1
|
Zhang X, Zhang L, Tian J, Li Y, Wu M, Zhang L, Qin X, Gong L. The application and prospects of drug delivery systems in idiopathic pulmonary fibrosis. BIOMATERIALS ADVANCES 2025; 168:214123. [PMID: 39615374 DOI: 10.1016/j.bioadv.2024.214123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease primarily affecting elderly individuals aged >65 years and has a poor prognosis. No effective treatment is currently available for IPF. The two antipulmonary fibrosis drugs nintedanib and pirfenidone approved by the FDA in the United States have somewhat decelerated IPF progression. However, the side effects of these drugs can lead to poor patient tolerance and compliance with the medications. Researchers have recently developed various methods for IPF treatment, such as gene silencing and pathway inhibitors, which hold great promise in IPF treatment. Nevertheless, the nonselectivity and nonspecificity of drugs often affect their efficacies. Drug delivery systems (DDS) are crucial for delivering drugs to specific target tissues or cells, thereby minimizing potential side effects, enhancing drug bioavailability, and reducing lung deposition. This review comprehensively summarizes the current state of DDS and various delivery strategies for IPF treatment (e.g., nano-delivery, hydrogel delivery, and biological carrier delivery) to completely expound the delivery mechanisms of different drug delivery carriers. Subsequently, the advantages and disadvantages of different DDS are fully discussed. Finally, the challenges and difficulties associated with the use of different DDS are addressed so as to accelerate their rapid clinical translation.
Collapse
Affiliation(s)
- Xi Zhang
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China; Department of Clinical Medicine, The Fifth Clinical Institution, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Jiahua Tian
- Department of Clinical Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunfei Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Manli Wu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Longju Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Xiaofei Qin
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China.
| | - Ling Gong
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China.
| |
Collapse
|
2
|
Elek A, Bozgeyik E, Caska H, Gocer Z, Bozgeyik I. Identification of non-coding RNA signatures in idiopathic pulmonary fibrosis. Ir J Med Sci 2024; 193:1923-1927. [PMID: 38523167 DOI: 10.1007/s11845-024-03675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a deadly, chronic, progressive, irreversible interstitial lung disease characterized by the formation of scar tissue resulting in permanent lung damage. The average survival time following diagnosis is only 3-5 years, with a 5-year survival rate shorter than that of many cancers. Alveolar epithelial cell injury followed by irregular repair is the primary pathological process observed in patients with IPF. An evident characteristic of IPF is the development of fibroblastic foci representing active fibrotic areas. Most of the cells within these foci are believed to be myofibroblasts, which are thought to be the primary source of abnormal extracellular matrix production in IPF. The lung phenotype in IPF is characterized by significantly different processes from healthy lungs, including irregular apoptosis, oxidative stress, and epithelial-mesenchymal transition (EMT) pathways. AIMS The exact cause of IPF is not fully understood and remains mysterious. It is not suppressing that non-coding RNAs are involved in the development and progression of IPF. Accordingly, here we aimed to identify non-coding RNA molecules during TGFβ-induced myofibroblast activation. METHODS Differential expression and functional enrichment analysis were employed to reveal the impact of non-coding RNAs during TGFβ-associated lung fibrosis. RESULTS Remarkably, LOC101448202, CZ1P-ASNS, LINC01503, IER3-AS1, MIR503HG, CLMAT3, LINC02593, ACTA2-AS1, LOC102723692, LOC107985728, and LOC105371064 were identified to be differentially altered during TGFβ-stimulated myofibroblast activation. CONCLUSIONS These findings strongly suggest that the mechanism of lung fibrosis is heavily under control of non-coding RNAs, and RNA-based therapies could be a promising approach for future therapeutic interventions to lung fibrosis.
Collapse
Affiliation(s)
- Alperen Elek
- Faculty of Medicine, Ege University, Izmir, Turkey
| | - Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| | - Halil Caska
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Zekihan Gocer
- Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, 02040, Adiyaman, Turkey.
| |
Collapse
|
3
|
López-Martínez A, Santos-Álvarez JC, Velázquez-Enríquez JM, Ramírez-Hernández AA, Vásquez-Garzón VR, Baltierrez-Hoyos R. lncRNA-mRNA Co-Expression and Regulation Analysis in Lung Fibroblasts from Idiopathic Pulmonary Fibrosis. Noncoding RNA 2024; 10:26. [PMID: 38668384 PMCID: PMC11054336 DOI: 10.3390/ncrna10020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease marked by abnormal accumulation of extracellular matrix (ECM) due to dysregulated expression of various RNAs in pulmonary fibroblasts. This study utilized RNA-seq data meta-analysis to explore the regulatory network of hub long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in IPF fibroblasts. The meta-analysis unveiled 584 differentially expressed mRNAs (DEmRNA) and 75 differentially expressed lncRNAs (DElncRNA) in lung fibroblasts from IPF. Among these, BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4, PIK3R1, and RXRA were identified as hub mRNAs, while AC008708.1, AC091806.1, AL442071.1, FAM111A-DT, and LINC01989 were designated as hub lncRNAs. Functional characterization revealed involvement in TGF-β, PI3K, FOXO, and MAPK signaling pathways. Additionally, this study identified regulatory interactions between sequences of hub mRNAs and lncRNAs. In summary, the findings suggest that AC008708.1, AC091806.1, FAM111A-DT, LINC01989, and AL442071.1 lncRNAs can regulate BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4, PIK3R1, and RXRA mRNAs in fibroblasts bearing IPF and contribute to fibrosis by modulating crucial signaling pathways such as FoxO signaling, chemical carcinogenesis, longevity regulatory pathways, non-small cell lung cancer, and AMPK signaling pathways.
Collapse
Affiliation(s)
- Armando López-Martínez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico
| | - Rafael Baltierrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico
| |
Collapse
|
4
|
Tan J, Xue Q, Hu X, Yang J. Inhibitor of PD-1/PD-L1: a new approach may be beneficial for the treatment of idiopathic pulmonary fibrosis. J Transl Med 2024; 22:95. [PMID: 38263193 PMCID: PMC10804569 DOI: 10.1186/s12967-024-04884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a globally prevalent, progressive disease with limited treatment options and poor prognosis. Because of its irreversible disease progression, IPF affects the quality and length of life of patients and imposes a significant burden on their families and social healthcare services. The use of the antifibrotic drugs pirfenidone and nintedanib can slow the progression of the disease to some extent, but it does not have a reverse effect on the prognosis. The option of lung transplantion is also limited owing to contraindications to transplantation, possible complications after transplantation, and the risk of death. Therefore, the discovery of new, effective treatment methods is an urgent need. Over recent years, various studies have been undertaken to investigate the relationship between interstitial pneumonia and lung cancer, suggesting that some immune checkpoints in IPF are similar to those in tumors. Immune checkpoints are a class of immunosuppressive molecules that are essential for maintaining autoimmune tolerance and regulating the duration and magnitude of immune responses in peripheral tissues. They can prevent normal tissues from being damaged and destroyed by the immune response. While current studies have focused on PD-1/PD-L1 and CTLA-4, PD-1/PD-L1 may be the only effective immune checkpoint IPF treatment. This review discusses the application of PD-1/PD-L1 checkpoint in IPF, with the aim of finding a new direction for IPF treatment.
Collapse
Affiliation(s)
- Jie Tan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qianfei Xue
- Hospital of Jilin University, Changchun, China
| | - Xiao Hu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Ba C, Jiang C, Wang H, Shi X, Jin J, Fang Q. Prognostic value of serum oncomarkers for patients hospitalized with acute exacerbation of interstitial lung disease. Ther Adv Respir Dis 2024; 18:17534666241250332. [PMID: 38757948 PMCID: PMC11102678 DOI: 10.1177/17534666241250332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Different types of inflammatory processes and fibrosis have been implicated in the pathogenesis of interstitial lung disease (ILD), a heterogeneous, diffuse, parenchymal lung disease. Acute exacerbation (AE) of ILD is characterized by significant respiratory deterioration and is associated with high mortality rates. Several serum oncomarkers have been used to determine the prognosis of ILD; however, the prognostic value of serum oncomarker levels in patients with AE-ILD remains unclear. OBJECTIVE To evaluate the prognostic value of serum oncomarker levels in patients with AE-ILD and its main subtypes. DESIGN Retrospective study. METHODS The serum levels of 8 oncomarkers in 281 patients hospitalized with AE-ILD at our institution between 2017 and 2022 were retrospectively reviewed. The baseline characteristics and serum oncomarker levels were compared between the survival and non-survival groups of AE-ILD and its main subtypes. Multivariate logistic regression analysis was performed to identify independent prognosis-related markers, and the best prognostic predictor was analyzed using receiver operating characteristic curve (ROC) analysis. RESULT Idiopathic pulmonary fibrosis (IPF; n = 65), idiopathic nonspecific interstitial pneumonia (iNSIP; n = 26), and connective tissue disease-associated interstitial lung disease (CTD-ILD; n = 161) were the three main subtypes of ILD. The in-hospital mortality rate among patients with AE-ILD was 21%. The serum oncomarker levels of most patients with AE-ILD and its main subtypes in the non-survival group were higher than those in the survival group. Multivariate analysis revealed that ferritin and cytokeratin 19 fragments (CYFRA21-1) were independent prognostic risk factors for patients hospitalized with AE-ILD or AE-CTD-ILD. CYFRA21-1 was identified as an independent prognostic risk factor for patients hospitalized with AE-IPF or AE-iNSIP. CONCLUSION CYFRA21-1 may be a viable biomarker for predicting the prognosis of patients with AE-ILD, regardless of the underlying subtype of ILD. Ferritin has a prognostic value in patients with AE-ILD or AE-CTD-ILD.
Collapse
Affiliation(s)
- Cuirong Ba
- Department of Respiratory Medicine, Beijing Ditan Hospital, Capital Medical University, China
| | - Chunguo Jiang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Huijuan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xuhua Shi
- Department of Immunology and Rheumatology, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiawei Jin
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- The Clinical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital Jingxi Branch, Capital Medical University, Beijing, China
| | - Qiuhong Fang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongren Tiyuchang South Road, Chaoyang District, Beijing 100020, China
| |
Collapse
|
6
|
Hanibuchi M, Ogino H, Sato S, Nishioka Y. Current pharmacotherapies for advanced lung cancer with pre-existing interstitial lung disease : A literature review and future perspectives. THE JOURNAL OF MEDICAL INVESTIGATION 2024; 71:9-22. [PMID: 38735730 DOI: 10.2152/jmi.71.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Patients with interstitial lung disease (ILD), especially those with idiopathic pulmonary fibrosis, are at increased risk of developing lung cancer (LC). Pharmacotherapy for advanced LC has dramatically progressed in recent years;however, management of LC with pre-existing ILD (LC-ILD) is challenging due to serious concerns about the risk of acute exacerbation of ILD (AE-ILD). As patients with LC-ILD have been excluded from most prospective clinical trials of advanced LC, optimal pharmacotherapy remains to be elucidated. Although the antitumor activity of first-line platinum-based cytotoxic chemotherapy appears to be similar in advanced LC patients with or without ILD, its impact on the survival of patients with LC-ILD is limited. Immune checkpoint inhibitors may hold promise for long-term survival, but many challenges remain, including safety and appropriate patient selection. Further understanding the predictive factors for AE-ILD after receiving pharmacotherapy in LC-ILD may lead to appropriate patient selection and lower treatment risk. The aim of this review was to summarize the current evidence related to pharmacotherapy for advanced LC-ILD and discuss emerging areas of research. J. Med. Invest. 71 : 9-22, February, 2024.
Collapse
Affiliation(s)
- Masaki Hanibuchi
- Department of Community Medicine for Respirology, Hematology, and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hirokazu Ogino
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Seidai Sato
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
7
|
Lindell KO, Madisetti M, Fasolino T, Pittman M, Coyne P, Whelan TP, Mueller M, Ford DW. Pulmonologists' Perspectives on and Access to Palliative Care for Patients With Idiopathic Pulmonary Fibrosis in South Carolina. Palliat Med Rep 2023; 4:292-299. [PMID: 37915951 PMCID: PMC10616941 DOI: 10.1089/pmr.2023.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 11/03/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a serious illness with an unpredictable disease course and survival rates comparable with some cancers. Patients with IPF suffer considerable symptom burden, declining quality of life, and high health care resource utilization. Patients and caregivers report many unmet needs, including a desire for more education regarding diagnosis and assistance with navigating disease trajectory. Compelling evidence suggests that palliative care (PC) provides an extra layer of support for patients with serious illness. Research Question The purpose of this survey was to gain perspectives regarding PC for patients with IPF by board-certified pulmonologists in South Carolina (SC). Study Design and Methods A 24-item survey was adapted (with permission) from the Pulmonary Fibrosis Foundation PC Survey instrument. Data were analyzed and results are presented. Results Pulmonologists (n = 32, 44%) completed the survey; 97% practice in urbanized settings. The majority agreed that PC and hospice do not provide the same service. There were varying views about comfort in discussing prognosis, disease trajectory, and addressing advance directives. Options for ambulatory and inpatient PC are limited and early PC referral does not occur. None reported initiating a PC referral at time of initial IPF diagnosis. Interpretation Pulmonologists in SC who participated in this survey are aware of the principles of PC in providing comprehensive care to patients with IPF and have limited options for PC referral. PC educational materials provided early in the diagnosis can help facilitate and guide end-of-life planning and discussions. Minimal resources exist for patients in underserved communities.
Collapse
Affiliation(s)
- Kathleen Oare Lindell
- College of Nursing, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Pulmonary and Critical Care Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mohan Madisetti
- College of Nursing, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Tracy Fasolino
- School of Nursing, College of Behavioral, Social, & Health Sciences, Clemson University, Clemson, South Carolina, USA
| | - MaryChris Pittman
- College of Nursing, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Patrick Coyne
- College of Nursing, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Pulmonary and Critical Care Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Timothy P.M. Whelan
- Division of Pulmonary and Critical Care Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Martina Mueller
- College of Nursing, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dee W. Ford
- Division of Pulmonary and Critical Care Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
8
|
Karampitsakos T, Spagnolo P, Mogulkoc N, Wuyts WA, Tomassetti S, Bendstrup E, Molina-Molina M, Manali ED, Unat ÖS, Bonella F, Kahn N, Kolilekas L, Rosi E, Gori L, Ravaglia C, Poletti V, Daniil Z, Prior TS, Papanikolaou IC, Aso S, Tryfon S, Papakosta D, Tzilas V, Balestro E, Papiris S, Antoniou K, Bouros D, Wells A, Kreuter M, Tzouvelekis A. Lung cancer in patients with idiopathic pulmonary fibrosis: A retrospective multicentre study in Europe. Respirology 2023; 28:56-65. [PMID: 36117239 DOI: 10.1111/resp.14363] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/18/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE There remains a paucity of large databases for patients with idiopathic pulmonary fibrosis (IPF) and lung cancer. We aimed to create a European registry. METHODS This was a multicentre, retrospective study across seven European countries between 1 January 2010 and 18 May 2021. RESULTS We identified 324 patients with lung cancer among 3178 patients with IPF (prevalence = 10.2%). By the end of the 10 year-period following IPF diagnosis, 26.6% of alive patients with IPF had been diagnosed with lung cancer. Patients with IPF and lung cancer experienced increased risk of all-cause mortality than IPF patients without lung cancer (HR: 1.51, [95% CI: 1.22-1.86], p < 0.0001). All-cause mortality was significantly lower for patients with IPF and lung cancer with a monocyte count of either <0.60 or 0.60-<0.95 K/μl than patients with monocyte count ≥0.95 K/μl (HR [<0.60 vs. ≥0.95 K/μl]: 0.35, [95% CI: 0.17-0.72], HR [0.60-<0.95 vs. ≥0.95 K/μl]: 0.42, [95% CI: 0.21-0.82], p = 0.003). Patients with IPF and lung cancer that received antifibrotics presented with decreased all cause-mortality compared to those who did not receive antifibrotics (HR: 0.61, [95% CI: 0.42-0.87], p = 0.006). In the adjusted model, a significantly lower proportion of surgically treated patients with IPF and otherwise technically operable lung cancer experienced all-cause mortality compared to non-surgically treated patients (HR: 0.30 [95% CI: 0.11-0.86], p = 0.02). CONCLUSION Lung cancer exerts a dramatic impact on patients with IPF. A consensus statement for the management of patients with IPF and lung cancer is sorely needed.
Collapse
Affiliation(s)
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Nesrin Mogulkoc
- Department of Pulmonology, Ege University Hospital, Izmir, Turkey
| | - Wim A Wuyts
- Unit of Interstitial Lung Diseases, Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Sara Tomassetti
- Department of Clinical and Experimental Medicine, Interventional Pulmonology Unit, Careggi University Hospital Florence, Florence, Italy
| | - Elisabeth Bendstrup
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Maria Molina-Molina
- Respiratory Department, Unit of Interstitial Lung Diseases, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Effrosyni D Manali
- 2nd Pulmonary Medicine Department, 'ATTIKON' University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ömer Selim Unat
- Department of Pulmonology, Ege University Hospital, Izmir, Turkey
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumonology Department, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Nicolas Kahn
- Center for Interstitial and Rare Lung Diseases, Department of Pneumology, Thoraxklinik-University Clinic Heidelberg and German Center for Lung Research, Heidelberg, Germany
| | - Lykourgos Kolilekas
- 7th Department of Respiratory Medicine, Hospital for Thoracic Diseases, 'SOTIRIA', Athens, Greece
| | - Elisabetta Rosi
- Department of Clinical and Experimental Medicine, Interventional Pulmonology Unit, Careggi University Hospital Florence, Florence, Italy
| | - Leonardo Gori
- Department of Clinical and Experimental Medicine, Interventional Pulmonology Unit, Careggi University Hospital Florence, Florence, Italy
| | - Claudia Ravaglia
- Thoracic Diseases Department, Morgagni Pierantoni Hospital, Forlì, Italy
| | - Venerino Poletti
- Thoracic Diseases Department, Morgagni Pierantoni Hospital, Forlì, Italy
| | - Zoe Daniil
- Department of Respiratory Medicine, Medical School, University of Thessaly, Larissa, Greece
| | - Thomas Skovhus Prior
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Samantha Aso
- Respiratory Department, Unit of Interstitial Lung Diseases, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Stavros Tryfon
- Pulmonary Clinic, NHS General Hospital 'G. Papanikolaou', Thessaloniki, Greece
| | - Despoina Papakosta
- Pulmonary Department, 'G Papanikolaou' General Hospital, Thessaloniki, Greece.,Aristotle University of Thessaloniki Medical School, Thessaloniki, Greece
| | - Vasillios Tzilas
- First Academic Department of Pneumonology, Hospital for Thoracic Diseases, 'SOTIRIA', Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabetta Balestro
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Spyridon Papiris
- 2nd Pulmonary Medicine Department, 'ATTIKON' University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Antoniou
- Department of Thoracic Medicine, Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Crete, Greece
| | - Demosthenes Bouros
- First Academic Department of Pneumonology, Hospital for Thoracic Diseases, 'SOTIRIA', Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athol Wells
- Interstitial Lung Disease Unit, Ιmperial College London, Royal Brompton and Harefield, London, UK
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Department of Pneumology, Thoraxklinik-University Clinic Heidelberg and German Center for Lung Research, Heidelberg, Germany
| | - Argyris Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
9
|
Xiang Z, Bai L, Zhou JQ, Cevallos RR, Sanders JR, Liu G, Bernard K, Sanders YY. Epigenetic regulation of IPF fibroblast phenotype by glutaminolysis. Mol Metab 2023; 67:101655. [PMID: 36526153 PMCID: PMC9827063 DOI: 10.1016/j.molmet.2022.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Excessive extra-cellular-matrix production and uncontrolled proliferation of the fibroblasts are characteristics of many fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). The fibroblasts have enhanced glutaminolysis with up-regulated glutaminase, GLS1, which converts glutamine to glutamate. Here, we investigated the role of glutaminolysis and glutaminolysis-derived metabolite α-ketoglutarate (α-KG) on IPF fibroblast phenotype and gene expression. METHODS Reduced glutamine conditions were carried out either using glutamine-free culture medium or silencing the expression of GLS1 with siRNA, with or without α-KG compensation. Cell phenotype has been characterized under these different conditions, and gene expression profile was examined by RNA-Seq. Specific profibrotic genes (Col3A1 and PLK1) expression were examined by real-time PCR and western blots. The levels of repressive histone H3K27me3, which demethylase activity is affected by glutaminolysis, were examined and H3K27me3 association with promoter region of Col3A1 and PLK1 were checked by ChIP assays. Effects of reduced glutaminolysis on fibrosis markers were checked in an animal model of lung fibrosis. RESULTS The lack of glutamine in the culture medium alters the profibrotic phenotype of activated fibroblasts. The addition of exogenous and glutaminolysis-derived metabolite α-KG to glutamine-free media barely restores the pro-fibrotic phenotype of activated fibroblasts. Many genes are down-regulated in glutamine-free medium, α-KG supplementation only rescues a limited number of genes. As α-KG is a cofactor for histone demethylases of H3K27me3, the reduced glutaminolysis alters H3K27me3 levels, and enriches H3K27me3 association with Col3A1 and PLK1 promoter region. Adding α-KG in glutamine-free medium depleted H3K27me3 association with Col3A1 promoter region but not that of PLK1. In a murine model of lung fibrosis, mice with reduced glutaminolysis showed markedly reduced fibrotic markers. CONCLUSIONS This study indicates that glutamine is critical for supporting pro-fibrotic fibroblast phenotype in lung fibrosis, partially through α-KG-dependent and -independent mechanisms, and supports targeting fibroblast metabolism as a therapeutic method for fibrotic diseases.
Collapse
Affiliation(s)
- Zheyi Xiang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Le Bai
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer Q Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ricardo R Cevallos
- Department of Biochemistry and Molecular Genetics, Birmingham, AL 35255, USA
| | - Jonathan R Sanders
- Department of Biochemistry and Molecular Genetics, Birmingham, AL 35255, USA
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Karen Bernard
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
10
|
Ki MS, Kim SY, Kim EY, Jung JY, Kang YA, Park MS, Kim YS, Park SY, Lee SH. Clinical Outcomes and Prognosis of Patients With Interstitial Lung Disease Undergoing Lung Cancer Surgery: A Propensity Score Matching Study. Clin Lung Cancer 2023; 24:e27-e38. [PMID: 36376171 DOI: 10.1016/j.cllc.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/22/2022] [Accepted: 10/09/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Patients with interstitial lung disease (ILD) may have a poor prognosis after lung cancer surgery because of respiratory complications and increased recurrence rates due to limited resection. Few studies have investigated prognosis after surgery by matching clinical variables between patients with and without ILD. PATIENTS AND METHODS Medical records of patients who underwent lung cancer surgery between January 2010 and August 2020 at a referral hospital in South Korea were reviewed. Patients with ILD were identified based on preoperative computed tomography findings. Through propensity score matching, the clinical outcomes and prognoses of patients with (ILD group) and without ILD (control group) were compared. RESULTS Of 1629 patients, 113 (6.9%) patients with ILD were identified, of whom 104 patients were matched. Before matching, patients with ILD had higher mean age, proportion of men, and rates of sublobar resection and squamous cell carcinoma than those without ILD. After matching, there was no significant difference in postoperative mortality rates between the control and ILD groups. The 5-year survival rate was significantly lower in the ILD group (66%) than in the control group (78.8%; P= .007). The 5-year survival rate of the ILD-GAP (Gender, Age, Physiology) stage III group (12.6%) was significantly lower than that of the ILD-GAP stage I (73.5%) and II groups (72.6%; P< .0001). Multivariable Cox analysis demonstrated that idiopathic pulmonary fibrosis, higher clinical stage, and recurrence were independent prognostic factors for mortality. CONCLUSION Concomitant ILD negatively affects long-term prognosis after lung cancer surgery, and ILD subtype and physiological severity assessment help predict prognosis after surgery.
Collapse
Affiliation(s)
- Min Seo Ki
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Song Yee Kim
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Ye Jung
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Ae Kang
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Moo Suk Park
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Sam Kim
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Yong Park
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Lee
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Abu Qubo A, Numan J, Snijder J, Padilla M, Austin JH, Capaccione KM, Pernia M, Bustamante J, O'Connor T, Salvatore MM. Idiopathic pulmonary fibrosis and lung cancer: future directions and challenges. Breathe (Sheff) 2022; 18:220147. [PMID: 36865932 PMCID: PMC9973524 DOI: 10.1183/20734735.0147-2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/14/2022] [Indexed: 01/11/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease of pulmonary scarring. New treatments slow disease progression and allow pulmonary fibrosis patients to live longer. Persistent pulmonary fibrosis increases a patient's risk of developing lung cancer. Lung cancer in patients with IPF differs from cancers that develop in the non-fibrotic lung. Peripherally located adenocarcinoma is the most frequent cell type in smokers who develop lung cancer, while squamous cell carcinoma is the most frequent in pulmonary fibrosis. Increased fibroblast foci in IPF are associated with more aggressive cancer behaviour and shorter doubling times. Treatment of lung cancer in fibrosis is challenging because of the risk of inducing an exacerbation of fibrosis. In order to improve patient outcomes, modifications of current lung cancer screening guidelines in patients with pulmonary fibrosis will be necessary to avoid delays in treatment. 2-fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) computed tomography (CT) imaging can help identify cancer earlier and more reliably than CT alone. Increased use of wedge resections, proton therapy and immunotherapy may increase survival by decreasing the risk of exacerbation, but further research will be necessary.
Collapse
Affiliation(s)
- Ahmad Abu Qubo
- Department of Pathology, Faculty of Medicine, Hashemite University, Zarqa, Jordan
| | - Jamil Numan
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Juan Snijder
- Department of Pediatrics, Einstein Medical Center, Philadelphia, PA, USA
| | - Maria Padilla
- Department of Pulmonary Medicine, Mount Sinai, New York, NY, USA
| | - John H.M. Austin
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | | | - Monica Pernia
- Department of Medicine, Metropolitan Hospital, New York, NY, USA
| | - Jean Bustamante
- Department of Oncology, West Virginia University, Morgantown, WV, USA
| | - Timothy O'Connor
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Mary M. Salvatore
- Department of Radiology, Columbia University Medical Center, New York, NY, USA,Corresponding author: Mary M. Salvatore ()
| |
Collapse
|
12
|
Small Cell Lung Cancer in the Course of Idiopathic Pulmonary Fibrosis—Case Report and Literature Review. Curr Oncol 2022; 29:5077-5083. [PMID: 35877261 PMCID: PMC9318736 DOI: 10.3390/curroncol29070401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a poorly prognosed form of progressive interstitial pneumonia. Patients with IPF have a significantly increased risk of developing lung cancer, which further worsens the course of the disease. The most common histological types of LC among patients with IPF are squamous cell carcinoma and adenocarcinoma. Furthermore, all LC treatment modalities can lead to developing an acute IPF exacerbation. In this report, we present a rare case of coexistence of IPF and small cell lung cancer in a 76-year-old patient with chronic obstructive pulmonary disease, and a former smoker. For over 2 years, the patient was treated with an anti-fibrotic drug-pirfenidone, which slowed down the progression of IPF. Unfortunately, after being diagnosed with an active SCLC, the patient was excluded from further participation in the pirfenidone drug program. SCLC is characterized by high aggressiveness, rapid growth and high metastatic potential; therefore, it is necessary to apply antitumor treatment as soon as possible. The described patient was treated with carboplatin–etoposide chemotherapy. Early treatment tolerance was good and after two cycles of cytotoxic treatment, a partial response was present in CT. The presented case emphasizes the need for further research to determine the treatment regimens in patients with coexisting IPF and LC and the appropriateness of antifibrotic treatment in them. In addition, it can help to choose the treatment method for similar patients, indicating a combination of carboplatin and etoposide as an effective and, at the same time, relatively safes method in terms of the risk of IPF’s exacerbation.
Collapse
|
13
|
Ikeda S, Kato T, Kenmotsu H, Ogura T, Sato Y, Hino A, Harada T, Kubota K, Tokito T, Okamoto I, Furuya N, Yokoyama T, Hosokawa S, Iwasawa T, Kasajima R, Miyagi Y, Misumi T, Okamoto H. Atezolizumab for Pretreated Non-Small Cell Lung Cancer with Idiopathic Interstitial Pneumonia: Final Analysis of Phase II AMBITIOUS Study. Oncologist 2022; 27:720-e702. [PMID: 35759340 PMCID: PMC9438913 DOI: 10.1093/oncolo/oyac118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background Interstitial pneumonia (IP) is a poor prognostic comorbidity in patients with non-small cell lung cancer (NSCLC) and is also a risk factor for pneumonitis. The TORG1936/AMBITIOUS trial, the first known phase II study of atezolizumab in patients with NSCLC with comorbid IP, was terminated early because of the high incidence of severe pneumonitis. Methods This study included patients with idiopathic chronic fibrotic IP, with a predicted forced vital capacity (%FVC) of >70%, with or without honeycomb lung, who had previously been treated for NSCLC. The patients received atezolizumab every 3 weeks. The primary endpoint was the 1-year survival rate. Results A total of 17 patients were registered; the median %FVC was 85.4%, and 41.2% had honeycomb lungs. The 1-year survival rate was 53.3% (95% CI, 25.9-74.6). The median overall and progression-free survival times were 15.3 months (95% CI, 3.1-not reached) and 3.2 months (95% CI, 1.2-7.4), respectively. The incidence of pneumonitis was 29.4% for all grades, and 23.5% for grade ≥3. Tumor mutational burden and any of the detected somatic mutations were not associated with efficacy or risk of pneumonitis. Conclusion Atezolizumab may be one of the treatment options for patients with NSCLC with comorbid IP, despite the high risk of developing pneumonitis. This clinical trial was retrospectively registered in the Japan Registry of Clinical Trials on August 26, 2019, (registry number: jRCTs031190084, https://jrct.niph.go.jp/en-latest-detail/jRCTs031190084).
Collapse
Affiliation(s)
- Satoshi Ikeda
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Terufumi Kato
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | | | - Takashi Ogura
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Yuki Sato
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Aoi Hino
- Department of Respirology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Chiba, Japan
| | - Toshiyuki Harada
- Department of Respiratory Medicine, Japan Community Healthcare Organization Hokkaido Hospital, Sapporo, Hokkaido, Japan
| | - Kaoru Kubota
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Takaaki Tokito
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Naoki Furuya
- Department of Internal Medicine, Division of Respiratory Medicine St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Toshihide Yokoyama
- Department of Respiratory Medicine, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Shinobu Hosokawa
- Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital, Kita-ku, Okayama, Okayama, Japan
| | - Tae Iwasawa
- Department of Radiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Rika Kasajima
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Asahi-ku, Yokohama, Kanagawa, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Asahi-ku, Yokohama, Kanagawa, Japan
| | - Toshihiro Misumi
- Department of Biostatistics, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | - Hiroaki Okamoto
- Department of Respiratory Medicine and Medical Oncology, Yokohama Municipal Citizen's Hospital, Kanagawa-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
14
|
Saygili E, Devamoglu U, Goker-Bagca B, Goksel O, Biray-Avci C, Goksel T, Yesil-Celiktas O. A drug-responsive multicellular human spheroid model to recapitulate drug-induced pulmonary fibrosis. Biomed Mater 2022; 17. [PMID: 35617946 DOI: 10.1088/1748-605x/ac73cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/26/2022] [Indexed: 11/12/2022]
Abstract
Associated with a high mortality rate, pulmonary fibrosis (PF) is the end stage of several interstitial lung diseases. Although many factors are linked to PF progression, initiation of the fibrotic process remains to be studied. Current research focused on generating new strategies to gain a better understanding of the underlying disease mechanism as the animal models remain insufficient to reflect human physiology. Herein, to account complex cellular interactions within the fibrotic tissue, a multicellular spheroid (MCS) model where human bronchial epithelial cells incorporated with human lung fibroblasts was generated and treated with bleomycin (BLM) to emulate drug-induced PF. Recapitulating the epithelial-interstitial microenvironment, the findings successfully reflected the PF disease, where excessive alpha smooth muscle actin (α-SMA) and collagen type I secretion were noted along with the morphological changes in response to BLM. Moreover, increased levels of fibrotic linked COL13A1, MMP2, WNT3 and decreased expression level of CDH1 provide evidence for the model reliability on fibrosis modelling. Subsequent administration of the FDA approved nintedanib and pirfenidone anti-fibrotic drugs proved the drug-responsiveness of the model.
Collapse
Affiliation(s)
- Ecem Saygili
- Department of Bioengineering, Ege University, Department of Bioengineering, Bornova, Izmir, 35040, TURKEY
| | - Utku Devamoglu
- Department of Bioengineering, Ege University, Department of Bioengineering, Bornova, Izmir, 35040, TURKEY
| | - Bakiye Goker-Bagca
- Department of Medical Biology, Adnan Menderes University, Department of Medical Biology, Aydin, Aydin, 09010, TURKEY
| | - Ozlem Goksel
- Department of Pulmonary Medicine / EgeSAM-Ege University Translational Pulmonary Research Center, Ege University, Bornova, Izmir, 35040, TURKEY
| | - Cigir Biray-Avci
- Department of Medical Biology, Ege University, Bornova, Izmir, 35040, TURKEY
| | - Tuncay Goksel
- Department of Pulmonary Medicine / EgeSAM-Ege University Translational Pulmonary Research Center, Ege University, Bornova, Izmir, 35040, TURKEY
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering / EgeSAM-Ege University Translational Pulmonary Research Center, Ege University, Bornova, Izmir, 35040, TURKEY
| |
Collapse
|
15
|
Korfei M, Mahavadi P, Guenther A. Targeting Histone Deacetylases in Idiopathic Pulmonary Fibrosis: A Future Therapeutic Option. Cells 2022; 11:1626. [PMID: 35626663 PMCID: PMC9139813 DOI: 10.3390/cells11101626] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited therapeutic options, and there is a huge unmet need for new therapies. A growing body of evidence suggests that the histone deacetylase (HDAC) family of transcriptional corepressors has emerged as crucial mediators of IPF pathogenesis. HDACs deacetylate histones and result in chromatin condensation and epigenetic repression of gene transcription. HDACs also catalyse the deacetylation of many non-histone proteins, including transcription factors, thus also leading to changes in the transcriptome and cellular signalling. Increased HDAC expression is associated with cell proliferation, cell growth and anti-apoptosis and is, thus, a salient feature of many cancers. In IPF, induction and abnormal upregulation of Class I and Class II HDAC enzymes in myofibroblast foci, as well as aberrant bronchiolar epithelium, is an eminent observation, whereas type-II alveolar epithelial cells (AECII) of IPF lungs indicate a significant depletion of many HDACs. We thus suggest that the significant imbalance of HDAC activity in IPF lungs, with a "cancer-like" increase in fibroblastic and bronchial cells versus a lack in AECII, promotes and perpetuates fibrosis. This review focuses on the mechanisms by which Class I and Class II HDACs mediate fibrogenesis and on the mechanisms by which various HDAC inhibitors reverse the deregulated epigenetic responses in IPF, supporting HDAC inhibition as promising IPF therapy.
Collapse
Affiliation(s)
- Martina Korfei
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
| | - Poornima Mahavadi
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
| | - Andreas Guenther
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
- Lung Clinic, Evangelisches Krankenhaus Mittelhessen, D-35398 Giessen, Germany
- European IPF Registry and Biobank, D-35392 Giessen, Germany
| |
Collapse
|
16
|
Wang X, Wan W, Lu J, Zhang Y, Quan G, Pan X, Wu Z, Liu P. Inhalable cryptotanshinone spray-dried swellable microparticles for pulmonary fibrosis therapy by regulating TGF-β1/Smad3, STAT3 and SIRT3 pathways. Eur J Pharm Biopharm 2022; 172:177-192. [PMID: 35202797 DOI: 10.1016/j.ejpb.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/18/2022]
Abstract
Cryptotanshinone (CTS) is a promising therapeutic option for pulmonary fibrosis (PF). However, clinical applications of CTS are limited owing to high photosensitivity and poor oral bioavailability. Pulmonary drug delivery, especially sustained pulmonary drug delivery, is promising for local treatment of chronic lung diseases. In this study, CTS was encapsulated in an optimized chitosan/L-leucine-based swellable microparticles (SMs) system, which exhibited an appropriate aerosolization performance, sustained release and storage stability. SMs enhanced the in vitro anti-fibrosis efficacy of CTS as shown by the improved cellular uptake. The effect of PF status on in vivo fate of the pulmonary delivered drug was also assessed. Pharmacokinetics and tissue distribution of oral and pulmonary delivery CTS in bleomycin-induced PF rats were compared. Pulmonary delivery exhibited high drug concentrations in pulmonary lesion areas, with reduced exposure to blood and non-targeted tissues after administration at a significantly lower dose compared with oral delivery. Moreover, PF pathological status enhanced activity of SMs, implying that pulmonary delivery was highly effective for PF treatment. Compared to oral delivery, Inhaled SMs showed comparable or even better efficacies at approximately 60-fold low dose compared with oral delivery. A sustained efficacy was observed under a prolonged administration interval (corresponding to half the total dose). Inhalation safety of SMs was established, and important mechanism-related signaling pathways against PF were investigated in vitro and in vivo. In summary, the findings showed that the developed CTS-loaded sustained pulmonary delivery system is a safe and effective strategy for chronic PF treatment.
Collapse
Affiliation(s)
- Xiuhua Wang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Lu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuting Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhongkai Wu
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Peiqing Liu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Hu Y, Wang Q, Yu J, Zhou Q, Deng Y, Liu J, Zhang L, Xu Y, Xiong W, Wang Y. Tartrate-resistant acid phosphatase 5 promotes pulmonary fibrosis by modulating β-catenin signaling. Nat Commun 2022; 13:114. [PMID: 35013220 PMCID: PMC8748833 DOI: 10.1038/s41467-021-27684-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease with limited therapeutic options. Tartrate-resistant acid phosphatase 5 (ACP5) performs a variety of functions. However, its role in IPF remains unclear. Here, we demonstrate that the levels of ACP5 are increased in IPF patient samples and mice with bleomycin (BLM)-induced pulmonary fibrosis. In particular, higher levels of ACP5 are present in the sera of IPF patients with a diffusing capacity of the lungs for carbonmonoxide (DLCO) less than 40% of the predicted value. Additionally, Acp5 deficiency protects mice from BLM-induced lung injury and fibrosis coupled with a significant reduction of fibroblast differentiation and proliferation. Mechanistic studies reveal that Acp5 is upregulated by transforming growth factor-β1 (TGF-β1) in a TGF-β receptor 1 (TGFβR1)/Smad family member 3 (Smad3)-dependent manner, after which Acp5 dephosphorylates p-β-catenin at serine 33 and threonine 41, inhibiting the degradation of β-catenin and subsequently enhancing β-catenin signaling in the nucleus, which promotes the differentiation, proliferation and migration of fibroblast. More importantly, the treatment of mice with Acp5 siRNA-loaded liposomes or Acp5 inhibitor reverses established lung fibrosis. In conclusions, Acp5 is involved in the initiation and progression of pulmonary fibrosis and strategies aimed at silencing or suppressing Acp5 could be considered as potential therapeutic approaches against pulmonary fibrosis. Idiopathic pulmonary fibrosis is a fatal lung disease with limited treatment options. Here the authors show that tartrate-resistant acid phosphatase 5 (Acp5) promotes lung fibrosis by enhancing beta-catenin signaling and that inhibition of Acp5 can reverse stablished pulmonary fibrosis.
Collapse
Affiliation(s)
- Yinan Hu
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, 100029, Beijing, China
| | - Qi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Qing Zhou
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yanhan Deng
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Juan Liu
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Lei Zhang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Weining Xiong
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China. .,Department of Pulmonary and Critical Care Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, Shanghai, 200011, China.
| | - Yi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
18
|
Avci E, Sarvari P, Savai R, Seeger W, Pullamsetti SS. Epigenetic Mechanisms in Parenchymal Lung Diseases: Bystanders or Therapeutic Targets? Int J Mol Sci 2022; 23:ijms23010546. [PMID: 35008971 PMCID: PMC8745712 DOI: 10.3390/ijms23010546] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Epigenetic responses due to environmental changes alter chromatin structure, which in turn modifies the phenotype, gene expression profile, and activity of each cell type that has a role in the pathophysiology of a disease. Pulmonary diseases are one of the major causes of death in the world, including lung cancer, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung tuberculosis, pulmonary embolism, and asthma. Several lines of evidence indicate that epigenetic modifications may be one of the main factors to explain the increasing incidence and prevalence of lung diseases including IPF and COPD. Interestingly, isolated fibroblasts and smooth muscle cells from patients with pulmonary diseases such as IPF and PH that were cultured ex vivo maintained the disease phenotype. The cells often show a hyper-proliferative, apoptosis-resistant phenotype with increased expression of extracellular matrix (ECM) and activated focal adhesions suggesting the presence of an epigenetically imprinted phenotype. Moreover, many abnormalities observed in molecular processes in IPF patients are shown to be epigenetically regulated, such as innate immunity, cellular senescence, and apoptotic cell death. DNA methylation, histone modification, and microRNA regulation constitute the most common epigenetic modification mechanisms.
Collapse
MESH Headings
- Animals
- Biomarkers
- Combined Modality Therapy
- DNA Methylation
- Diagnosis, Differential
- Disease Management
- Disease Susceptibility
- Epigenesis, Genetic
- Gene Expression Regulation
- Histones/metabolism
- Humans
- Idiopathic Pulmonary Fibrosis/diagnosis
- Idiopathic Pulmonary Fibrosis/etiology
- Idiopathic Pulmonary Fibrosis/metabolism
- Idiopathic Pulmonary Fibrosis/therapy
- Lung Diseases, Interstitial/diagnosis
- Lung Diseases, Interstitial/etiology
- Lung Diseases, Interstitial/metabolism
- Lung Diseases, Interstitial/therapy
- Pulmonary Disease, Chronic Obstructive/diagnosis
- Pulmonary Disease, Chronic Obstructive/etiology
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/therapy
- Treatment Outcome
Collapse
Affiliation(s)
- Edibe Avci
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
| | - Pouya Sarvari
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Soni S. Pullamsetti
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-603-270-5380; Fax: +49-603-270-5385
| |
Collapse
|
19
|
Nanjappa DP, Babu N, Khanna-Gupta A, O'Donohue MF, Sips P, Chakraborty A. Poly (A)-specific ribonuclease (PARN): More than just "mRNA stock clearing". Life Sci 2021; 285:119953. [PMID: 34520768 DOI: 10.1016/j.lfs.2021.119953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, the balance between the synthesis and the degradation decides the steady-state levels of messenger RNAs (mRNA). The removal of adenosine residues from the poly(A) tail, called deadenylation, is the first and the most crucial step in the process of mRNA degradation. Poly (A)-specific ribonuclease (PARN) is one such enzyme that catalyses the process of deadenylation. Although PARN has been primarily known as the regulator of the mRNA stability, recent evidence clearly suggests several other functions of PARN, including a role in embryogenesis, oocyte maturation, cell-cycle progression, telomere biology, non-coding RNA maturation and ribosome biogenesis. Also, deregulated PARN activity is shown to be a hallmark of specific disease conditions. Pathogenic variants in the PARN gene have been observed in various cancers and inherited bone marrow failure syndromes. The focus in this review is to highlight the emerging functions of PARN, particularly in the context of human diseases.
Collapse
Affiliation(s)
- Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India
| | - Nishith Babu
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India
| | - Arati Khanna-Gupta
- Consortium of Rare Genetic and Bone Marrow Disorders, India network@NitteDU, NITTE (Deemed to be University, Deralakatte, Mangaluru, India
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative CBI, Université de Toulouse- CNRS- UPS- Toulouse-, Dynamics and Disorders of Ribosome Synthesis, Toulouse, France
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India.
| |
Collapse
|
20
|
Wang H, Yang R, Jin J, Wang Z, Li W. Impact of concomitant idiopathic pulmonary fibrosis on prognosis in lung cancer patients: A meta-analysis. PLoS One 2021; 16:e0259784. [PMID: 34767608 PMCID: PMC8589161 DOI: 10.1371/journal.pone.0259784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
Background Current studies showed that idiopathic pulmonary fibrosis (IPF) may lead to a poor prognosis of lung cancer. We conducted a meta-analysis to explore the impact of concomitant IPF in lung cancer and its prognostic value. Methods We searched the databases of PubMed, Web of Science, Embase up to Feb 10th, 2021 for relevant researches and merged the hazard ratios (HRs) and 95% confidence intervals (CIs) to evaluate the association between concomitant IPF and overall survival (OS) in patients with lung cancer. Results Twelve studies involving 58424 patients were included in our meta-analysis. The results indicated that concomitant IPF was correlated with poor prognosis of lung cancer patients (HR = 1.99, 95%CI, 1.59–2.51). The association remained consistent after subgroup analysis and meta-regression stratified by study region, sample size, tumor histology, and therapy. In addition, our results were robust even after sensitivity analysis. Conclusions Concomitant IPF may be a prognostic factor of lung cancer, which can lead to poor survival. However, further studies were necessary for evidence in clinical application.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Ruiyuan Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Jing Jin
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
21
|
Yamato H, Kimura K, Fukui E, Kanou T, Ose N, Funaki S, Minami M, Shintani Y. Periostin secreted by activated fibroblasts in idiopathic pulmonary fibrosis promotes tumorigenesis of non-small cell lung cancer. Sci Rep 2021; 11:21114. [PMID: 34702952 PMCID: PMC8548404 DOI: 10.1038/s41598-021-00717-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) patients with idiopathic pulmonary fibrosis (IPF) show poor prognosis. Periostin is an extracellular matrix protein highly expressed in the lung tissues of IPF. This study aimed to investigate the possibility that periostin secreted by fibroblasts derived from IPF lung might affect proliferation of NSCLC cells. Periostin was more highly expressed and secreted by fibroblasts from diseased human lung with IPF (DIPF) than by normal human lung fibroblasts (NHLF). Cocultivation of NSCLC cells with conditioned media (CM) from DIPF increased proliferation of NSCLC cells through pErk signaling, with this proliferation attenuated by periostin-neutralizing antibodies. Knockdown of integrin β3, a subunit of the periostin receptor, in NSCLC cells suppressed proliferation of NSCLC cells promoted by recombinant human periostin and CM of DIPF. On in vivo examination, DIPF promoted tumor progression more than NHLF, and knockdown of integrin β3 in NSCLC cells suppressed tumor progression promoted by DIPF. Fibroblasts derived from surgical specimens from IPF patients also increased secretion of periostin compared to those from non-IPF patients. Periostin secreted from IPF-activated fibroblasts plays critical roles in the proliferation of NSCLC cells. The present study provides a solid basis for considering periostin-targeted therapy for NSCLC patients with IPF.
Collapse
Affiliation(s)
- Hiroyuki Yamato
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenji Kimura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Kanou
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naoko Ose
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masato Minami
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
22
|
Ikeda S, Kato T, Kenmotsu H, Sekine A, Baba T, Ogura T. Current Treatment Strategies for Non-Small-Cell Lung Cancer with Comorbid Interstitial Pneumonia. Cancers (Basel) 2021; 13:3979. [PMID: 34439135 PMCID: PMC8393888 DOI: 10.3390/cancers13163979] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Of patients with advanced non-small-cell lung cancer (NSCLC), 5-10% have interstitial pneumonia (IP) at the time of diagnosis. To avoid fatal acute exacerbations of pre-existing IP, appropriate patient selection and low-risk treatment choices are warranted. Risk factors for acute exacerbation of pre-existing IP with cytotoxic drugs include honeycomb lungs on computed tomography (CT) and low forced vital capacity, but risk factors with immune checkpoint inhibitors (ICIs) have not been fully investigated. For advanced or recurrent NSCLC with comorbid IP, carboplatin plus nanoparticle albumin-bound paclitaxel is the standard of care for first-line treatment, but second-line or later treatment has not been established. ICI holds great promise for long-term survival, but many challenges remain, including safety and appropriate patient selection. Since the indications for pharmacotherapy and radiotherapy for NSCLC with comorbid IP are quite limited, surgical resection should be considered as much as possible for patients with operable stages. A scoring system has been reported to predict the risk of postoperative acute exacerbation of pre-existing IP, but perioperative treatment has not been established. In the future, it is necessary to accumulate more cases and conduct further research, not only in Japan but also worldwide.
Collapse
Affiliation(s)
- Satoshi Ikeda
- Kanagawa Cardiovascular and Respiratory Center, Department of Respiratory Medicine, 6-16-1, Tomioka-higashi, Kanazawa-ku, Kanagawa 236-0051, Japan; (A.S.); (T.B.); (T.O.)
| | - Terufumi Kato
- Kanagawa Cancer Center, Department of Thoracic Oncology, 2-3-2, Nakao, Asahi-ku, Kanagawa 241-8515, Japan;
| | - Hirotsugu Kenmotsu
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007, Shimonagakubo, Nagaizumi-cho, Shizuoka 411-8777, Japan;
| | - Akimasa Sekine
- Kanagawa Cardiovascular and Respiratory Center, Department of Respiratory Medicine, 6-16-1, Tomioka-higashi, Kanazawa-ku, Kanagawa 236-0051, Japan; (A.S.); (T.B.); (T.O.)
| | - Tomohisa Baba
- Kanagawa Cardiovascular and Respiratory Center, Department of Respiratory Medicine, 6-16-1, Tomioka-higashi, Kanazawa-ku, Kanagawa 236-0051, Japan; (A.S.); (T.B.); (T.O.)
| | - Takashi Ogura
- Kanagawa Cardiovascular and Respiratory Center, Department of Respiratory Medicine, 6-16-1, Tomioka-higashi, Kanazawa-ku, Kanagawa 236-0051, Japan; (A.S.); (T.B.); (T.O.)
| |
Collapse
|
23
|
Yoneshima Y, Iwama E, Matsumoto S, Matsubara T, Tagawa T, Ota K, Tanaka K, Takenoyama M, Okamoto T, Goto K, Mori M, Okamoto I. Paired analysis of tumor mutation burden for lung adenocarcinoma and associated idiopathic pulmonary fibrosis. Sci Rep 2021; 11:12732. [PMID: 34140559 PMCID: PMC8211684 DOI: 10.1038/s41598-021-92098-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Genetic alterations underlying the development of lung cancer in individuals with idiopathic pulmonary fibrosis (IPF) have remained unclear. To explore whether genetic alterations in IPF tissue contribute to the development of IPF-associated lung cancer, we here evaluated tumor mutation burden (TMB) and somatic variants in 14 paired IPF and tumor samples from patients with IPF-associated lung adenocarcinoma. We also determined TMB for 22 samples of lung adenocarcinoma from patients without IPF. TMB for IPF-associated lung adenocarcinoma was significantly higher than that for matched IPF tissue (median of 2.94 vs. 1.26 mutations/Mb, P = 0.002). Three and 102 somatic variants were detected in IPF and matched lung adenocarcinoma samples, respectively, with only one pair of specimens sharing one somatic variant. TMB for IPF-associated lung adenocarcinoma was similar to that for lung adenocarcinoma samples with driver mutations (median of 2.94 vs. 2.51 mutations/Mb) and lower than that for lung adenocarcinoma samples without known driver mutations (median of 2.94 vs. 5.03 mutations/Mb, P = 0.130) from patients without IPF. Our findings suggest that not only the accumulation of somatic mutations but other factors such as inflammation and oxidative stress might contribute to the development and progression of lung cancer in patients with IPF.
Collapse
Affiliation(s)
- Yasuto Yoneshima
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Eiji Iwama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Taichi Matsubara
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Testuzo Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiichi Ota
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kentaro Tanaka
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mitsuhiro Takenoyama
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
24
|
Alfaro TM, Robalo Cordeiro C. Comorbidity in idiopathic pulmonary fibrosis - what can biomarkers tell us? Ther Adv Respir Dis 2021; 14:1753466620910092. [PMID: 32167024 PMCID: PMC7074506 DOI: 10.1177/1753466620910092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive parenchymal scarring, leading to dyspnoea, respiratory failure and premature death. Although IPF is confined to the lungs, the importance of IPF comorbidities such as pulmonary hypertension and ischaemic heart disease, lung cancer, emphysema/chronic obstructive pulmonary disease, gastroesophageal reflux, sleep apnoea and depression has been increasingly recognized. These comorbidities may be associated with increased mortality and significant loss of quality of life, so their identification and management are vital. The development of good-quality biomarkers could lead to numerous gains in the management of these patients. Biomarkers can be used for the identification of predisposed individuals, early diagnosis, assessment of prognosis, selection of best treatment and assessment of response to treatment. However, the role of biomarkers for IPF comorbidities is still quite limited, and mostly based on evidence coming from populations without IPF. The future development of new biomarker studies could be informed by those that have been studied independently for each of these conditions. For now, clinicians should be mostly attentive to clinical manifestations of IPF comorbidities, and use validated diagnostic methods for diagnosis. As research on biomarkers of most common diseases continues, it is expected that useful biomarkers are developed for these diseases and then validated for IPF populations. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Tiago M Alfaro
- Pneumology Unit, Centro Hospital e Universitário de Coimbra, Coimbra, Portugal.,Centre of Pneumology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carlos Robalo Cordeiro
- Pneumology Unit, Centro Hospital e Universitário de Coimbra, Praceta Mota Pinto, Coimbra 3000-085, Portugal.,Centre of Pneumology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
25
|
Immune Stroma in Lung Cancer and Idiopathic Pulmonary Fibrosis: A Common Biologic Landscape? Int J Mol Sci 2021; 22:ijms22062882. [PMID: 33809111 PMCID: PMC8000622 DOI: 10.3390/ijms22062882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) identifies a specific entity characterized by chronic, progressive fibrosing interstitial pneumonia of unknown cause, still lacking effective therapies. Growing evidence suggests that the biologic processes occurring in IPF recall those which orchestrate cancer onset and progression and these findings have already been exploited for therapeutic purposes. Notably, the incidence of lung cancer in patients already affected by IPF is significantly higher than expected. Recent advances in the knowledge of the cancer immune microenvironment have allowed a paradigm shift in cancer therapy. From this perspective, recent experimental reports suggest a rationale for immune checkpoint inhibition in IPF. Here, we recapitulate the most recent knowledge on lung cancer immune stroma and how it can be translated into the IPF context, with both diagnostic and therapeutic implications.
Collapse
|
26
|
Song MJ, Kim SY, Park MS, Kang MJ, Lee SH, Park SC. A nationwide population-based study of incidence and mortality of lung cancer in idiopathic pulmonary fibrosis. Sci Rep 2021; 11:2596. [PMID: 33510351 PMCID: PMC7843601 DOI: 10.1038/s41598-021-82182-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 01/07/2021] [Indexed: 11/09/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an independent risk factor for lung cancer (LC) development; however, there are currently no clinical guidelines for LC surveillance in IPF. This study aimed to investigate the cumulative incidence and survival outcomes of LC in IPF. Using the National Health Insurance Service database, including medical information on people aged ≥ 40 years between 2011 and 2016, we identified IPF patients and confirmed the presence of comorbid LC. Patients diagnosed with IPF in 2011 were washed out, and mortality data were analyzed from 2012 to 2018. A total of 7277 newly diagnosed IPF patients were identified among Korean citizens aged ≥ 40 years (about 50 million people) between 2011 and 2016. Their average age was 71.5 years and 72.8% of them were male. The prevalence of LC in the IPF cases was 6.4%. The cumulative incidence rates of LC in IPF patients who did not have LC at the time of IPF diagnosis were 1.7%, 4.7%, and 7.0%, at 1, 3, and 5 years, respectively. The median time from IPF diagnosis to LC development was 16.3 (Interquartile range, 8.2-28.8) months. The survival rate was significantly lower in the IPF with LC group than the IPF without LC group (P < 0.001). We concluded that IPF increases LC risk, and LC weakens survival outcomes in IPF. Close surveillance for LC development is mandatory for patients with IPF.
Collapse
Affiliation(s)
- Myung Jin Song
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Song Yee Kim
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moo Suk Park
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Min Jin Kang
- Research Institute, National Health Insurance Service Ilsan Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sang Hoon Lee
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seon Cheol Park
- Division of Pulmonology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Ilsan-ro 100, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
27
|
Bajwah S, Colquitt J, Loveman E, Bausewein C, Almond H, Oluyase A, Dzingina M, Maddocks M, Higginson IJ, Wells A. Pharmacological and nonpharmacological interventions to improve symptom control, functional exercise capacity and quality of life in interstitial lung disease: an evidence synthesis. ERJ Open Res 2021; 7:00107-2020. [PMID: 33532482 PMCID: PMC7836673 DOI: 10.1183/23120541.00107-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/13/2020] [Indexed: 11/09/2022] Open
Abstract
We assessed efficacy and effectiveness of pharmacological and nonpharmacological interventions in improving symptom control, functional exercise capacity and quality of life (QoL) in people living with fibrotic interstitial lung disease (ILD). We summarised evidence from three previous reviews (to June 2014) and conducted an updated search of nine databases and grey literature (2011-2019) (registration: CRD42017065933) for prospective studies of interventions aimed to alleviate symptoms, improve QoL or functional exercise capacity in fibrotic ILD. Data were synthesised through narrative synthesis or meta-analysed as appropriate. Forty-seven studies with 2527 participants were included. From 22 pharmacological studies of 11 different interventions (n=1683), the most tested interventions were bosentan and sildenafil. From 25 nonpharmacological studies, the most tested intervention was for pulmonary rehabilitation/exercise training (PR) (22 studies, n=748). There was an improvement in 6-min walk distance immediately following PR (six studies; n=200, mean difference (MD) (95% CI) 39.9 m (18.2 to 61.5)), but not longer term (3 or 6 months, four studies; n=147, MD 5.3 m (-12.9 to 23.4). Multiple, varied outcome measures were used (e.g. 37 studies assessing dyspnoea used 10 different scales with a lack of reporting of rate of deterioration in outcomes). Evidence gap mapping highlighted the most and least researched symptoms, as dyspnoea and cough, respectively. This evidence synthesis highlights overwhelmingly that the most researched symptom is dyspnoea and the strongest evidence base is for short-term PR. The least researched symptom was cough. Research going forward must focus on prioritising and standardising meaningful outcomes and focussing interventions on neglected symptoms.
Collapse
Affiliation(s)
- Sabrina Bajwah
- Cicely Saunders Institute, Dept of Palliative Care Policy and Rehabilitation, King's College London, London, UK,Sabrina Bajwah, Cicely Saunders Institute, Dept of Palliative Care Policy and Rehabilitation, King's College London, Bessemer Road, London SE5 9PJ, UK. E-mail:
| | | | | | | | | | - Adejoke Oluyase
- Cicely Saunders Institute, Dept of Palliative Care Policy and Rehabilitation, King's College London, London, UK
| | - Mendy Dzingina
- Cicely Saunders Institute, Dept of Palliative Care Policy and Rehabilitation, King's College London, London, UK
| | - Matthew Maddocks
- Cicely Saunders Institute, Dept of Palliative Care Policy and Rehabilitation, King's College London, London, UK
| | - Irene J. Higginson
- Cicely Saunders Institute, Dept of Palliative Care Policy and Rehabilitation, King's College London, London, UK
| | | |
Collapse
|
28
|
Axelsson GT, Putman RK, Aspelund T, Gudmundsson EF, Hida T, Araki T, Nishino M, Hatabu H, Gudnason V, Hunninghake GM, Gudmundsson G. The associations of interstitial lung abnormalities with cancer diagnoses and mortality. Eur Respir J 2020; 56:13993003.02154-2019. [PMID: 32646918 DOI: 10.1183/13993003.02154-2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
An increased incidence of lung cancer is well known among patients with idiopathic pulmonary fibrosis. It is not known whether interstitial lung abnormalities, i.e. early fibrotic changes of the lung, are a risk factor for lung cancer in the general population.The study's objective was to assess whether interstitial lung abnormalities were associated with diagnoses of, and mortality from, lung cancer and other cancers. Data from the AGES-Reykjavik study, a cohort of 5764 older Icelandic adults, were used. Outcome data were ascertained from electronic medical records. Gray's tests, Cox proportional hazards models and proportional subdistribution hazards models were used to analyse associations of interstitial lung abnormalities with lung cancer diagnoses and lung cancer mortality as well as diagnoses and mortality from all cancers.There was a greater cumulative incidence of lung cancer diagnoses (p<0.001) and lung cancer mortality (p<0.001) in participants with interstitial lung abnormalities than in others. Interstitial lung abnormalities were associated with an increased hazard of lung cancer diagnosis (hazard ratio 2.77) and lung cancer mortality (hazard ratio 2.89) in adjusted Cox models. Associations of interstitial lung abnormalities with all cancers were found in models including lung cancers but not in models excluding lung cancers.People with interstitial lung abnormalities are at increased risk of lung cancer and lung cancer mortality, but not of other cancers. This implies that an association between fibrotic and neoplastic diseases of the lung exists from the early stages of lung fibrosis and suggests that interstitial lung abnormalities could be considered as a risk factor in lung cancer screening efforts.
Collapse
Affiliation(s)
| | - Rachel K Putman
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thor Aspelund
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Icelandic Heart Association, Kopavogur, Iceland
| | | | - Tomayuki Hida
- Dept of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tetsuro Araki
- Dept of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mizuki Nishino
- Dept of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hiroto Hatabu
- Dept of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Icelandic Heart Association, Kopavogur, Iceland
| | - Gary M Hunninghake
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gunnar Gudmundsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Dept of Respiratory Medicine, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
29
|
Song MJ, Kim DJ, Paik HC, Cho S, Kim K, Jheon S, Lee SH, Park JS. Impact of idiopathic pulmonary fibrosis on recurrence after surgical treatment for stage I-III non-small cell lung cancer. PLoS One 2020; 15:e0235126. [PMID: 32598373 PMCID: PMC7323957 DOI: 10.1371/journal.pone.0235126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/09/2020] [Indexed: 11/19/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is an independent risk factor for lung cancer (LC) development; however, its effect on recurrence after curative surgery remains unclear. Objectives This study aimed to determine the impact of IPF on recurrence-free survival following curative surgical resection of stage I–III non-small cell lung cancer (NSCLC) and investigate the effects of patient and surgical factors on the risk of recurrence. Methods We reviewed retrospectively collected data of patients with surgically resected stage I–III NSCLC from two tertiary care hospitals in South Korea. By propensity score matching, patients with IPF (LC with IPF) were matched to those without IPF (LC without IPF). Results In total, 3416 patients underwent surgical resection, and 96 were diagnosed with underlying IPF. In the LC with IPF group, 89.6% patients were men, and the average age was 69.7 years. Sublobar resection was performed more frequently in the LC with IPF group than in the LC without IPF group, while the rate of mediastinal lymph node dissection and dissected node number were lower in the former group. The 5-year recurrence-free survival rate was significantly lower in the LC with IPF group (49.2%) than in the LC without IPF group (69.1%; P<0.001). Multivariable Cox regression analysis revealed that IPF and postoperative stage III were independent risk factors for recurrence. Conclusions IPF may increase the risk of recurrence after curative surgical treatment for NSCLC. Close surveillance for recurrence is mandatory for patients with underlying IPF.
Collapse
Affiliation(s)
- Myung Jin Song
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dae Jun Kim
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Chae Paik
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kwhanmien Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sanghoon Jheon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sang Hoon Lee
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail: (JSP); (SHL)
| | - Jong Sun Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- * E-mail: (JSP); (SHL)
| |
Collapse
|
30
|
Gershman E, Zer A, Pertzov B, Shtraichman O, Shitenberg D, Heching M, Rosengarten D, Kramer M. Characteristics of lung cancer in idiopathic pulmonary fibrosis with single lung transplant versus non-transplanted patients: a retrospective observational study. BMJ Open Respir Res 2020; 7:7/1/e000566. [PMID: 32565443 PMCID: PMC7311020 DOI: 10.1136/bmjresp-2020-000566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Patients with idiopathic pulmonary fibrosis (IPF) have significantly higher incidence of lung cancer (LC) relative to the general population. There is a further increase in LC incidence in patients with IPF subsequent to lung transplant, specifically in patients with IPF undergoing single lung transplant. OBJECTIVES To examine the incidence and characteristics of LC in patients with IPF during follow-up and after lung transplantation (LTX). METHODS We conducted a retrospective analysis of all patients with IPF diagnosed with LC in Rabin Medical Center, Israel, over an 11-year period. We compared the characteristics of transplanted patients with IPF diagnosed with LC to patients with IPF who did not undergo lung transplant. Data were accessed from database registries using the words 'fibrosis', 'lung-cancer' and 'lung-transplantation'. Demographic parameters included age, gender and smoking history (pack years). Clinical-pathological parameters included lapse in time from IPF diagnosis to LC, type of malignancy, affected pulmonary lobe, and stage at diagnosis, oncological treatment and survival. RESULTS Between 2008 and 2018, 205 patients with IPF underwent lung transplantation at our medical centre. Double LTX was performed in 83 and single LTX in 122 cases. Subsequently, 15 (12.3%) single LTX patients were diagnosed with LC during the study period. During the same period, of 497 non-transplanted patients with IPF followed in our centre, 45 (9.1%) were diagnosed with LC. In all 15 transplanted patients with IPF, LC was diagnosed exclusively in the native fibrotic lung. LC incidence was higher in the transplanted as compared with the non-transplanted group, but this difference did not reach statistical significance (OR=0.7, 95% CI 0.38 to 1.32, p=0.28). At LC diagnosis, the non-transplanted group was older than the transplanted group with average age of 67.7 versus 60.8 years, respectively (p=0.006). Both groups showed male predominance. In both groups, LC was primarily peripheral, lower lobe predominant and most frequently squamous cell carcinoma. The median survival time after LC diagnosis was 4 months in the transplanted group and 11 months in the non-transplanted group (p=0.19). Multivariate analysis showed improved survival in the non-transplanted group among those patients who received oncological treatment. CONCLUSION Chest CT should be performed regularly in order to evaluate IPF patients for potential LC. Single lung transplant IPF patients face an increased risk of post-transplant LC in the native fibrotic lung. Where practicable, IPF patients should be prioritised for double lung transplant.
Collapse
Affiliation(s)
- Evgeni Gershman
- Pulmonary Institute, Rabin Medical Center, Petah Tikva, Israel .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alona Zer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Davidoff Oncology Institute, Rabin Medical Center, Petah Tikva, Israel
| | - Barak Pertzov
- Pulmonary Institute, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Shtraichman
- Pulmonary Institute, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Shitenberg
- Pulmonary Institute, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Heching
- Pulmonary Institute, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror Rosengarten
- Pulmonary Institute, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mordechai Kramer
- Pulmonary Institute, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
31
|
Shi H, Yin D, Bonella F, Kreuter M, Oltmanns U, Li X, Peng S, Wei L. Efficacy, safety, and tolerability of combined pirfenidone and N-acetylcysteine therapy: a systematic review and meta-analysis. BMC Pulm Med 2020; 20:128. [PMID: 32380989 PMCID: PMC7204217 DOI: 10.1186/s12890-020-1121-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/24/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND While antifibrotic drugs significantly decrease lung function decline in idiopathic pulmonary fibrosis (IPF), there is still an unmet need to halt disease progression. Antioxidative therapy with N-acetylcysteine (NAC) is considered a potential additional therapy that can be combined with antifibrotics in some patients in clinical practice. However, data on the efficacy, tolerability, and safety of this combination are scarce. We performed a systematic review and meta-analysis to appraise the safety, tolerability, and efficacy of the combination compared to treatment with pirfenidone alone. METHODS We systematically reviewed all the published studies with combined pirfenidone (PFD) and NAC (PFD + NAC) treatment in IPF patients. The primary outcomes referred to decline in pulmonary function tests (PFTs) and the rates of IPF patients with side effects. RESULTS In the meta-analysis, 6 studies with 319 total IPF patients were included. The PFD + NAC group was comparable to the PFD alone group in terms of the predicted forced vital capacity (FVC%) and predicted diffusion capacity for carbon monoxide (DLco%) from treatment start to week 24. Side effects and treatment discontinuation rates were also comparable in both groups. CONCLUSION This systematic review and meta-analysis suggests that combination with NAC does not alter the efficacy, safety, or tolerability of PFD in comparison to PFD alone in IPF patients.
Collapse
Affiliation(s)
- Hanyu Shi
- Department of Respiratory and Critical Care Medicine, Special Medical Center of Chinese People's Armed Police Forces, Tianjin, China
- Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Dawei Yin
- Department of Respiratory and Critical Care Medicine, Special Medical Center of Chinese People's Armed Police Forces, Tianjin, China
- Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Francesco Bonella
- Department of Pneumology, Ruhrlandklinik, Centre for Interstitial and Rare Lung Disease, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Ute Oltmanns
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
- Department of Pneumology, Helios Klinikum Pforzheim, Pforzheim, Germany
| | - Xuren Li
- Department of Respiratory and Critical Care Medicine, Special Medical Center of Chinese People's Armed Police Forces, Tianjin, China
| | - Shouchun Peng
- Department of Respiratory and Critical Care Medicine, Special Medical Center of Chinese People's Armed Police Forces, Tianjin, China
| | - Luqing Wei
- Department of Respiratory and Critical Care Medicine, Special Medical Center of Chinese People's Armed Police Forces, Tianjin, China.
- Department of Respiratory and Critical Care Medicine, Special Medical Center of the Chinese People's Armed Police Forces, 220, Cheng-Lin Road, Tianjin, China.
| |
Collapse
|
32
|
Wang Z, Qu S, Zhu J, Chen F, Ma L. Comprehensive analysis of lncRNA-associated competing endogenous RNA network and immune infiltration in idiopathic pulmonary fibrosis. J Thorac Dis 2020; 12:1856-1865. [PMID: 32642089 PMCID: PMC7330328 DOI: 10.21037/jtd-19-2842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a life-threatening lung disorder with an unknown aetiology. The roles of long non-coding RNAs (lncRNAs) and its related competing endogenous RNAs (ceRNA) network in IPF remains poorly understood. In this study, we aimed to build a lncRNA-miRNA-mRNA network and explore the pathogenesis of IPF. Methods We screened differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) between IPF and control lung tissues from two datasets. The ceRNA network was built according to the interactions between DElncRNA, miRNA, and DEmRNA. Functional enrichment analysis of DemRNAs was performed using Metascape. CIBERSORT (Cell type Identification by Estimating Relative Subsets Of known RNA Transcripts) was applied to estimate the fraction of 22 immune cells in IPF and controls lung tissue samples. Then we investigated the correlation between immune cells and clinical traits. Results We constructed a lncRNA-miRNA-mRNA network, which was composed of two DElncRNAs, 18 miRNAs, 66 DemRNAs. Functional enrichment analysis showed that the DEmRNAs mainly participated in MicroRNAs in cancer. By applying CIBERSORT, we found that IPF tissue samples had a higher proportion of plasma cells, resting mast cells and a lower proportion of resting NK cells, monocytes, neutrophils compared with control tissue samples. Also, our results indicated that immune cells were associated with the severity of IPF. Conclusions In summary, this is the first study to build lncRNA-miRNA-mRNA ceRNA network of IPF, which may improve our understanding of IPF pathogenesis. Our study indicates that immune cells in lung tissues may predict disease severity and participate in the development of IPF. Future prospective studies are required to confirm the findings of the current study.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Infectious Diseases, Shandong University Qilu Hospital, Jinan 250012, China
| | - Shuoying Qu
- Department of Clinical Laboratory, Shandong University Qilu Hospital, Jinan 250012, China
| | - Jie Zhu
- Department of Infectious Diseases, Shandong University Qilu Hospital, Jinan 250012, China
| | - Fengzhe Chen
- Department of Infectious Diseases, Shandong University Qilu Hospital, Jinan 250012, China
| | - Lixian Ma
- Department of Infectious Diseases, Shandong University Qilu Hospital, Jinan 250012, China
| |
Collapse
|
33
|
Reyfman PA, Gottardi CJ. Idiopathic Pulmonary Fibrosis and Lung Cancer: Finding Similarities within Differences. Am J Respir Cell Mol Biol 2020; 61:667-668. [PMID: 31167078 PMCID: PMC6890405 DOI: 10.1165/rcmb.2019-0172ed] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Paul A Reyfman
- Department of Medicine, Division of Pulmonary and Critical CareFeinberg School of Medicine Northwestern UniversityChicago, Illinois
| | - Cara J Gottardi
- Department of Medicine, Division of Pulmonary and Critical CareFeinberg School of Medicine Northwestern UniversityChicago, Illinois
| |
Collapse
|
34
|
Abstract
Systemic therapy for advanced non-small cell lung cancer (NSCLC) has dramatically changed in the latest 15 years. Molecular-targeted therapy has brought about an era of precision medicine, and immune checkpoint inhibitors have brought hope for a cure for advanced NSCLC. In the wake of this remarkable advancement, lung cancer with comorbid interstitial pneumonia (IP) has been completely left behind, as most clinical trials exclude patients with comorbid IP. IP, especially idiopathic pulmonary fibrosis (IPF), is often accompanied by lung cancer, and acute exacerbation can develop during various cancer therapies, including surgery, radiotherapy and pharmacotherapy. In this review, we focus on the clinical questions concerning pharmacotherapy in cases of advanced lung cancer with comorbid IP and discuss what we can do with the currently available data.
Collapse
Affiliation(s)
- Eiki Ichihara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Japan
| | - Nobuaki Miyahara
- Department of Medical Technology, Okayama University Graduate School of Health Sciences, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Japan
| |
Collapse
|
35
|
Assessment of Lung Cancer Development in Idiopathic Pulmonary Fibrosis Patients Using Quantitative High-Resolution Computed Tomography: A Retrospective Analysis. J Thorac Imaging 2020; 35:115-122. [PMID: 31913257 DOI: 10.1097/rti.0000000000000468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to investigate histogram-based quantitative high-resolution computed tomography (HRCT) indexes in the assessment of lung cancer (LC) development in idiopathic pulmonary fibrosis (IPF) patients. MATERIALS AND METHODS From IPF databases of 2 national respiratory centers, we retrospectively studied patients with and without LC development-respectively, divided into Group A (n=16) and Group B (n=33). The extent of fibrotic disease was quantified on baseline and follow-up HRCT examinations using kurtosis, skewness, percentage of high attenuation area (HAA%), and percentage of fibrotic area (FA%). These indexes were compared between the 2 groups using the Mann-Whitney U test. In the prediction of LC development, receiver operating characteristic analysis was performed to assess threshold values of HRCT indexes. RESULTS At baseline, no difference was reported among groups for kurtosis, skewness, HAA%, and FA%, with P-values of 0.0881, 0.0606, 0.0578, and 0.0606, respectively. On follow-up, significant differences were reported, with P-values of 0.0174 for kurtosis, 0.0313 for skewness, 0.0297 for HAA%, and 0.0407 for FA%.On baseline HRCT, in the prediction of LC development, receiver operating characteristic analysis reported sensibility and specificity of 87.5% and 45.45% for kurtosis, 68.75% and 63.64% for skewness, 81.25% and 54.55% for FA%, and 75% and 60.61% for HAA%. CONCLUSIONS LC development is associated with progression of fibrosis; at baseline, FA% and HAA% reported more convenient sensitivity/specificity ratios in the prediction of LC development.
Collapse
|
36
|
Tzouvelekis A, Karampitsakos T, Gomatou G, Bouros E, Tzilas V, Manali E, Tomos I, Trachalaki A, Kolilekas L, Korbila I, Tomos P, Chrysikos S, Gaga M, Daniil Z, Bardaka F, Papanikolaou IC, Euthymiou C, Papakosta D, Steiropoulos P, Ntolios P, Tringidou R, Papiris S, Antoniou K, Bouros D. Lung cancer in patients with Idiopathic Pulmonary Fibrosis. A retrospective multicenter study in Greece. Pulm Pharmacol Ther 2019; 60:101880. [PMID: 31874284 DOI: 10.1016/j.pupt.2019.101880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Abundant evidence supports an association between Idiopathic Pulmonary Fibrosis (IPF) and lung cancer development. Data on diagnosis and management of patients with IPF and lung cancer are still scarce. PATIENTS AND METHODS This was a retrospective multicenter study, enrolling 1016 patients with IPF from eight different centers between 2011 and 2018 in Greece. Our aim was to estimate prevalence of lung cancer in patients with IPF in Greece. RESULTS We identified 102 cases of patients with IPF and lung cancer (prevalence = 10.03% n = 102/1016, mean age±SD = 71.8 ± 6.9, 96 males, mean FVC±SD = 72.7 ± 19.7, mean DLCO±SD = 44.5 ± 16.3). We identified 85 cases (83.3%) of non-small cell lung cancer (35 squamous, 28 adenocarcinoma), and 15 cases (14.7%) of small cell lung cancer. Primary lesion was localized in lower lobes in 57.1% of cases. Lung cancer was diagnosed post IPF diagnosis (mean latency time + SD = 33.2 + 36.1 months) in 57.6% of patients and synchronously in 36.5% of patients. Chemotherapy was applied in 26.7% of cases, while 34.7% of patients underwent surgery. Median survival of patients with IPF and lung cancer was 27.4 months (95% CI: 20.6 to 36.8). CONCLUSIONS IPF is a risk factor for lung cancer development. In line with current literature, squamous cell carcinoma is the most common histologic subtype in patients with IPF. Large randomized controlled studies on the management of patients with IPF and lung cancer are sorely needed.
Collapse
Affiliation(s)
- Argyris Tzouvelekis
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens, Hospital for Diseases of the Chest, "Sotiria", Athens, Greece
| | - Theodoros Karampitsakos
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens, Hospital for Diseases of the Chest, "Sotiria", Athens, Greece
| | - Georgia Gomatou
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens, Hospital for Diseases of the Chest, "Sotiria", Athens, Greece
| | - Evangelos Bouros
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens, Hospital for Diseases of the Chest, "Sotiria", Athens, Greece
| | - Vassilios Tzilas
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens, Hospital for Diseases of the Chest, "Sotiria", Athens, Greece
| | - Efrossyni Manali
- 2nd Pulmonary Medicine Department, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece
| | - Ioannis Tomos
- 2nd Pulmonary Medicine Department, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece
| | - Athina Trachalaki
- Department of Thoracic Medicine and Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Lykourgos Kolilekas
- 7th Department of Respiratory Medicine, Hospital for Diseases of the Chest, "Sotiria", Athens, Greece
| | - Ioanna Korbila
- 2nd Pulmonary Medicine Department, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece
| | - Periklis Tomos
- Department of Thoracic Surgery, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece
| | - Serafeim Chrysikos
- 5th Department of Respiratory Medicine, Hospital for Diseases of the Chest, "Sotiria", Athens, Greece
| | - Mina Gaga
- 7th Department of Respiratory Medicine, Hospital for Diseases of the Chest, "Sotiria", Athens, Greece
| | - Zoe Daniil
- Department of Respiratory Medicine, Medical School, University of Thessaly, Larissa, Greece
| | - Fotini Bardaka
- Department of Respiratory Medicine, Medical School, University of Thessaly, Larissa, Greece
| | | | - Christopher Euthymiou
- Pulmonary Department, "G Papanikolaou" General Hospital, Thessaloniki, Greece; Aristotle University of Thessaloniki Medical School, Thessaloniki, Greece
| | - Despoina Papakosta
- Pulmonary Department, "G Papanikolaou" General Hospital, Thessaloniki, Greece; Aristotle University of Thessaloniki Medical School, Thessaloniki, Greece
| | - Paschalis Steiropoulos
- Democritus University of Thrace, Department of Respiratory Medicine, Alexandroupolis, Greece
| | - Paschalis Ntolios
- Democritus University of Thrace, Department of Respiratory Medicine, Alexandroupolis, Greece
| | - Rodoula Tringidou
- Department of Pathology, Hospital for Diseases of the Chest, "Sotiria", Athens, Greece
| | - Spyridon Papiris
- 2nd Pulmonary Medicine Department, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece
| | - Katerina Antoniou
- Department of Thoracic Medicine and Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Demosthenes Bouros
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens, Hospital for Diseases of the Chest, "Sotiria", Athens, Greece.
| |
Collapse
|
37
|
Kang JH, Jung MY, Choudhury M, Leof EB. Transforming growth factor beta induces fibroblasts to express and release the immunomodulatory protein PD-L1 into extracellular vesicles. FASEB J 2019; 34:2213-2226. [PMID: 31907984 DOI: 10.1096/fj.201902354r] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 01/14/2023]
Abstract
Transforming growth factor-beta (TGFβ) is an enigmatic protein with various roles in healthy tissue homeostasis/development as well as the development or progression of cancer, wound healing, fibrotic disorders, and immune modulation, to name a few. As TGFβ is causal to various fibroproliferative disorders featuring localized or systemic tissue/organ fibrosis as well as the activated stroma observed in various malignancies, characterizing the pathways and players mediating its action is fundamental. In the current study, we found that TGFβ induces the expression of the immunoinhibitory molecule Programed death-ligand 1 (PD-L1) in human and murine fibroblasts in a Smad2/3- and YAP/TAZ-dependent manner. Furthermore, PD-L1 knockdown decreased the TGFβ-dependent induction of extracellular matrix proteins, including collagen Iα1 (colIα1) and alpha-smooth muscle actin (α-SMA), and cell migration/wound healing. In addition to an endogenous role for PD-L1 in profibrotic TGFβ signaling, TGFβ stimulated-human lung fibroblast-derived PD-L1 into extracellular vesicles (EVs) capable of inhibiting T cell proliferation in response to T cell receptor stimulation and mediating fibroblast cell migration. These findings provide new insights and potential targets for a variety of fibrotic and malignant diseases.
Collapse
Affiliation(s)
- Jeong-Han Kang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mi-Yeon Jung
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Malay Choudhury
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Edward B Leof
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
38
|
Bai L, Bernard K, Tang X, Hu M, Horowitz JC, Thannickal VJ, Sanders YY. Glutaminolysis Epigenetically Regulates Antiapoptotic Gene Expression in Idiopathic Pulmonary Fibrosis Fibroblasts. Am J Respir Cell Mol Biol 2019; 60:49-57. [PMID: 30130138 DOI: 10.1165/rcmb.2018-0180oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fibrotic responses involve multiple cellular processes, including epigenetic changes. Epigenetic changes are sensitive to alterations in the tissue microenvironment such as the flux of tricarboxylic acid (TCA) cycle metabolites. TCA metabolites directly regulate epigenetic states, in part by regulating histone modification-related enzymes. Glutaminolysis is a critical metabolic process by which glutamine is converted to glutamate by glutaminase and then to α-ketoglutarate (α-KG), a TCA cycle metabolite. Idiopathic pulmonary fibrosis (IPF) is a disease characterized by aberrant metabolism, including enhanced glutaminolysis. IPF fibroblasts are apoptosis resistant. In this study, we explored the relationship between glutaminolysis and the resistance to apoptosis of IPF fibroblasts. Inhibition of glutaminolysis decreased expression of XIAP and survivin, members of the inhibitor of apoptosis protein (IAP) family. α-KG is a cofactor for JMJD3 histone demethylase, which targets H3K27me3. In the absence of glutamine, JMJD3 activity in fibroblasts is significantly decreased, whereas H3K27me3 levels are increased. Chromatin immunoprecipitation assays confirmed that JMJD3 directly interacts with XIAP and survivin promoter regions in a glutamine-dependent manner. Exogenous α-KG partially restores JMJD3 function and its interaction with the XIAP and survivin promoter regions under glutamine-deficient conditions. Interestingly, α-KG upregulates XIAP, but not survivin, suggesting differential α-KG-dependent and -independent mechanisms by which glutamine regulates these IAPs. Our data demonstrate a novel mechanism of metabolic regulation in which glutaminolysis promotes apoptosis resistance of IPF fibroblasts through epigenetic regulation of XIAP and survivin.
Collapse
Affiliation(s)
- Le Bai
- 1 Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,2 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Karen Bernard
- 2 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Xuebo Tang
- 2 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Min Hu
- 1 Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jeffrey C Horowitz
- 3 Division of Pulmonary, and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Victor J Thannickal
- 2 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Yan Y Sanders
- 2 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
39
|
Wollin L, Distler JHW, Denton CP, Gahlemann M. Rationale for the evaluation of nintedanib as a treatment for systemic sclerosis-associated interstitial lung disease. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2019; 4:212-218. [PMID: 35382502 PMCID: PMC8922567 DOI: 10.1177/2397198319841842] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/25/2019] [Indexed: 03/23/2024]
Abstract
Interstitial lung disease is a common manifestation of systemic sclerosis. Systemic sclerosis-associated interstitial lung disease is characterized by progressive pulmonary fibrosis and a reduction in pulmonary function. Effective treatments for systemic sclerosis-associated interstitial lung disease are lacking. In addition to clinical similarities, systemic sclerosis-associated interstitial lung disease shows similarities to idiopathic pulmonary fibrosis in the pathophysiology of the underlying fibrotic processes. Idiopathic pulmonary fibrosis and systemic sclerosis-associated interstitial lung disease culminate in a self-sustaining pathway of pulmonary fibrosis in which fibroblasts are activated, myofibroblasts accumulate, and the excessive extracellular matrix is deposited. Nintedanib is a tyrosine kinase inhibitor that has been approved for the treatment of idiopathic pulmonary fibrosis. In patients with idiopathic pulmonary fibrosis, nintedanib slows disease progression by decreasing the rate of lung function decline. In this review, we summarize the antifibrotic, anti-inflammatory, and attenuated vascular remodeling effects of nintedanib demonstrated in in vitro studies and in animal models of aspects of systemic sclerosis. Nintedanib interferes at multiple critical steps in the pathobiology of systemic sclerosis-associated interstitial lung disease, providing a convincing rationale for its investigation as a potential therapy. Finally, we summarize the design of the randomized placebo-controlled SENSCIS® trial that is evaluating the efficacy and safety of nintedanib in patients with systemic sclerosis-associated interstitial lung disease.
Collapse
Affiliation(s)
- Lutz Wollin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Jörg HW Distler
- Department of Internal Medicine 3 Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
40
|
Immune Checkpoints as Promising Targets for the Treatment of Idiopathic Pulmonary Fibrosis? J Clin Med 2019; 8:jcm8101547. [PMID: 31561518 PMCID: PMC6833050 DOI: 10.3390/jcm8101547] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a rare, progressive and fatal lung disease which affects approximately 5 million persons worldwide. Although pirfenidone and/or nintedanib treatment improves patients’ wellbeing, the prognosis of IPF remains poor with 5-year mortality rates still ranging from 70 to 80%. The promise of the anti-cancer agent nintedanib in IPF, in combination with the recent notion that IPF shares several pathogenic pathways with cancer, raised hope that immune checkpoint inhibitors, the novel revolutionary anticancer agents, could also be the eagerly awaited ground-breaking and unconventional novel treatment modality limiting IPF-related morbidity/mortality. In the current review, we analyse the available literature on immune checkpoint proteins in IPF to explore whether immune checkpoint inhibition may be as promising in IPF as it is in cancer. We conclude that despite several promising papers showing that inhibiting specific immune checkpoint proteins limits pulmonary fibrosis, overall the data seem to argue against a general role of immune checkpoint inhibition in IPF and suggest that only PD-1/PD-L1 inhibition may be beneficial.
Collapse
|
41
|
Yu S, Choi HH, Kim IW, Kim TJ. Conditioned medium from asbestos-exposed fibroblasts affects proliferation and invasion of lung cancer cell lines. PLoS One 2019; 14:e0222160. [PMID: 31491033 PMCID: PMC6730856 DOI: 10.1371/journal.pone.0222160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/22/2019] [Indexed: 12/28/2022] Open
Abstract
The importance of the role of fibroblasts in cancer microenvironment is well-recognized. However, the relationship between fibroblasts and asbestos-induced lung cancer remains underexplored. To investigate the effect of the asbestos-related microenvironment on lung cancer progression, lung cancer cells (NCI-H358, Calu-3, and A549) were cultured in media derived from IMR-90 lung fibroblasts exposed to 50 mg/L asbestos (chrysotile, amosite, and crocidolite) for 24 h. The kinetics and migration of lung cancer cells in the presence of asbestos-exposed lung fibroblast media were monitored using a real-time cell analysis system. Proliferation and migration of A549 cells increased in the presence of media derived from asbestos-exposed lung fibroblasts than in the presence of media derived from normal lung fibroblasts. We observed no increase in proliferation and migration in lung cancer cells cultured in asbestos-exposed lung cancer cell medium. In contrast, increased proliferation and migration in lung cancer cells exposed to media from asbestos-exposed lung fibroblasts was observed for all types of asbestos. Media derived from lung fibroblasts exposed to other stressors, such as hydrogen peroxide and UV radiation didn't show as similar effect as asbestos exposure. An enzyme-linked immunosorbent assay (ELISA)-based cytokine array identified interleukin (IL)-6 and IL-8, which show pleiotropic regulatory effects on lung cancer cells, to be specifically produced in higher amounts by the three types of asbestos-exposed lung fibroblasts than normal lung fibroblasts. Thus, the present study demonstrated that interaction of lung fibroblasts with asbestos may support the growth and metastasis of lung cancer cells and that chrysotile exposure can lead to lung cancer similar to that caused by amphibole asbestos (amosite and crocidolite).
Collapse
Affiliation(s)
- Seunghye Yu
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| | - Hee-Hyun Choi
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Il Won Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- * E-mail:
| |
Collapse
|
42
|
Ogura T, Takigawa N, Tomii K, Kishi K, Inoue Y, Ichihara E, Homma S, Takahashi K, Akamatsu H, Ikeda S, Inase N, Iwasawa T, Ohe Y, Ohta H, Onishi H, Okamoto I, Ogawa K, Kasahara K, Karata H, Kishimoto T, Kitamura Y, Gemma A, Kenmotsu H, Sakashita H, Sakamoto S, Sekine K, Takiguchi Y, Tada Y, Toyooka S, Nakayama Y, Nishioka Y, Hagiwara K, Hanibuchi M, Fukuoka J, Minegishi Y, Yanagihara T, Yamamoto N, Yamamoto H, Gaga M, Fong KM, Powell CA, Kiura K. Summary of the Japanese Respiratory Society statement for the treatment of lung cancer with comorbid interstitial pneumonia. Respir Investig 2019; 57:512-533. [PMID: 31377122 DOI: 10.1016/j.resinv.2019.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
Dramatic progress in targeted therapy and immunotherapy has been changing clinical practices in lung cancer. With the accumulation of clinical practice, it has become clear that pre-existing interstitial pneumonia (IP) could be a risk factor for drug-induced lung injury, which has enhanced awareness regarding the difficulty in treating lung cancer with comorbid IP. Unfortunately, there is only low-grade evidence in the field of lung cancer with comorbid IP, because almost all clinical trials exclude such patients. There have been very few specialized clinical trials for patients with lung cancer and underlying IPs thus far. Therefore, it is necessary to treat such cases empirically or to give up on the treatment itself. Considering these circumstances, establishing how to treat lung cancer with comorbid IP is an urgent issue. This paper is a summary of the official statement reported by the Diffuse Lung Disease/Thoracic Oncology Assembly and the Japanese Respiratory Society (JRS) in 2017, which attempts to approach lung cancer with comorbid IP systematically.
Collapse
Affiliation(s)
- Takashi Ogura
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Nagio Takigawa
- Department of General Internal Medicine 4, Kawasaki Medical School, Japan
| | - Keisuke Tomii
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Japan
| | - Kazuma Kishi
- Department of Respiratory Medicine, Respiratory Center, Toranomon Hospital, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Eiki Ichihara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Japan
| | - Sakae Homma
- Department of Respiratory Medicine, Toho University Omori Medical Center, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Japan
| | - Hiroaki Akamatsu
- Third Department of Internal Medicine, Wakayama Medical University, Japan
| | - Satoshi Ikeda
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Naohiko Inase
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Japan
| | - Tae Iwasawa
- Department of Radiology, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Japan
| | - Hiromitsu Ohta
- Department of Pulmonary Medicine, Jichi Medical University Saitama Medical Center, Japan
| | | | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kazumasa Ogawa
- Department of Respiratory Medicine, Respiratory Center, Toranomon Hospital, Japan
| | - Kazuo Kasahara
- Department of Respiratory Medicine, Cellular Transplantation Biology, Kanazawa University Graduate School of Medicine, Japan
| | - Hiroki Karata
- Department of Pathology, Nagasaki University Hospital, Japan
| | - Takumi Kishimoto
- Department of Research, Research and Training Center for Asbestos-Related Diseases, Japan
| | - Yuka Kitamura
- Department of Pathology, Nagasaki University Hospital, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Japan
| | | | - Hiroyuki Sakashita
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Japan
| | - Susumu Sakamoto
- Department of Respiratory Medicine, Toho University Omori Medical Center, Japan
| | | | - Yuichi Takiguchi
- Department of Medical Oncology, Chiba University Hospital, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Yuko Nakayama
- Department of Radiation Oncology, National Cancer Center Hospital, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Science, Tokushima University, Japan
| | - Koichi Hagiwara
- Department of Pulmonary Medicine, Department of Internal Medicine Jichi Medical University, Japan
| | - Masaki Hanibuchi
- Department of Internal Medicine, Shikoku Central Hospital, Japan
| | - Junya Fukuoka
- Department of Pathology, Nagasaki University Hospital, Japan
| | - Yuji Minegishi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Japan
| | - Toyoshi Yanagihara
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Nobuyuki Yamamoto
- Third Department of Internal Medicine, Wakayama Medical University, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Mina Gaga
- Respiratory Medicine Dept and Asthma Center, Athens Chest Hospital "Sotiria", Greece
| | - Kwun M Fong
- Department of Thoracic Medicine, The Prince Charles Hospital, School of Medicine, The University of Queensland, Australia
| | - Charles A Powell
- Department of Medicine, Icahn School of Medicine at Mount Sinai, USA
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Japan.
| | | |
Collapse
|
43
|
Chung A, English J, Volkmann ER. Interstitial Lung Disease in Systemic Sclerosis: Lessons Learned from Idiopathic Pulmonary Fibrosis. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2019. [DOI: 10.1007/s40674-019-00121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Mendoza-Alvarez A, Guillen-Guio B, Baez-Ortega A, Hernandez-Perez C, Lakhwani-Lakhwani S, Maeso MDC, Lorenzo-Salazar JM, Morales M, Flores C. Whole-Exome Sequencing Identifies Somatic Mutations Associated With Mortality in Metastatic Clear Cell Kidney Carcinoma. Front Genet 2019; 10:439. [PMID: 31156702 PMCID: PMC6529576 DOI: 10.3389/fgene.2019.00439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/29/2019] [Indexed: 11/16/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is among the most aggressive histologic subtypes of kidney cancer, representing about 3% of all human cancers. Patients at stage IV have nearly 60% of mortality in 2–3 years after diagnosis. To date, most ccRCC studies have used DNA microarrays and targeted sequencing of a small set of well-established, commonly altered genes. An exception is the large multi-omics study of The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC), which identified new ccRCC genes based on whole exome-sequencing (WES) data, and molecular prognostic signatures based on transcriptomics, epigenetics and proteomics data. Applying WES to simultaneously interrogate virtually all exons in the human genome for somatic variation, here we analyzed the burden of coding somatic mutations in metastatic ccRCC primary tumors, and its association with patient mortality from cancer, in patients who received VEGF receptor-targeting drugs as the first-line therapy. To this end, we sequenced the exomes of ten tumor–normal pairs of ccRCC patient tissues from primary biopsies at >100× mean depth and called somatic coding variation. Mutation burden analysis prioritized 138 genes linked to patient mortality. A gene set enrichment analysis evidenced strong statistical support for the abundance of genes involved in the development of kidney cancer (p = 2.31 × 10−9) and carcinoma (p = 1.22 × 10−5), with 49 genes having direct links with kidney cancer according to the published records. Two of these genes, SIPA1L2 and EIF3A, demonstrated independent associations with mortality in TCGA-KIRC project data. Besides, three mutational signatures were found to be operative in the tumor exomes, one of which (COSMIC signature 12) has not been previously reported in ccRCC. Selection analysis yielded no detectable evidence of overall positive or negative selection, with the exome-wide number of nonsynonymous substitutions per synonymous site reflecting largely neutral tumor evolution. Despite the limited sample size, our results provide evidence for candidate genes where somatic mutation burden is tentatively associated with patient mortality in metastatic ccRCC, offering new potential pharmacological targets and a basis for further validation studies.
Collapse
Affiliation(s)
- Alejandro Mendoza-Alvarez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Adrian Baez-Ortega
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Carolina Hernandez-Perez
- Service of Medical Oncology, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Sita Lakhwani-Lakhwani
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Maria-Del-Carmen Maeso
- Department of Pathology, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Jose M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Manuel Morales
- Service of Medical Oncology, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
45
|
Prognosis of Small Cell Lung Cancer with Idiopathic Pulmonary Fibrosis: Assessment according to GAP Stage. JOURNAL OF ONCOLOGY 2019; 2019:5437390. [PMID: 31186636 PMCID: PMC6521435 DOI: 10.1155/2019/5437390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/25/2019] [Accepted: 03/31/2019] [Indexed: 11/17/2022]
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is an independent risk factor for lung cancer development, and small cell lung cancer (SCLC) comprises 15-20% of lung cancers with IPF. The objective of this study was to investigate survival outcomes and treatment-related complications according to GAP (gender, age, and physiology) stage in patients having SCLC with IPF (SCLC-IPF). Materials and Methods Retrospectively collected data of SCLC-IPF patients from two tertiary care university hospitals in South Korea were reviewed. A total of 59 SCLC-IPF patients were identified and categorized according to GAP stage, which was proposed by Ley et al. in 2012 to predict the prognosis of IPF. Survival outcomes and treatment-related complications were compared between the two groups. Results In a total of 59 patients, the median age was 71 years and 58 (98.3%) were male. In a comparison of the median overall survival (OS) according to GAP stage, median OS of the advanced GAP stage group was significantly shorter than median OS of GAP stage I group (7.1 months vs. 16.1 months; p = 0.002). Treatment-related complications occurred more frequently in the advanced GAP stage group; advanced GAP stage was the only predictor that exhibited a significant association with the incidence of acute exacerbation of IPF. Conclusions Inferior survival outcome and higher incidence of treatment-related pulmonary toxicities were noted in the advanced GAP stage group. Furthermore, advanced GAP stage was the only predictor of treatment-related acute exacerbation of IPF. Physicians should thus consider GAP stage, which reflects the severity of IPF, during treatment of SCLC-IPF.
Collapse
|
46
|
De Santis MC, Gulluni F, Campa CC, Martini M, Hirsch E. Targeting PI3K signaling in cancer: Challenges and advances. Biochim Biophys Acta Rev Cancer 2019; 1871:361-366. [DOI: 10.1016/j.bbcan.2019.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
|
47
|
Bonham CA, Hrusch CL, Blaine KM, Manns ST, Vij R, Oldham JM, Churpek MM, Strek ME, Noth I, Sperling AI. T cell Co-Stimulatory molecules ICOS and CD28 stratify idiopathic pulmonary fibrosis survival. RESPIRATORY MEDICINE: X 2019; 1. [PMID: 32455343 PMCID: PMC7243672 DOI: 10.1016/j.yrmex.2019.100002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease that kills as many Americans as breast cancer each year. This study investigated whether lung function decline and survival associates with adaptive immunity in patients with IPF, specifically the expression of checkpoint molecules ICOS, CD28 and PD-1 on circulating CD4 T cells. Clinical data, blood samples and pulmonary function tests were collected prospectively and longitudinally from 59 patients with IPF over a study period of 5 years. Patients were followed until death, lung transplantation, or study end, and cell surface expression of CD45RO, CD28, ICOS, and PD-1 was measured on CD4 T cells via flow cytometry. Repeated measures of ICOS and CD28 on CD4 T cells revealed significant associations between declining ICOS and CD28 expression, and declining lung function parameters FVC and DLCO, independent of age, sex, race, smoking history, or immunosuppressant use. Strikingly, patients in the highest quintile of ICOS at study entry had markedly improved survival, while those with low CD28 fared poorly. No change in PD-1 expression was found. Analysis of ICOS and CD28 from the first blood draw identified three populations of IPF patients; those at high risk for early death, those with intermediate risk, and those at low risk. These results highlight the role of T cell mediated immunity in IPF survival, finding the assessment of two T cell stimulatory checkpoint molecules, CD28 and ICOS, was sufficient to discriminate three distinct survival trajectories over 5 years of patient follow up.
Collapse
Affiliation(s)
- Catherine A Bonham
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Cara L Hrusch
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Kelly M Blaine
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Stephenie T Manns
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Rekha Vij
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Justin M Oldham
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Matthew M Churpek
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Mary E Strek
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Imre Noth
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anne I Sperling
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.,Committee of Immunology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
48
|
Spek CA, Duitman J. Is idiopathic pulmonary fibrosis a cancer-like disease? Transcriptome analysis to fuel the debate. ERJ Open Res 2019; 5:00157-2018. [PMID: 30723726 PMCID: PMC6355975 DOI: 10.1183/23120541.00157-2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating and eventually fatal diffuse parenchymal lung disorder that largely remains refractory to pharmacological therapies [1]. IPF is characterised by excessive fibroblast proliferation leading to the formation of fibroblast foci secreting extracellular matrix, with subsequent disruption of pulmonary structure and function. Despite progress in the understanding of the pathogenesis of IPF, novel treatment modalities show limited efficacy and the prognosis of IPF only slowly improves, with current 5-year mortality rates still ranging from 70% to 80%. To boost prognosis and to rise above incremental reductions in mortality rates of IPF patients, innovative and unorthodox treatment modalities are eagerly awaited. Despite promising examples of anticancer drugs as potential treatment modalities for IPF, these transcriptome data argue against the general nature of anticancer drugs as anti-IPF drugshttp://ow.ly/HjsV30nbcji
Collapse
Affiliation(s)
- C Arnold Spek
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| | - JanWillem Duitman
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Sapalidis K, Sardeli C, Pavlidis E, Koimtzis G, Koulouris C, Michalopoulos N, Mantalovas S, Tsiouda T, Passos I, Kosmidis C, Giannakidis D, Surlin V, Katsaounis A, Alexandrou V, Amaniti A, Zarogoulidis P, Huang H, Li Q, Mogoanta S, Kesisoglou I. Scar tissue to lung cancer; pathways and treatment. J Cancer 2019; 10:810-818. [PMID: 30854086 PMCID: PMC6400809 DOI: 10.7150/jca.30300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/15/2018] [Indexed: 12/12/2022] Open
Abstract
Lung cancer still remains diagnosed at a late stage although we have novel diagnostic techniques at our disposal. However; for metastatic disease we have novel therapies based on pharmacogenomics. Tumor heterogenity provides us different treatments. There are several reasons for carcinogenesis; fibrosis and scar tissue provides an environment that induces malignancy. In the current review we will try and elucidate the pathways involved from scar tissue to carcinogenesis.
Collapse
Affiliation(s)
- Konstantinos Sapalidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Chrysanthi Sardeli
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efstathios Pavlidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Georgios Koimtzis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Charilaos Koulouris
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Nikolaos Michalopoulos
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Stylianos Mantalovas
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Theodora Tsiouda
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Ioannis Passos
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Christoforos Kosmidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Dimitrios Giannakidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Valeriu Surlin
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Athanasios Katsaounis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Vyron Alexandrou
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Aikaterini Amaniti
- Anaisthisiology Department, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Paul Zarogoulidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece.,Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Haidong Huang
- The Diagnostic and Therapeutic Center of Respiratory Diseases, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Qiang Li
- The Diagnostic and Therapeutic Center of Respiratory Diseases, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Stelian Mogoanta
- Department of Surgery, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Isaac Kesisoglou
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| |
Collapse
|
50
|
Loverdos K, Fotiadis A, Kontogianni C, Iliopoulou M, Gaga M. Lung nodules: A comprehensive review on current approach and management. Ann Thorac Med 2019; 14:226-238. [PMID: 31620206 PMCID: PMC6784443 DOI: 10.4103/atm.atm_110_19] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In daily clinical practice, radiologists and pulmonologists are faced with incidental radiographic findings of pulmonary nodules. Deciding how to manage these findings is very important as many of them may be benign and require no further action, but others may represent early disease and importantly early-stage lung cancer and require prompt diagnosis and definitive treatment. As the diagnosis of pulmonary nodules includes invasive procedures which can be relatively minimal, such as bronchoscopy or transthoracic aspiration or biopsy, but also more invasive procedures such as thoracic surgical biopsies, and as these procedures are linked to anxiety and to cost, it is important to have clearly defined algorithms for the description, management, and follow-up of these nodules. Clear algorithms for the imaging protocols and the management of positive findings should also exist in lung cancer screening programs, which are already established in the USA and which will hopefully be established worldwide. This article reviews current knowledge on nodule definition, diagnostic evaluation, and management based on literature data and mainly recent guidelines.
Collapse
Affiliation(s)
| | - Andreas Fotiadis
- 7th Respiratory Medicine Department, Athens Chest Hospital, Athens, Greece
| | | | | | - Mina Gaga
- 7th Respiratory Medicine Department, Athens Chest Hospital, Athens, Greece
| |
Collapse
|