1
|
Tuna R, Yi W, Crespo Cruz E, Romero JP, Ren Y, Guan J, Li Y, Deng Y, Bluestein D, Liu ZL, Sheriff J. Platelet Biorheology and Mechanobiology in Thrombosis and Hemostasis: Perspectives from Multiscale Computation. Int J Mol Sci 2024; 25:4800. [PMID: 38732019 PMCID: PMC11083691 DOI: 10.3390/ijms25094800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Thrombosis is the pathological clot formation under abnormal hemodynamic conditions, which can result in vascular obstruction, causing ischemic strokes and myocardial infarction. Thrombus growth under moderate to low shear (<1000 s-1) relies on platelet activation and coagulation. Thrombosis at elevated high shear rates (>10,000 s-1) is predominantly driven by unactivated platelet binding and aggregating mediated by von Willebrand factor (VWF), while platelet activation and coagulation are secondary in supporting and reinforcing the thrombus. Given the molecular and cellular level information it can access, multiscale computational modeling informed by biology can provide new pathophysiological mechanisms that are otherwise not accessible experimentally, holding promise for novel first-principle-based therapeutics. In this review, we summarize the key aspects of platelet biorheology and mechanobiology, focusing on the molecular and cellular scale events and how they build up to thrombosis through platelet adhesion and aggregation in the presence or absence of platelet activation. In particular, we highlight recent advancements in multiscale modeling of platelet biorheology and mechanobiology and how they can lead to the better prediction and quantification of thrombus formation, exemplifying the exciting paradigm of digital medicine.
Collapse
Affiliation(s)
- Rukiye Tuna
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA; (R.T.); (E.C.C.); (Z.L.L.)
| | - Wenjuan Yi
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA; (R.T.); (E.C.C.); (Z.L.L.)
| | - Esmeralda Crespo Cruz
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA; (R.T.); (E.C.C.); (Z.L.L.)
| | - JP Romero
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA; (R.T.); (E.C.C.); (Z.L.L.)
| | - Yi Ren
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32304, USA
| | - Jingjiao Guan
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA; (R.T.); (E.C.C.); (Z.L.L.)
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32304, USA
| | - Yan Li
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA; (R.T.); (E.C.C.); (Z.L.L.)
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32304, USA
| | - Yuefan Deng
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Zixiang Leonardo Liu
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA; (R.T.); (E.C.C.); (Z.L.L.)
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32304, USA
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
2
|
Coste B, Delmas P. PIEZO Ion Channels in Cardiovascular Functions and Diseases. Circ Res 2024; 134:572-591. [PMID: 38422173 DOI: 10.1161/circresaha.123.322798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The cardiovascular system provides blood supply throughout the body and as such is perpetually applying mechanical forces to cells and tissues. Thus, this system is primed with mechanosensory structures that respond and adapt to changes in mechanical stimuli. Since their discovery in 2010, PIEZO ion channels have dominated the field of mechanobiology. These have been proposed as the long-sought-after mechanosensitive excitatory channels involved in touch and proprioception in mammals. However, more and more pieces of evidence point to the importance of PIEZO channels in cardiovascular activities and disease development. PIEZO channel-related cardiac functions include transducing hemodynamic forces in endothelial and vascular cells, red blood cell homeostasis, platelet aggregation, and arterial blood pressure regulation, among others. PIEZO channels contribute to pathological conditions including cardiac hypertrophy and pulmonary hypertension and congenital syndromes such as generalized lymphatic dysplasia and xerocytosis. In this review, we highlight recent advances in understanding the role of PIEZO channels in cardiovascular functions and diseases. Achievements in this quickly expanding field should open a new road for efficient control of PIEZO-related diseases in cardiovascular functions.
Collapse
Affiliation(s)
- Bertrand Coste
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 - INRAE 1260, Marseille, France
| | - Patrick Delmas
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 - INRAE 1260, Marseille, France
| |
Collapse
|
3
|
Setiabakti NM, Tarlac V, Larsson P, Hamilton JR. PI3KC2α inhibition is antithrombotic in blood from hypercholesterolemic mice. J Thromb Haemost 2024; 22:249-254. [PMID: 37827379 DOI: 10.1016/j.jtha.2023.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Current antiplatelet agents exhibit reduced antithrombotic efficacy in high-risk populations such as populations with hypercholesterolemia. The class II PI3-kinase, PI3KC2α, is a recently discovered target for novel antiplatelet therapy. PI3KC2α inhibition is antithrombotic in healthy mouse models, but whether this is preserved in hypercholesterolemia remains unknown. OBJECTIVES This study aimed to examine whether genetic deficiency or pharmacologic inhibition of PI3KC2α provides antithrombotic effects in blood from hypercholesterolemic mice. METHODS Hypercholesterolemic PI3KC2α-deficient mice were generated by breeding into an ApoE-/- background. Thrombosis was examined using an ex vivo whole blood thrombosis assay. The effect of pharmacologic inhibition of PI3KC2α was examined in whole blood from ApoE-/- mice treated with the PI3KC2α inhibitor MIPS-21335. RESULTS ApoE-/- mice exhibited the anticipated prothrombotic effect of hypercholesterolemia, with a 1.5-fold increase in thrombus volume in blood from ApoE-/- vs wild-type mice. This prothrombotic phenotype in blood from hypercholesterolemic mice was significantly reduced with PI3KC2α deficiency. Acute pharmacologic inhibition of PI3KC2α with MIPS-21335 similarly reduced thrombosis in blood from ApoE-/- mice. CONCLUSION These findings demonstrate that targeting PI3KC2α results in a potent antithrombotic effect in hypercholesterolemic mice and suggest that PI3KC2α is a promising target for antithrombotic therapy in patients with hypercholesterolemia at a high risk of thrombotic events.
Collapse
Affiliation(s)
- Natasha M Setiabakti
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Volga Tarlac
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Pia Larsson
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW This review highlights how the perception of platelet function is evolving based on recent insights into platelet mechanobiology. RECENT FINDINGS The mechanosensitive ion channel Piezo1 mediates activation of free-flowing platelets under conditions of flow acceleration through mechanisms independent of adhesion receptors and classical activation pathways. Interference with the initiation of platelet migration or with the phenotypic switch of migrating platelets to a procoagulant state aggravates inflammatory bleeding. Mechanosensing of biochemical and biophysical microenvironmental cues during thrombus formation feed into platelet contractile force generation. Measurements of single platelet contraction and bulk clot retraction show promise to identify individuals at risk for hemorrhage. SUMMARY New findings unravel novel mechanotransduction pathways and effector functions in platelets, establishing mechanobiology as a pivotal component of platelet function. These insights highlight limitations of existing treatments and offer new potential therapeutic approaches and diagnostic avenues based on mechanobiological principles. Further extensive research is required to distinguish between core hemostatic and pathological mechanisms influenced by platelet mechanosensing.
Collapse
Affiliation(s)
- Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences
- Irish Centre for Vascular Biology
| | - Martin Kenny
- UCD Conway SPHERE Research Group
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Smita Patil
- School of Pharmacy and Biomolecular Sciences
- Irish Centre for Vascular Biology
| |
Collapse
|
5
|
Evtugina NG, Peshkova AD, Khabirova AI, Andrianova IA, Abdullayeva S, Ayombil F, Shepeliuk T, Grishchuk EL, Ataullakhanov FI, Litvinov RI, Weisel JW. Activation of Piezo1 channels in compressed red blood cells augments platelet-driven contraction of blood clots. J Thromb Haemost 2023; 21:2418-2429. [PMID: 37268065 PMCID: PMC10949619 DOI: 10.1016/j.jtha.2023.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Piezo1 is a mechanosensitive cationic channel that boosts intracellular [Ca2+]i. Compression of red blood cells (RBCs) during platelet-driven contraction of blood clots may cause the activation of Piezo1. OBJECTIVES To establish relationships between Piezo1 activity and blood clot contraction. METHODS Effects of a Piezo1 agonist, Yoda1, and antagonist, GsMTx-4, on clot contraction in vitro were studied in human blood containing physiological [Ca2+]. Clot contraction was induced by exogenous thrombin. Activation of Piezo1 was assessed by Ca2+ influx in RBCs and with other functional and morphologic features. RESULTS Piezo1 channels in compressed RBCs are activated naturally during blood clot contraction and induce an upsurge in the intracellular [Ca2+]i, followed by phosphatidylserine exposure. Adding the Piezo1 agonist Yoda1 to whole blood increased the extent of clot contraction due to Ca2+-dependent volumetric shrinkage of RBCs and increased platelet contractility due to their hyperactivation by the enhanced generation of endogenous thrombin on activated RBCs. Addition of rivaroxaban, the inhibitor of thrombin formation, or elimination of Ca2+ from the extracellular space abrogated the stimulating effect of Yoda1 on clot contraction. The Piezo1 antagonist, GsMTx-4, caused a decrease in the extent of clot contraction relative to the control both in whole blood and in platelet-rich plasma. Activated Piezo1 in compressed and deformed RBCs amplified the platelet contractility as a positive feedback mechanism during clot contraction. CONCLUSION The results obtained demonstrate that the Piezo1 channel expressed on RBCs comprises a mechanochemical modulator of blood clotting that may be considered a potential therapeutic target to correct hemostatic disorders.
Collapse
Affiliation(s)
- Natalia G Evtugina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Alina D Peshkova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation; Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alina I Khabirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Izabella A Andrianova
- Department of Internal Medicine, Division of Hematology and Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Shahnoza Abdullayeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Francis Ayombil
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Taisia Shepeliuk
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ekaterina L Grishchuk
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Fazoil I Ataullakhanov
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
Zainal Abidin NA, Timofeeva M, Szydzik C, Akbaridoust F, Lav C, Marusic I, Mitchell A, Hamilton JR, Ooi AS, Nesbitt WS. A microfluidic method to investigate platelet mechanotransduction under extensional strain. Res Pract Thromb Haemost 2023; 7:100037. [PMID: 36846647 PMCID: PMC9944983 DOI: 10.1016/j.rpth.2023.100037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Background Blood platelets have evolved a complex mechanotransduction machinery to rapidly respond to hemodynamic conditions. A variety of microfluidic flow-based approaches have been developed to explore platelet mechanotransduction; however, these experimental models primarily focus on the effects of increased wall shear stress on platelet adhesion events and do not consider the critical effects of extensional strain on platelet activation in free flow. Objectives We report the development and application of a hyperbolic microfluidic assay that allows for investigation of platelet mechanotransduction under quasi-homogenous extensional strain rates in the absence of surface adhesions. Methods Using a combined computational fluid dynamic and experimental microfluidic approach, we explore 5 extensional strain regimes (geometries) and their effect on platelet calcium signal transduction. Results We demonstrate that in the absence of canonical adhesion, receptor engagement platelets are highly sensitive to both initial increase and subsequent decrease in extensional strain rates within the range of 747 to 3319/s. Furthermore, we demonstrate that platelets rapidly respond to the rate of change in extensional strain and define a threshold of ≥7.33 × 106/s/m, with an optimal range of 9.21 × 107 to 1.32 × 108/s/m. In addition, we demonstrate a key role of both the actin-based cytoskeleton and annular microtubules in the modulation of extensional strain-mediated platelet mechanotransduction. Conclusion This method opens a window onto a novel platelet signal transduction mechanism and may have potential diagnostic utility in the identification of patients who are prone to thromboembolic complications associated with high-grade arterial stenosis or are on mechanical circulatory support systems, for which the extensional strain rate is a predominant hemodynamic driver.
Collapse
Affiliation(s)
- Nurul A. Zainal Abidin
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mariia Timofeeva
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Crispin Szydzik
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Farzan Akbaridoust
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chitrarth Lav
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
- Scuderia AlphaTauri F1, Bicester, UK
| | - Ivan Marusic
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Arnan Mitchell
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Justin R. Hamilton
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andrew S.H. Ooi
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Warwick S. Nesbitt
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|