1
|
de los Angeles Becerra Rodriguez M, Gonzalez Muñoz E, Moore T. Oligodendrocyte-specific expression of PSG8- AS1 suggests a role in myelination with prognostic value in oligodendroglioma. Noncoding RNA Res 2024; 9:1061-1068. [PMID: 39022681 PMCID: PMC11254506 DOI: 10.1016/j.ncrna.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
The segmentally duplicated Pregnancy-specific glycoprotein (PSG) locus on chromosome 19q13 may be one of the most rapidly evolving in the human genome. It comprises ten coding genes (PSG1-9, 11) and one predominantly non-coding gene (PSG10) that are expressed in the placenta and gut, in addition to several poorly characterized long non-coding RNAs. We report that long non-coding RNA PSG8-AS1 has an oligodendrocyte-specific expression pattern and is co-expressed with genes encoding key myelin constituents. PSG8-AS1 exhibits two peaks of expression during human brain development coinciding with the most active periods of oligodendrogenesis and myelination. PSG8-AS1 orthologs were found in the genomes of several primates but significant expression was found only in the human, suggesting a recent evolutionary origin of its proposed role in myelination. Additionally, because co-deletion of chromosomes 1p/19q is a genomic marker of oligodendroglioma, expression of PSG8-AS1 was examined in these tumors. PSG8-AS1 may be a promising diagnostic biomarker for glioma, with prognostic value in oligodendroglioma.
Collapse
Affiliation(s)
- Maria de los Angeles Becerra Rodriguez
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- SFI Centre for Research Training in Genomics Data Science, University College Cork, Cork, Ireland
| | - Elena Gonzalez Muñoz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590, Málaga, Spain
- Universidad de Malaga, Dpto. Biología Celular, Genética y Fisiología, 29071, Málaga, Spain
| | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Emery B, Wood TL. Regulators of Oligodendrocyte Differentiation. Cold Spring Harb Perspect Biol 2024; 16:a041358. [PMID: 38503504 PMCID: PMC11146316 DOI: 10.1101/cshperspect.a041358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.
Collapse
Affiliation(s)
- Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| |
Collapse
|
3
|
Wei H, Wu X, Withrow J, Cuevas-Diaz Duran R, Singh S, Chaboub LS, Rakshit J, Mejia J, Rolfe A, Herrera JJ, Horner PJ, Wu JQ. Glial progenitor heterogeneity and key regulators revealed by single-cell RNA sequencing provide insight to regeneration in spinal cord injury. Cell Rep 2023; 42:112486. [PMID: 37149868 PMCID: PMC10511029 DOI: 10.1016/j.celrep.2023.112486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/12/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023] Open
Abstract
Recent studies have revealed the heterogeneous nature of astrocytes; however, how diverse constituents of astrocyte-lineage cells are regulated in adult spinal cord after injury and contribute to regeneration remains elusive. We perform single-cell RNA sequencing of GFAP-expressing cells from sub-chronic spinal cord injury models and identify and compare with the subpopulations in acute-stage data. We find subpopulations with distinct functional enrichment and their identities defined by subpopulation-specific transcription factors and regulons. Immunohistochemistry, RNAscope experiments, and quantification by stereology verify the molecular signature, location, and morphology of potential resident neural progenitors or neural stem cells in the adult spinal cord before and after injury and uncover the populations of the intermediate cells enriched in neuronal genes that could potentially transition into other subpopulations. This study has expanded the knowledge of the heterogeneity and cell state transition of glial progenitors in adult spinal cord before and after injury.
Collapse
Affiliation(s)
- Haichao Wei
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Xizi Wu
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Joseph Withrow
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, Mexico
| | - Simranjit Singh
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Lesley S Chaboub
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jyotirmoy Rakshit
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Julio Mejia
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Andrew Rolfe
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Juan J Herrera
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, UTHealth, Houston, TX 77030, USA
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Jia Qian Wu
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Murtaj V, Butti E, Martino G, Panina-Bordignon P. Endogenous neural stem cells characterization using omics approaches: Current knowledge in health and disease. Front Cell Neurosci 2023; 17:1125785. [PMID: 37091923 PMCID: PMC10113633 DOI: 10.3389/fncel.2023.1125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Neural stem cells (NSCs), an invaluable source of neuronal and glial progeny, have been widely interrogated in the last twenty years, mainly to understand their therapeutic potential. Most of the studies were performed with cells derived from pluripotent stem cells of either rodents or humans, and have mainly focused on their potential in regenerative medicine. High-throughput omics technologies, such as transcriptomics, epigenetics, proteomics, and metabolomics, which exploded in the past decade, represent a powerful tool to investigate the molecular mechanisms characterizing the heterogeneity of endogenous NSCs. The transition from bulk studies to single cell approaches brought significant insights by revealing complex system phenotypes, from the molecular to the organism level. Here, we will discuss the current literature that has been greatly enriched in the “omics era”, successfully exploring the nature and function of endogenous NSCs and the process of neurogenesis. Overall, the information obtained from omics studies of endogenous NSCs provides a sharper picture of NSCs function during neurodevelopment in healthy and in perturbed environments.
Collapse
Affiliation(s)
- Valentina Murtaj
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Erica Butti
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Paola Panina-Bordignon
| |
Collapse
|
5
|
Selcen I, Prentice E, Casaccia P. The epigenetic landscape of oligodendrocyte lineage cells. Ann N Y Acad Sci 2023; 1522:24-41. [PMID: 36740586 PMCID: PMC10085863 DOI: 10.1111/nyas.14959] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epigenetic landscape of oligodendrocyte lineage cells refers to the cell-specific modifications of DNA, chromatin, and RNA that define a unique gene expression pattern of functionally specialized cells. Here, we focus on the epigenetic changes occurring as progenitors differentiate into myelin-forming cells and respond to the local environment. First, modifications of DNA, RNA, nucleosomal histones, key principles of chromatin organization, topologically associating domains, and local remodeling will be reviewed. Then, the relationship between epigenetic modulators and RNA processing will be explored. Finally, the reciprocal relationship between the epigenome as a determinant of the mechanical properties of cell nuclei and the target of mechanotransduction will be discussed. The overall goal is to provide an interpretative key on how epigenetic changes may account for the heterogeneity of the transcriptional profiles identified in this lineage.
Collapse
Affiliation(s)
- Ipek Selcen
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, New York, USA.,Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA
| | - Emily Prentice
- Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA.,Graduate Program in Biology, The Graduate Center of The City University of New York, New York, New York, USA
| | - Patrizia Casaccia
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, New York, USA.,Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA.,Graduate Program in Biology, The Graduate Center of The City University of New York, New York, New York, USA
| |
Collapse
|
6
|
Shao P, Liu H, Xue Y, Xiang T, Sun Z. LncRNA HOTTIP promotes inflammatory response in acute gouty arthritis via miR-101-3p/BRD4 axis. Int J Rheum Dis 2023; 26:305-315. [PMID: 36482051 DOI: 10.1111/1756-185x.14514] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Acute gouty arthritis (AGA) is characterized by the accumulation of pro-inflammatory factors. This research aimed to examine the regulation of long non-coding RNA HOXA distal transcript antisense RNA (HOTTIP) in AGA on inflammation and its potential mechanisms. METHODS Serum levels of HOTTIP in AGA patients were examined by reverse-transcription quantitative polymerase chain reaction. The receiver operating characteristic curve was performed in the diagnosis of AGA patients. Monosodium urate (MSU) stimulation of THP-1-derived macrophages was used to establish an in vitro AGA model. Enzyme-linked immunosorbent assay was carried out to assess the levels of pro-inflammatory cytokines. Pearson correlation was applied to examine the correlation. RNA immunoprecipitation assay and dual-luciferase reporter assay were employed to identify the targeting relationship between miR-101-3p and HOTTIP or bromodomain-containing 4 (BRD4). RESULTS HOTTIP and BRD4 were statistically overexpressed in AGA patients compared with controls, while miR-101-3p was reduced (P < 0.05). Serum HOTTIP can significantly distinguish AGA patients from healthy controls. HOTTIP bound with miR-101-3p then augmented BRD4 via a competing endogenous RNA mechanism. Additionally, HOTTIP levels were elevated in a dose-dependent manner by MSU (P < 0.05). Weakened HOTTIP significantly inhibited MSU-induced release of pro-inflammatory factors interleukin (IL)-1β, IL-8, and transforming growth factor-α in macrophages (P < 0.05), but this inhibition was reversed by silencing miR-101-3p (P < 0.05). CONCLUSION In short, HOTTIP contributes to inflammation via miR-101-3p/BRD4 axis, and serves as a new diagnostic biomarker. This study offers a renewed perspective on the diagnosis and treatment of AGA.
Collapse
Affiliation(s)
- Ping Shao
- Department of Rheumatology and Immunology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Huijie Liu
- Department of Rheumatology and Immunology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yanyan Xue
- Department of Rheumatology and Immunology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Ting Xiang
- Department of Rheumatology and Immunology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Zhanjuan Sun
- Department of Rheumatology and Immunology, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
7
|
Gao T, Qian T, Wang T, Su Y, Qiu H, Tang W, Xing Q, Wang L. T0901317, a liver X receptor agonist, ameliorates perinatal white matter injury induced by ischemia and hypoxia in neonatal rats. Neurosci Lett 2023; 793:136994. [PMID: 36460235 DOI: 10.1016/j.neulet.2022.136994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Perinatal white matter injury (PWMI) can lead to permanent neurological damage in preterm infants and bring a huge economic burden to their families and society. Liver X receptors (LXRs) are transcription factors that have been confirmed to mediate the myelination process under physiological conditions and are involved in regulating neurogenesis in adult animal models of acute and chronic cerebral ischemia. However, the role of LXRs in PWMI induced by both ischemic and hypoxic stimulation in the immature brain has not been reported. Herein, we investigated the role of LXRs in a neonatal rat model of white matter loss after hypoxia-ischemia (HI) injury through intraperitoneal injection of the LXR agonist T0901317 (T09) 1 day before and 15 min postinjury. The in vivo data showed that T09 treatment significantly facilitated myelination and ameliorated neurological behavior after PWMI. Moreover, T09 enhanced the proliferation of oligodendrocyte lineage cells and reduced microgliosis and astrogliosis in the microenvironment for oligodendrocytes (OLs), maintaining a healthy microenvironment for myelinating OLs. In vitro data suggested that the expression of the myelin-related genes Plp and Cnpase was increased in OLN-93 cells after T09 intervention compared with OLN-93 cells injured by oxygen and glucose deprivation (OGD). In primary mixed astrocytes/microglia cells, T09 also reduced the expression of Il6, Cox2, Tnfa and Il10 that was induced by OGD. Mechanistically, the mRNA expression level and the protein level of ATP binding cassette subfamily A member 1 (Abca1) decreased after HI injury, and the protective effect of T09 might be related to the activation of the LXRβ-ABCA1 signaling pathway. Our study revealed the protective role of LXRs in myelination and white matter homeostasis, providing a potential therapeutic option for PWMI.
Collapse
Affiliation(s)
- Ting Gao
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China; Department of Neonatology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Tianyang Qian
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Tianwei Wang
- Department of Neurosurgery, Shanghai Jiaotong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Yu Su
- Department of Neonatology, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Han Qiu
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wan Tang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Qinghe Xing
- Department of Neonatology, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Laishuan Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China; Department of Neonatology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
8
|
Wang J, Yang L, Jiang M, Zhao C, Liu X, Berry K, Waisman A, Langseth AJ, Novitch BG, Bergles DE, Nishiyama A, Lu QR. Olig2 Ablation in Immature Oligodendrocytes Does Not Enhance CNS Myelination and Remyelination. J Neurosci 2022; 42:8542-8555. [PMID: 36198499 PMCID: PMC9665935 DOI: 10.1523/jneurosci.0237-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
The oligodendrocyte (OL) lineage transcription factor Olig2 is expressed throughout oligodendroglial development and is essential for oligodendroglial progenitor specification and differentiation. It was previously reported that deletion of Olig2 enhanced the maturation and myelination of immature OLs and accelerated the remyelination process. However, by analyzing multiple Olig2 conditional KO mouse lines (male and female), we conclude that Olig2 has the opposite effect and is required for OL maturation and remyelination. We found that deletion of Olig2 in immature OLs driven by an immature OL-expressing Plp1 promoter resulted in defects in OL maturation and myelination, and did not enhance remyelination after demyelination. Similarly, Olig2 deletion during premyelinating stages in immature OLs using Mobp or Mog promoter-driven Cre lines also did not enhance OL maturation in the CNS. Further, we found that Olig2 was not required for myelin maintenance in mature OLs but was critical for remyelination after lysolecithin-induced demyelinating injury. Analysis of genomic occupancy in immature and mature OLs revealed that Olig2 targets the enhancers of key myelination-related genes for OL maturation from immature OLs. Together, by leveraging multiple immature OL-expressing Cre lines, these studies indicate that Olig2 is essential for differentiation and myelination of immature OLs and myelin repair. Our findings raise fundamental questions about the previously proposed role of Olig2 in opposing OL myelination and highlight the importance of using Cre-dependent reporter(s) for lineage tracing in studying cell state progression.SIGNIFICANCE STATEMENT Identification of the regulators that promote oligodendrocyte (OL) myelination and remyelination is important for promoting myelin repair in devastating demyelinating diseases. Olig2 is expressed throughout OL lineage development. Ablation of Olig2 was reported to induce maturation, myelination, and remyelination from immature OLs. However, lineage-mapping analysis of Olig2-ablated cells was not conducted. Here, by leveraging multiple immature OL-expressing Cre lines, we observed no evidence that Olig2 ablation promotes maturation or remyelination of immature OLs. Instead, we find that Olig2 is required for immature OL maturation, myelination, and myelin repair. These data raise fundamental questions about the proposed inhibitory role of Olig2 against OL maturation and remyelination. Our findings highlight the importance of validating genetic manipulation with cell lineage tracing in studying myelination.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Lijun Yang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Minqing Jiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Chuntao Zhao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Xuezhao Liu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Kalen Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Ari Waisman
- Institute for Molecular Medicine, Langenbeckstrasse 1, Mainz, 55131, Germany
| | - Abraham J Langseth
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Bennett G Novitch
- Department of Neurobiology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, Maryland 21205
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
9
|
Zhang J, Guan M, Zhou X, Berry K, He X, Lu QR. Long Noncoding RNAs in CNS Myelination and Disease. Neuroscientist 2022; 29:287-301. [PMID: 35373640 DOI: 10.1177/10738584221083919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myelination by oligodendrocytes is crucial for neuronal survival and function, and defects in myelination or failure in myelin repair can lead to axonal degeneration and various neurological diseases. At present, the factors that promote myelination and overcome the remyelination block in demyelinating diseases are poorly defined. Although the roles of protein-coding genes in oligodendrocyte differentiation have been extensively studied, the majority of the mammalian genome is transcribed into noncoding RNAs, and the functions of these molecules in myelination are poorly characterized. Long noncoding RNAs (lncRNAs) regulate transcription at multiple levels, providing spatiotemporal control and robustness for cell type-specific gene expression and physiological functions. lncRNAs have been shown to regulate neural cell-type specification, differentiation, and maintenance of cell identity, and dysregulation of lncRNA function has been shown to contribute to neurological diseases. In this review, we discuss recent advances in our understanding of the functions of lncRNAs in oligodendrocyte development and myelination as well their roles in neurological diseases and brain tumorigenesis. A more systematic characterization of lncRNA functional networks will be instrumental for a better understanding of CNS myelination, myelin disorders, and myelin repair.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Menglong Guan
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xianyao Zhou
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Kalen Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xuelian He
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
10
|
Seeker LA, Williams A. Oligodendroglia heterogeneity in the human central nervous system. Acta Neuropathol 2022; 143:143-157. [PMID: 34860266 PMCID: PMC8742806 DOI: 10.1007/s00401-021-02390-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/30/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
It is the centenary of the discovery of oligodendrocytes and we are increasingly aware of their importance in the functioning of the brain in development, adult learning, normal ageing and in disease across the life course, even in those diseases classically thought of as neuronal. This has sparked more interest in oligodendroglia for potential therapeutics for many neurodegenerative/neurodevelopmental diseases due to their more tractable nature as a renewable cell in the central nervous system. However, oligodendroglia are not all the same. Even from the first description, differences in morphology were described between the cells. With advancing techniques to describe these differences in human tissue, the complexity of oligodendroglia is being discovered, indicating apparent functional differences which may be of critical importance in determining vulnerability and response to disease, and targeting of potential therapeutics. It is timely to review the progress we have made in discovering and understanding oligodendroglial heterogeneity in health and neuropathology.
Collapse
Affiliation(s)
- Luise A Seeker
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
11
|
Lei J, Guo S, Li K, Tian J, Zong B, Ai T, Peng Y, Zhang Y, Liu S. Lysophosphatidic acid receptor 6 regulated by miR-27a-3p attenuates tumor proliferation in breast cancer. Clin Transl Oncol 2021; 24:503-516. [PMID: 34510318 PMCID: PMC8885522 DOI: 10.1007/s12094-021-02704-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
Purpose Lysophosphatidic acid (LPA) is a bioactive molecule which participates in many physical and pathological processes. Although LPA receptor 6 (LPAR6), the last identified LPA receptor, has been reported to have diverse effects in multiple cancers, including breast cancer, its effects and functioning mechanisms are not fully known. Methods Multiple public databases were used to investigate the mRNA expression of LPAR6, its prognostic value, and potential mechanisms in breast cancer. Western blotting was performed to validate the differential expression of LPAR6 in breast cancer tissues and their adjacent tissues. Furthermore, in vitro experiments were used to explore the effects of LPAR6 on breast cancer. Additionally, TargetScan and miRWalk were used to identify potential upstream regulating miRNAs and validated the relationship between miR-27a-3p and LPAR6 via real-time polymerase chain reaction and an in vitro rescue assay. Results LPAR6 was significantly downregulated in breast cancer at transcriptional and translational levels. Decreased LPAR6 expression in breast cancer is significantly correlated with poor overall survival, disease-free survival, and distal metastasis-free survival, particularly for hormone receptor-positive patients, regardless of lymph node metastatic status. In vitro gain and loss-of-function assays indicated that LPAR6 attenuated breast cancer cell proliferation. The analyses of TCGA and METABRIC datasets revealed that LPAR6 may regulate the cell cycle signal pathway. Furthermore, the expression of LPAR6 could be positively regulated by miR-27a-3p. The knockdown of miR-27a-3p increased cell proliferation, and ectopic expression of LPAR6 could partly rescue this phenotype. Conclusion LPAR6 acts as a tumor suppressor in breast cancer and is positively regulated by miR-27a-3p. Supplementary Information The online version contains supplementary material available at 10.1007/s12094-021-02704-8.
Collapse
Affiliation(s)
- J Lei
- Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - S Guo
- Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - K Li
- Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - J Tian
- Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - B Zong
- Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - T Ai
- Department of Cardiology, Chongqing Kanghua Zhonglian Cardiovascular Hospital, Jiangbei District, No. 168 Haier Rd, Chongqing, 400016, China
| | - Y Peng
- Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Y Zhang
- Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - S Liu
- Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
12
|
Sun H, Wang Y, Wang Y, Ji F, Wang A, Yang M, He X, Li L. Bivalent Regulation and Related Mechanisms of H3K4/27/9me3 in Stem Cells. Stem Cell Rev Rep 2021; 18:165-178. [PMID: 34417934 DOI: 10.1007/s12015-021-10234-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2021] [Indexed: 12/24/2022]
Abstract
The "bivalent domain" is a unique histone modification region consisting of two histone tri-methylation modifications. Over the years, it has been revealed that the maintenance and dynamic changes of the bivalent domains play a vital regulatory role in the differentiation of various stem cell systems, as well as in other cells, such as immunomodulation. Tri-methylation modifications involved in the formation of the bivalent domains are interrelated and mutually regulated, thus regulating many life processes of cells. Tri-methylation of histone H3 at lysine 4 (H3K4me3), tri-methylation of histone H3 at lysine 9 (H3K9me3) and tri-methylation of histone H3 at lysine 27 (H3K27me3) are the main tri-methylation modifications involved in the formation of bivalent domains. The three form different bivalent domains in pairs. Furthermore, it is equally clear that H3K4me3 is a positive regulator of transcription and that H3K9me3/H3K27me3 are negative regulators. Enzymes related to the regulation of histone methylation play a significant role in the "homeostasis" and "breaking homeostasis" of the bivalent domains. Bivalent domains regulate target genes, upstream transcription, downstream targeting regulation and related cytokines during the establishment and breakdown of homeostasis, and exert the specific regulation of stem cells. Indeed, a unified mechanism to explain the bivalent modification in all stem cells has been difficult to define, and whether the bivalent modification is antagonistic in inducing the differentiation of homologous stem cells is controversial. In this review, we focus on the different bivalent modifications in several key stem cells and explore the main mechanisms and effects of these modifications involved. Finally, we discussed the close relationship between bivalent domains and immune cells, and put forward the prospect of the application of bivalent domains in the field of stem cells.
Collapse
Affiliation(s)
- Han Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yin Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Ying Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Feng Ji
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - An Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|