectome of the molecularly defined neuronal subtype. The strategies developed in this study solved the essential problem of linking brain-wide projectome to neuronal dynamics for neurons in subcortical structures and provided valuable approaches for understanding how the brain is functionally organized via intricate connectivity patterns.
Collapse
Affiliation(s)
- Xiang Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Yun Du
- Institute of Neuroscience, Key Laboratory of Brain Coginition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang-Feng Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Wen-Wei Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Wei Song
- Institute of Neuroscience, Key Laboratory of Brain Coginition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruo-Nan Fan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Hua Zhou
- Institute of Neuroscience, Key Laboratory of Brain Coginition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, 215123, China
| | - Chang-Geng Lu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Zhuang Guan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xiao-Fei Wang
- Institute of Neuroscience, Key Laboratory of Brain Coginition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, 215123, China
| | - Xiang-Ning Li
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, 215123, China
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, 215123, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
- Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
- School of Physics and Optoelectronics Engineering, Hainan University, Haikou, 570228, Hainan, China.
| | - Yan-Gang Sun
- Institute of Neuroscience, Key Laboratory of Brain Coginition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
4
|
Narain P, Petković A, Šušić M, Haniffa S, Anwar M, Arnoux M, Drou N, Antonio-Saldi G, Chaudhury D. Nighttime-specific differential gene expression in suprachiasmatic nucleus and habenula is associated with resilience to chronic social stress. Transl Psychiatry 2024; 14:407. [PMID: 39358331 PMCID: PMC11447250 DOI: 10.1038/s41398-024-03100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The molecular mechanisms that link stress and biological rhythms still remain unclear. The habenula (Hb) is a key brain region involved in regulating diverse types of emotion-related behaviours while the suprachiasmatic nucleus (SCN) is the body's central clock. To investigate the effects of chronic social stress on transcription patterns, we performed gene expression analysis in the Hb and SCN of stress-naïve and stress-exposed mice. Our analysis revealed a large number of differentially expressed genes and enrichment of synaptic and cell signalling pathways between resilient and stress-naïve mice at zeitgeber 16 (ZT16) in both the Hb and SCN. This transcriptomic signature was nighttime-specific and observed only in stress-resilient mice. In contrast, there were relatively few differences between the stress-susceptible and stress-naïve groups across time points. Our results reinforce the functional link between circadian gene expression patterns and differential responses to stress, thereby highlighting the importance of temporal expression patterns in homoeostatic stress responses.
Collapse
Affiliation(s)
- Priyam Narain
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Aleksa Petković
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Marko Šušić
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Salma Haniffa
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Mariam Anwar
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Marc Arnoux
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Nizar Drou
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Dipesh Chaudhury
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE.
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE.
- Center for Brain and Health, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
5
|
Tian Y, Yang XW, Chen L, Xi K, Cai SQ, Cai J, Yang XM, Wang ZY, Li M, Xing GG. Activation of CRF/CRFR1 Signaling in the Central Nucleus of the Amygdala Contributes to Chronic Stress-Induced Exacerbation of Neuropathic Pain by Enhancing GluN2B-NMDA Receptor-Mediated Synaptic Plasticity in Adult Male Rats. THE JOURNAL OF PAIN 2024; 25:104495. [PMID: 38354968 DOI: 10.1016/j.jpain.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Exacerbation of pain by chronic stress and comorbidity of pain with stress-related disorders such as depression and post-traumatic stress disorder, represent significant clinical challenges. Previously we have documented that chronic forced swim (FS) stress exacerbates neuropathic pain in spared nerve injury (SNI) rats, associated with an up-regulation of GluN2B-containing N-methyl-D-aspartate receptors (GluN2B-NMDARs) in the central nucleus of the amygdala (CeA). However, the molecular mechanisms underlying chronic FS stress (CFSS)-mediated exacerbation of pain sensitivity in SNI rats still remain unclear. In this study, we demonstrated that exposure of CFSS to rats activated the corticotropin-releasing factor (CRF)/CRF receptor type 1 (CRFR1) signaling in the CeA, which was shown to be necessary for CFSS-induced depressive-like symptoms in stressed rats, and as well, for CFSS-induced exacerbation of pain hypersensitivity in SNI rats exposed to chronic FS stress. Furthermore, we discovered that activation of CRF/CRFR1 signaling in the CeA upregulated the phosphorylation of GluN2B-NMDARs at tyrosine 1472 (pGluN2BY1472) in the synaptosomal fraction of CeA, which is highly correlated to the enhancement of synaptic GluN2B-NMDARs expression that has been observed in the CeA in CFSS-treated SNI rats. In addition, we revealed that activation of CRF/CRFR1 signaling in the CeA facilitated the CFSS-induced reinforcement of long-term potentiation as well as the enhancement of NMDAR-mediated excitatory postsynaptic currents in the basolateral amygdala (BLA)-CeA pathway in SNI rats. These findings suggest that activation of CRF/CRFR1 signaling in the CeA contributes to chronic stress-induced exacerbation of neuropathic pain by enhancing GluN2B-NMDAR-mediated synaptic plasticity in rats subjected to nerve injury. PERSPECTIVE: Our present study provides a novel mechanism for elucidating stress-induced hyperalgesia and highlights that the CRF/CRFR1 signaling and the GluN2B-NMDAR-mediated synaptic plasticity in the CeA may be important as potential therapeutic targets for chronic stress-induced pain exacerbation in human neuropathic pain. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Yue Tian
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Xue-Wei Yang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Lin Chen
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Ke Xi
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Si-Qing Cai
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Jie Cai
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Xiao-Mei Yang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhi-Yong Wang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Guo-Gang Xing
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China; Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
6
|
Burton SD, Malyshko CM, Urban NN. Fast-spiking interneuron detonation drives high-fidelity inhibition in the olfactory bulb. PLoS Biol 2024; 22:e3002660. [PMID: 39186804 PMCID: PMC11379389 DOI: 10.1371/journal.pbio.3002660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/06/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Inhibitory circuits in the mammalian olfactory bulb (OB) dynamically reformat olfactory information as it propagates from peripheral receptors to downstream cortex. To gain mechanistic insight into how specific OB interneuron types support this sensory processing, we examine unitary synaptic interactions between excitatory mitral and tufted cells (MTCs), the OB projection neurons, and a conserved population of anaxonic external plexiform layer interneurons (EPL-INs) using pair and quartet whole-cell recordings in acute mouse brain slices. Physiological, morphological, neurochemical, and synaptic analyses divide EPL-INs into distinct subtypes and reveal that parvalbumin-expressing fast-spiking EPL-INs (FSIs) perisomatically innervate MTCs with release-competent dendrites and synaptically detonate to mediate fast, short-latency recurrent and lateral inhibition. Sparse MTC synchronization supralinearly increases this high-fidelity inhibition, while sensory afferent activation combined with single-cell silencing reveals that individual FSIs account for a substantial fraction of total network-driven MTC lateral inhibition. OB output is thus powerfully shaped by detonation-driven high-fidelity perisomatic inhibition.
Collapse
Affiliation(s)
- Shawn D Burton
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Christina M Malyshko
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Nathaniel N Urban
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
7
|
Qiu G, Wang P, Rao J, Qing X, Cao C, Wang D, Mei B, Zhang J, Liu H, Yang Z, Liu X. Dexmedetomidine Inhibits Paraventricular Corticotropin-releasing Hormone Neurons that Attenuate Acute Stress-induced Anxiety-like Behavior in Mice. Anesthesiology 2024; 140:1134-1152. [PMID: 38498811 DOI: 10.1097/aln.0000000000004982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
BACKGROUND Dexmedetomidine has repeatedly shown to improve anxiety, but the precise neural mechanisms underlying this effect remain incompletely understood. This study aims to explore the role of corticotropin-releasing hormone-producing hypothalamic paraventricular nucleus (CRHPVN) neurons in mediating the anxiolytic effects of dexmedetomidine. METHODS A social defeat stress mouse model was used to evaluate the anxiolytic effects induced by dexmedetomidine through the elevated plus maze, open-field test, and measurement of serum stress hormone levels. In vivo Ca2+ signal fiber photometry and ex vivo patch-clamp recordings were used to determine the excitability of CRHPVN neurons and investigate the specific mechanism involved. CRHPVN neuron modulation was achieved through chemogenetic activation or inhibition. RESULTS Compared with saline, dexmedetomidine (40 µg/kg) alleviated anxiety-like behaviors. Additionally, dexmedetomidine reduced CRHPVN neuronal excitability. Chemogenetic activation of CRHPVN neurons decreased the time spent in the open arms of the elevated plus maze and in the central area of the open-field test. Conversely, chemogenetic inhibition of CRHPVN neurons had the opposite effect. Moreover, the suppressive impact of dexmedetomidine on CRHPVN neurons was attenuated by the α2-receptor antagonist yohimbine. CONCLUSIONS The results indicate that the anxiety-like effects of dexmedetomidine are mediated via α2-adrenergic receptor-triggered inhibition of CRHPVN neuronal excitability in the hypothalamus. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Gaolin Qiu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Peng Wang
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jin Rao
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xin Qing
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Chenchen Cao
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Dijia Wang
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Bin Mei
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jiqian Zhang
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Hu Liu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Zhilai Yang
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xuesheng Liu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Burton SD, Malyshko CM, Urban NN. Fast-spiking interneuron detonation drives high-fidelity inhibition in the olfactory bulb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592874. [PMID: 38766161 PMCID: PMC11100763 DOI: 10.1101/2024.05.07.592874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Inhibitory circuits in the mammalian olfactory bulb (OB) dynamically reformat olfactory information as it propagates from peripheral receptors to downstream cortex. To gain mechanistic insight into how specific OB interneuron types support this sensory processing, we examine unitary synaptic interactions between excitatory mitral and tufted cells (MTCs), the OB projection cells, and a conserved population of anaxonic external plexiform layer interneurons (EPL-INs) using pair and quartet whole-cell recordings in acute mouse brain slices. Physiological, morphological, neurochemical, and synaptic analyses divide EPL-INs into distinct subtypes and reveal that parvalbumin-expressing fast-spiking EPL-INs (FSIs) perisomatically innervate MTCs with release-competent dendrites and synaptically detonate to mediate fast, short-latency recurrent and lateral inhibition. Sparse MTC synchronization supralinearly increases this high-fidelity inhibition, while sensory afferent activation combined with single-cell silencing reveals that individual FSIs account for a substantial fraction of total network-driven MTC lateral inhibition. OB output is thus powerfully shaped by detonation-driven high-fidelity perisomatic inhibition.
Collapse
Affiliation(s)
- Shawn D. Burton
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | | | - Nathaniel N. Urban
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
9
|
Zhao C, Ries C, Du Y, Zhang J, Sakimura K, Itoi K, Deussing JM. Differential CRH expression level determines efficiency of Cre- and Flp-dependent recombination. Front Neurosci 2023; 17:1163462. [PMID: 37599997 PMCID: PMC10434532 DOI: 10.3389/fnins.2023.1163462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Corticotropin-releasing hormone expressing (CRH+) neurons are distributed throughout the brain and play a crucial role in shaping the stress responses. Mouse models expressing site-specific recombinases (SSRs) or reporter genes are important tools providing genetic access to defined cell types and have been widely used to address CRH+ neurons and connected brain circuits. Here, we investigated a recently generated CRH-FlpO driver line expanding the CRH system-related tool box. We directly compared it to a previously established and widely used CRH-Cre line with respect to the FlpO expression pattern and recombination efficiency. In the brain, FlpO mRNA distribution fully recapitulates the expression pattern of endogenous Crh. Combining both Crh locus driven SSRs driver lines with appropriate reporters revealed an overall coherence of respective spatial patterns of reporter gene activation validating CRH-FlpO mice as a valuable tool complementing existing CRH-Cre and reporter lines. However, a substantially lower number of reporter-expressing neurons was discerned in CRH-FlpO mice. Using an additional CRH reporter mouse line (CRH-Venus) and a mouse line allowing for conversion of Cre into FlpO activity (CAG-LSL-FlpO) in combination with intersectional and subtractive mouse genetic approaches, we were able to demonstrate that the reduced number of tdTomato reporter expressing CRH+ neurons can be ascribed to the lower recombination efficiency of FlpO compared to Cre recombinase. This discrepancy particularly manifests under conditions of low CRH expression and can be overcome by utilizing homozygous CRH-FlpO mice. These findings have direct experimental implications which have to be carefully considered when targeting CRH+ neurons using CRH-FlpO mice. However, the lower FlpO-dependent recombination efficiency also entails advantages as it provides a broader dynamic range of expression allowing for the visualization of cells showing stress-induced CRH expression which is not detectable in highly sensitive CRH-Cre mice as Cre-mediated recombination has largely been completed in all cells generally possessing the capacity to express CRH. These findings underscore the importance of a comprehensive evaluation of novel SSR driver lines prior to their application.
Collapse
Affiliation(s)
- Chen Zhao
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Clemens Ries
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Ying Du
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jingwei Zhang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Keiichi Itoi
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
10
|
Chang S, Fermani F, Lao CL, Huang L, Jakovcevski M, Di Giaimo R, Gagliardi M, Menegaz D, Hennrich AA, Ziller M, Eder M, Klein R, Cai N, Deussing JM. Tripartite extended amygdala-basal ganglia CRH circuit drives locomotor activation and avoidance behavior. SCIENCE ADVANCES 2022; 8:eabo1023. [PMID: 36383658 PMCID: PMC9668302 DOI: 10.1126/sciadv.abo1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
An adaptive stress response involves various mediators and circuits orchestrating a complex interplay of physiological, emotional, and behavioral adjustments. We identified a population of corticotropin-releasing hormone (CRH) neurons in the lateral part of the interstitial nucleus of the anterior commissure (IPACL), a subdivision of the extended amygdala, which exclusively innervate the substantia nigra (SN). Specific stimulation of this circuit elicits hyperactivation of the hypothalamic-pituitary-adrenal axis, locomotor activation, and avoidance behavior contingent on CRH receptor type 1 (CRHR1) located at axon terminals in the SN, which originate from external globus pallidus (GPe) neurons. The neuronal activity prompting the observed behavior is shaped by IPACLCRH and GPeCRHR1 neurons coalescing in the SN. These results delineate a previously unidentified tripartite CRH circuit functionally connecting extended amygdala and basal ganglia nuclei to drive locomotor activation and avoidance behavior.
Collapse
Affiliation(s)
- Simon Chang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Federica Fermani
- Molecules-Signaling-Development, Max Planck Institute for Biological Intelligence (in foundation), Martinsried, Germany
| | - Chu-Lan Lao
- Collaborative Research Centre/Sonderforschungsbereich (SFB) 870, Viral Vector Facility, Munich, Germany
| | - Lianyun Huang
- Translational Genetics, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Mira Jakovcevski
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rossella Di Giaimo
- Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Biology, University of Naples Federico II, Naples Italy
| | - Miriam Gagliardi
- Genomics of Complex Diseases, Max Planck Institute of Psychiatry, Munich, Germany
| | - Danusa Menegaz
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alexandru Adrian Hennrich
- Max von Pettenkofer-Institute Virology, Medical Faculty, and Gene Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Michael Ziller
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Matthias Eder
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rüdiger Klein
- Molecules-Signaling-Development, Max Planck Institute for Biological Intelligence (in foundation), Martinsried, Germany
| | - Na Cai
- Translational Genetics, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
11
|
Liu Y, Li S, Zhang X, Wang L, Li Z, Wu W, Qin X, Zhou J, Ma C, Meng W, Kuang X, Yin F, Xia Q, Jiang B, Yang Y. Corticotropin releasing factor neurons in the visual cortex mediate long-term changes in visual function induced by early adversity. Neurobiol Stress 2022; 21:100504. [DOI: 10.1016/j.ynstr.2022.100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
|
12
|
Wagle M, Zarei M, Lovett-Barron M, Poston KT, Xu J, Ramey V, Pollard KS, Prober DA, Schulkin J, Deisseroth K, Guo S. Brain-wide perception of the emotional valence of light is regulated by distinct hypothalamic neurons. Mol Psychiatry 2022; 27:3777-3793. [PMID: 35484242 PMCID: PMC9613822 DOI: 10.1038/s41380-022-01567-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/25/2022] [Accepted: 04/06/2022] [Indexed: 02/08/2023]
Abstract
Salient sensory stimuli are perceived by the brain, which guides both the timing and outcome of behaviors in a context-dependent manner. Light is such a stimulus, which is used in treating mood disorders often associated with a dysregulated hypothalamic-pituitary-adrenal stress axis. Relationships between the emotional valence of light and the hypothalamus, and how they interact to exert brain-wide impacts remain unclear. Employing larval zebrafish with analogous hypothalamic systems to mammals, we show in free-swimming animals that hypothalamic corticotropin releasing factor (CRFHy) neurons promote dark avoidance, and such role is not shared by other hypothalamic peptidergic neurons. Single-neuron projection analyses uncover processes extended by individual CRFHy neurons to multiple targets including sensorimotor and decision-making areas. In vivo calcium imaging uncovers a complex and heterogeneous response of individual CRFHy neurons to the light or dark stimulus, with a reduced overall sum of CRF neuronal activity in the presence of light. Brain-wide calcium imaging under alternating light/dark stimuli further identifies distinct and distributed photic response neuronal types. CRFHy neuronal ablation increases an overall representation of light in the brain and broadly enhances the functional connectivity associated with an exploratory brain state. These findings delineate brain-wide photic perception, uncover a previously unknown role of CRFHy neurons in regulating the perception and emotional valence of light, and suggest that light therapy may alleviate mood disorders through reducing an overall sum of CRF neuronal activity.
Collapse
Affiliation(s)
- Mahendra Wagle
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA
| | - Mahdi Zarei
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA
| | - Matthew Lovett-Barron
- Department of Bioengineering, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kristina Tyler Poston
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA
| | - Jin Xu
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Vince Ramey
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Invitae Inc., San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science & Biotechnology, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - David A Prober
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jay Schulkin
- Department of Obstetrics & Gynecology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA.
- Programs in Human Genetics and Biological Sciences, Kavli Institute of Fundamental Neuroscience, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Bakar Aging Research Institute, University of California, San Francisco, CA, 94143-2811, USA.
| |
Collapse
|
13
|
Eiden LE, Hernández VS, Jiang SZ, Zhang L. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell Mol Life Sci 2022; 79:492. [PMID: 35997826 PMCID: PMC11072502 DOI: 10.1007/s00018-022-04451-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
Neuropeptides are expressed in cell-specific patterns throughout mammalian brain. Neuropeptide gene expression has been useful for clustering neurons by phenotype, based on single-cell transcriptomics, and for defining specific functional circuits throughout the brain. How neuropeptides function as first messengers in inter-neuronal communication, in cooperation with classical small-molecule amine transmitters (SMATs) is a current topic of systems neurobiology. Questions include how neuropeptides and SMATs cooperate in neurotransmission at the molecular, cellular and circuit levels; whether neuropeptides and SMATs always co-exist in neurons; where neuropeptides and SMATs are stored in the neuron, released from the neuron and acting, and at which receptors, after release; and how neuropeptides affect 'classical' transmitter function, both directly upon co-release, and indirectly, via long-term regulation of gene transcription and neuronal plasticity. Here, we review an extensive body of data about the distribution of neuropeptides and their receptors, their actions after neuronal release, and their function based on pharmacological and genetic loss- and gain-of-function experiments, that addresses these questions, fundamental to understanding brain function, and development of neuropeptide-based, and potentially combinatorial peptide/SMAT-based, neurotherapeutics.
Collapse
Affiliation(s)
- Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA.
| | - Vito S Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sunny Z Jiang
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
14
|
Huang C, Wang Y, Chen P, Shan QH, Wang H, Ding LF, Bi GQ, Zhou JN. Single-cell reconstruction reveals input patterns and pathways into corticotropin-releasing factor neurons in the central amygdala in mice. Commun Biol 2022; 5:322. [PMID: 35388122 PMCID: PMC8986827 DOI: 10.1038/s42003-022-03260-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
Corticotropin-releasing factor (CRF) neurons are one of the most densely distributed cell types in the central amygdala (CeA), and are involved in a wide range of behaviors including anxiety and learning. However, the fundamental input circuits and patterns of CeA-CRF neurons are still unclear. Here, we generate a monosynaptic-input map onto CeA-CRF neurons at single-cell resolution via a retrograde rabies-virus system. We find all inputs are located in 44 nested subregions that directly innervate CeA-CRF neurons; most of them are top-down convergent inputs expressing Ca2+/calmodulin-dependent protein kinase II, and are centralized in cortex, especially in the layer 4 of the somatosensory cortex, which may directly relay information from the thalamus. While the bottom-up divergent inputs have the highest proportion of glutamate decarboxylase expression. Finally, en passant structures of single input neuron are revealed by in-situ reconstruction in a modified 3D-reference atlas, represented by a Periaqueductal gray-Subparafascicular nucleus-Subthalamic nucleus-Globus pallidus-Caudoputamen-CeA pathway. Taken together, our findings provide morphological and connectivity properties of inputs onto CeA-CRF neurons, which may provide insights for future studies interrogating circuit mechanisms of CeA-CRF neurons in mediating various functions. Viral retrograde tracing identifies input regions and patterns into the corticotropin releasing factor-expressing neurons in central amygdala, providing an important resource to disentangle the role of these cells in fear and anxiety.
Collapse
Affiliation(s)
- Chuan Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Peng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Hong Shan
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Hao Wang
- National Engineering Laboratory for Brain-inspired Intelligence Technology and Application, University of Science and Technology of China, Hefei, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Lu-Feng Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Guo-Qiang Bi
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiang-Ning Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
15
|
Lichlyter DA, Krumm ZA, Golde TA, Doré S. Role of CRF and the hypothalamic-pituitary-adrenal axis in stroke: revisiting temporal considerations and targeting a new generation of therapeutics. FEBS J 2022; 290:1986-2010. [PMID: 35108458 DOI: 10.1111/febs.16380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Ischaemic neurovascular stroke represents a leading cause of death in the developed world. Preclinical and human epidemiological evidence implicates the corticotropin-releasing factor (CRF) family of neuropeptides as mediators of acute neurovascular injury pathology. Preclinical investigations of the role of CRF, CRF receptors and CRF-dependent activation of the hypothalamic-pituitary-adrenal (HPA) axis have pointed toward a tissue-specific and temporal relationship between activation of these pathways and physiological outcomes. Based on the literature, the major phases of ischaemic stroke aetiology may be separated into an acute phase in which CRF and anti-inflammatory stress signalling are beneficial and a chronic phase in which these contribute to neural degeneration, toxicity and apoptotic signalling. Significant gaps in knowledge remain regarding the pathway, temporality and systemic impact of CRF signalling and stress biology in neurovascular injury progression. Heterogeneity among experimental designs poses a challenge to defining the apparent reciprocal relationship between neurological injury and stress metabolism. Despite these challenges, it is our opinion that the elucidated temporality may be best matched with an antibody against CRF with a half-life of days to weeks as opposed to minutes to hours as with small-molecule CRF receptor antagonists. This state-of-the-art review will take a multipronged approach to explore the expected potential benefit of a CRF antibody by modulating CRF and corticotropin-releasing factor receptor 1 signalling, glucocorticoids and autonomic nervous system activity. Additionally, this review compares the modulation of CRF and HPA axis activity in neuropsychiatric diseases and their counterpart outcomes post-stroke and assess lessons learned from antibody therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel A Lichlyter
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Zachary A Krumm
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd A Golde
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Departments of Neurology, Psychiatry, Pharmaceutics, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|