1
|
Che Y, Lu Y, Zhu Y, He T, Li X, Gao J, Gao J, Wang X, Liu Z, Tong F. Surveillance of fluoroquinolones resistance in rifampicin-susceptible tuberculosis in eastern China with whole-genome sequencing-based approach. Front Microbiol 2024; 15:1413618. [PMID: 39050625 PMCID: PMC11266052 DOI: 10.3389/fmicb.2024.1413618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Background Leveraging well-established DNA-level drug resistance mechanisms, whole-genome sequencing (WGS) has emerged as a valuable methodology for predicting drug resistance. As the most effective second-line anti-tuberculosis (anti-TB) drugs, fluoroquinoloness (FQs) are generally used to treat multidrug-resistant tuberculosis (MDR-TB, defined as being resistant to resistant to rifampicin and isoniazid) or rifampicin-resistant tuberculosis (RR-TB). However, FQs are also commonly used in the management of other bacterial infections. There are few published data on the rates of FQs resistance among rifampicin-susceptible TB. The prevalence of FQs resistance among TB patients who are rifampicin-susceptible has not been studied in Zhejiang Province, China. The goal of this study was to provide a baseline characterization of the prevalence of FQs resistance, particularly among rifampicin-susceptible TB in Zhejiang Province, China. Methods Based on WGS, we have investigated the prevalence of FQs resistance among rifampicin-susceptible TB in Zhejiang Province. All pulmonary TB patients with positive cultures who were identified in Zhejiang area during TB drug resistance surveillance from 2018 to 2019 have enrolled in this population-based retrospective study. Results The rate of FQs resistance was 4.6% (32/698) among TB, 4.0% (27/676) among rifampicin-susceptible TB, and 22.7% (5/22) among RR-TB. According to WGS, strains that differ within 12 single-nucleotide polymorphisms (SNPs) were considered to be transmission of FQ-resistant strains. Specifically, 3.7% (1/27) of FQs resistance was caused by the transmission of FQs-resistant strains among the rifampicin-susceptible TB and 40.7% (11/27) of FQs resistance was identified as hetero-resistance. Conclusion The prevalence of FQs resistance among TB patients who were rifampicin-susceptible was severe in Zhejiang. The emergence of FQs resistance in TB isolates that are rifampicin-susceptible was mainly caused by the selection of drug-resistant strains. In order to prevent the emergence of FQs resistance, the WGS-based surveillance system for TB should be urgently established, and clinical awareness of the responsible use of FQs for respiratory infections should be enhanced.
Collapse
Affiliation(s)
- Yang Che
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Yewei Lu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Yelei Zhu
- The Institute of TB Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Tianfeng He
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Xiangchen Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Junli Gao
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Junshun Gao
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Xiaomeng Wang
- The Institute of TB Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhengwei Liu
- The Institute of TB Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Feng Tong
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| |
Collapse
|
2
|
Vasanthaiah S, Verma R, Kumar A, Bandari AK, George J, Rastogi M, Manjunath GK, Sharma J, Kumar A, Subramani J, Chawla K, Pandey A. Culture-Free Whole Genome Sequencing of Mycobacterium tuberculosis Using Ligand-Mediated Bead Enrichment Method. Open Forum Infect Dis 2024; 11:ofae320. [PMID: 38957687 PMCID: PMC11218775 DOI: 10.1093/ofid/ofae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Background Direct whole genome sequencing (WGS) of Mycobacterium tuberculosis (Mtb) can be used as a tool to study drug resistance, mixed infections, and within-host diversity. However, WGS is challenging to obtain from clinical samples due to low number of bacilli against a high background. Methods We prospectively collected 34 samples (sputum, n = 17; bronchoalveolar lavage, n = 13; and pus, n = 4) from patients with active tuberculosis (TB). Prior to DNA extraction, we used a ligand-mediated magnetic bead method to enrich Mtb from clinical samples and performed WGS on Illumina platform. Results Mtb was definitively identified based on WGS from 88.2% (30/34) of the samples, of which 35.3% (12/34) were smear negative. The overall median genome coverage was 15.2% (interquartile range [IQR], 7.7%-28.2%). There was a positive correlation between load of bacilli on smears and genome coverage (P < .001). We detected 58 genes listed in the World Health Organization mutation catalogue in each positive sample (median coverage, 85% [IQR, 61%-94%]), enabling the identification of mutations missed by routine diagnostics. Mutations causing resistance to rifampicin, isoniazid, streptomycin, and ethambutol were detected in 5 of 34 (14.7%) samples, including the rpoB S441A mutation that confers resistance to rifampicin, which is not covered by Xpert MTB/RIF. Conclusions We demonstrate the feasibility of magnetic bead-based enrichment for culture-free WGS of Mtb from clinical specimens, including smear-negative samples. This approach can also be integrated with low-cost sequencing workflows such as targeted sequencing for rapid detection of Mtb and drug resistance.
Collapse
Affiliation(s)
- Shruthi Vasanthaiah
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Renu Verma
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Ajay Kumar
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Aravind K Bandari
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - John George
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mona Rastogi
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Gowrang Kasaba Manjunath
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Jyoti Sharma
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | | | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Akhilesh Pandey
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
3
|
Mousavi-Sagharchi SMA, Afrazeh E, Seyyedian-Nikjeh SF, Meskini M, Doroud D, Siadat SD. New insight in molecular detection of Mycobacterium tuberculosis. AMB Express 2024; 14:74. [PMID: 38907086 PMCID: PMC11192714 DOI: 10.1186/s13568-024-01730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is a pathogenic bacterium that has claimed millions of lives since the Middle Ages. According to the World Health Organization's report, tuberculosis ranks among the ten deadliest diseases worldwide. The presence of an extensive array of genes and diverse proteins within the cellular structure of this bacterium has provided us with a potent tool for diagnosis. While the culture method remains the gold standard for tuberculosis diagnosis, it is possible that molecular diagnostic methods, emphasis on the identification of mutation genes (e.g., rpoB and gyrA) and single nucleotide polymorphisms, could offer a safe and reliable alternative. Over the past few decades, as our understanding of molecular genetics has expanded, methods have been developed based on gene expansion and detection. These methods typically commence with DNA amplification through nucleic acid targeted techniques such as polymerase chain reaction. Various molecular compounds and diverse approaches have been employed in molecular assays. In this review, we endeavor to provide an overview of molecular assays for the diagnosis of tuberculosis with their properties (utilization, challenges, and functions). The ultimate goal is to explore the potential of replacing traditional bacterial methods with these advanced molecular diagnostic techniques.
Collapse
Affiliation(s)
| | - Elina Afrazeh
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Maryam Meskini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.
| | - Delaram Doroud
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Xu Y, Yang J, Cui L, Huang C, Wu C. Intestinal nontuberculous mycobacteria infection: A case report. Medicine (Baltimore) 2024; 103:e36954. [PMID: 38363897 PMCID: PMC10869084 DOI: 10.1097/md.0000000000036954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/21/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Intestinal nontuberculous mycobacteriosis due to nontuberculous mycobacteria infection has clinical manifestations similar to intestinal tuberculosis and inflammatory bowel disease, causing difficulties in clinical diagnosis. CASE PRESENTATION A 42-year-old male patient was admitted to the Sino-Japanese Friendship Hospital of Jilin University in June 2021 for diarrhea and intermittent hematochezia since April 2021. He was diagnosed with inflammatory intestinal disease by colonoscopy and midtransverse colon biopsy. However, the symptoms did not relieve after 2 months of mesalazine treatment. In August 2021, the patient was admitted to the outpatient department for suspected "intestinal tuberculosis." A diagnosis of intestinal nontuberculous mycobacteriosis was confirmed based on pathology and nucleotide-based matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). After 2 weeks of antimycobacterial therapy, the patient's diarrhea was relieved, and hematochezia no longer appeared. In November 2021, recolonoscopy revealed scattered erosions and ulcers in ileocecal valve and ascending colon, while both nucleotide-based MALDI-TOF MS and next-generation sequencing could still detect Mycobacterium intracellulare. CONCLUSION This study reported a patient with an intestinal nontuberculous mycobacteriosis diagnosed by colonoscopy biopsy and nucleotide-based MALDI-TOF MS, and symptoms were relieved after antimycobacterial treatment.
Collapse
Affiliation(s)
- Yanbin Xu
- Department of Multidrug Resistant Tuberculosis, Changchun Infectious Disease Hospital, Changchun, China
| | - Jinfeng Yang
- Department of Multidrug Resistant Tuberculosis, Changchun Infectious Disease Hospital, Changchun, China
| | - Lili Cui
- Department of Multidrug Resistant Tuberculosis, Changchun Infectious Disease Hospital, Changchun, China
| | - Chengchen Huang
- Department of Medical Affairs, Shanghai Conlight Medical Laboratory Co., Ltd, Shanghai, China
| | - Chun Wu
- Department of Multidrug Resistant Tuberculosis, Changchun Infectious Disease Hospital, Changchun, China
| |
Collapse
|
5
|
Yu J, Jia Y, Yu Q, Lin L, Li C, Chen B, Zhong P, Lin X, Li H, Sun Y, Zhong X, He Y, Huang X, Lin S, Pan Y. Deciphering complex antibiotic resistance patterns in Helicobacter pylori through whole genome sequencing and machine learning. Front Cell Infect Microbiol 2024; 13:1306368. [PMID: 38379956 PMCID: PMC10878306 DOI: 10.3389/fcimb.2023.1306368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/06/2023] [Indexed: 02/22/2024] Open
Abstract
Introduction Helicobacter pylori (H.pylori, Hp) affects billions of people worldwide. However, the emerging resistance of Hp to antibiotics challenges the effectiveness of current treatments. Investigating the genotype-phenotype connection for Hp using next-generation sequencing could enhance our understanding of this resistance. Methods In this study, we analyzed 52 Hp strains collected from various hospitals. The susceptibility of these strains to five antibiotics was assessed using the agar dilution assay. Whole-genome sequencing was then performed to screen the antimicrobial resistance (AMR) genotypes of these Hp strains. To model the relationship between drug resistance and genotype, we employed univariate statistical tests, unsupervised machine learning, and supervised machine learning techniques, including the development of support vector machine models. Results Our models for predicting Amoxicillin resistance demonstrated 66% sensitivity and 100% specificity, while those for Clarithromycin resistance showed 100% sensitivity and 100% specificity. These results outperformed the known resistance sites for Amoxicillin (A1834G) and Clarithromycin (A2147), which had sensitivities of 22.2% and 87%, and specificities of 100% and 96%, respectively. Discussion Our study demonstrates that predictive modeling using supervised learning algorithms with feature selection can yield diagnostic models with higher predictive power compared to models relying on single single-nucleotide polymorphism (SNP) sites. This approach significantly contributes to enhancing the precision and effectiveness of antibiotic treatment strategies for Hp infections. The application of whole-genome sequencing for Hp presents a promising pathway for advancing personalized medicine in this context.
Collapse
Affiliation(s)
- Jianwei Yu
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Yan Jia
- Department of Gastroenterology, the 7Medical Center of PLA General Hospital, Beijing, China
| | - Qichao Yu
- Center for Systems Biology, Intelliphecy, Main Building, Beishan Industrial Zone, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lan Lin
- Department of Gastroenterology, Xiamen Humanity Hospital, Xiamen, Fujian, China
| | - Chao Li
- Department of Gastroenterology, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Bowang Chen
- Center for Systems Biology, Intelliphecy, Main Building, Beishan Industrial Zone, Shenzhen, Guangdong, China
- Department of Data Science, Intelliphecy, Nanjing, Jiangsu, China
| | - Pingyu Zhong
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Xueqing Lin
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Huilan Li
- Department of Nephrology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Yinping Sun
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Xuejing Zhong
- Department of Science and Education, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Yuqi He
- Department of Gastroenterology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaoyun Huang
- Center for Systems Biology, Intelliphecy, Main Building, Beishan Industrial Zone, Shenzhen, Guangdong, China
| | - Shuangming Lin
- Department of Gastrointestinal Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
6
|
Hazra D, Lam C, Chawla K, Sintchenko V, Dhyani VS, Venkatesh BT. Impact of Whole-Genome Sequencing of Mycobacterium tuberculosis on Treatment Outcomes for MDR-TB/XDR-TB: A Systematic Review. Pharmaceutics 2023; 15:2782. [PMID: 38140122 PMCID: PMC10747601 DOI: 10.3390/pharmaceutics15122782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence and persistence of drug-resistant tuberculosis is a major threat to global public health. Our objective was to assess the applicability of whole-genome sequencing (WGS) to detect genomic markers of drug resistance and explore their association with treatment outcomes for multidrug-resistant/extensively drug-resistant tuberculosis (MDR/XDR-TB). METHODS Five electronic databases were searched for studies published in English from the year 2000 onward. Two reviewers independently conducted the article screening, relevant data extraction, and quality assessment. The data of the included studies were synthesized with a narrative method and are presented in a tabular format. RESULTS The database search identified 949 published articles and 8 studies were included. An unfavorable treatment outcome was reported for 26.6% (488/1834) of TB cases, which ranged from 9.7 to 51.3%. Death was reported in 10.5% (194/1834) of total cases. High-level fluoroquinolone resistance (due to gyrA 94AAC and 94GGC mutations) was correlated as the cause of unfavorable treatment outcomes and reported in three studies. Other drug resistance mutations, like kanamycin high-level resistance mutations (rrs 1401G), rpoB Ile491Phe, and ethA mutations, conferring prothionamide resistance were also reported. The secondary findings from this systematic review involved laboratory aspects of WGS, including correlations with phenotypic DST, cost, and turnaround time, or the impact of WGS results on public health actions, such as determining transmission events within outbreaks. CONCLUSIONS WGS has a significant capacity to provide accurate and comprehensive drug resistance data for MDR/XDR-TB, which can inform personalized drug therapy to optimize treatment outcomes.
Collapse
Affiliation(s)
- Druti Hazra
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Connie Lam
- Sydney Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Vitali Sintchenko
- Sydney Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| | - Vijay Shree Dhyani
- Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Bhumika T. Venkatesh
- Public Health Evidence South Asia, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| |
Collapse
|
7
|
Shaw B, von Bredow B, Tsan A, Garner O, Yang S. Clinical Whole-Genome Sequencing Assay for Rapid Mycobacterium tuberculosis Complex First-Line Drug Susceptibility Testing and Phylogenetic Relatedness Analysis. Microorganisms 2023; 11:2538. [PMID: 37894195 PMCID: PMC10609454 DOI: 10.3390/microorganisms11102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The global rise of drug resistant tuberculosis has highlighted the need for improved diagnostic technologies that provide rapid and reliable drug resistance results. Here, we develop and validate a whole genome sequencing (WGS)-based test for identification of mycobacterium tuberculosis complex (MTB) drug resistance to rifampin, isoniazid, pyrazinamide, ethambutol, and streptomycin. Through comparative analysis of drug resistance results from WGS-based testing and phenotypic drug susceptibility testing (DST) of 38 clinical MTB isolates from patients receiving care in Los Angeles, CA, we found an overall concordance between methods of 97.4% with equivalent performance across culture media. Critically, prospective analysis of 11 isolates showed that WGS-based testing provides results an average of 36 days faster than phenotypic culture-based methods. We showcase the additional benefits of WGS data by investigating a suspected laboratory contamination event and using phylogenetic analysis to search for cryptic local transmission, finding no evidence of community spread amongst our patient population in the past six years. WGS-based testing for MTB drug resistance has the potential to greatly improve diagnosis of drug resistant MTB by accelerating turnaround time while maintaining accuracy and providing additional benefits for infection control, lab safety, and public health applications.
Collapse
Affiliation(s)
- Bennett Shaw
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA; (B.S.); (B.v.B.); (A.T.); (O.G.)
| | - Benjamin von Bredow
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA; (B.S.); (B.v.B.); (A.T.); (O.G.)
- Department of Pathology, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Allison Tsan
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA; (B.S.); (B.v.B.); (A.T.); (O.G.)
| | - Omai Garner
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA; (B.S.); (B.v.B.); (A.T.); (O.G.)
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA; (B.S.); (B.v.B.); (A.T.); (O.G.)
| |
Collapse
|
8
|
Koleske BN, Jacobs WR, Bishai WR. The Mycobacterium tuberculosis genome at 25 years: lessons and lingering questions. J Clin Invest 2023; 133:e173156. [PMID: 37781921 PMCID: PMC10541200 DOI: 10.1172/jci173156] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
First achieved in 1998 by Cole et al., the complete genome sequence of Mycobacterium tuberculosis continues to provide an invaluable resource to understand tuberculosis (TB), the leading cause of global infectious disease mortality. At the 25-year anniversary of this accomplishment, we describe how insights gleaned from the M. tuberculosis genome have led to vital tools for TB research, epidemiology, and clinical practice. The increasing accessibility of whole-genome sequencing across research and clinical settings has improved our ability to predict antibacterial susceptibility, to track epidemics at the level of individual outbreaks and wider historical trends, to query the efficacy of the bacille Calmette-Guérin (BCG) vaccine, and to uncover targets for novel antitubercular therapeutics. Likewise, we discuss several recent efforts to extract further discoveries from this powerful resource.
Collapse
Affiliation(s)
- Benjamin N. Koleske
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Murphy SG, Smith C, Lapierre P, Shea J, Patel K, Halse TA, Dickinson M, Escuyer V, Rowlinson MC, Musser KA. Direct detection of drug-resistant Mycobacterium tuberculosis using targeted next generation sequencing. Front Public Health 2023; 11:1206056. [PMID: 37457262 PMCID: PMC10340549 DOI: 10.3389/fpubh.2023.1206056] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Mycobacterium tuberculosis complex (MTBC) infections are treated with combinations of antibiotics; however, these regimens are not as efficacious against multidrug and extensively drug resistant MTBC. Phenotypic (growth-based) drug susceptibility testing on slow growing bacteria like MTBC requires many weeks to months to complete, whereas sequencing-based approaches can predict drug resistance (DR) with reduced turnaround time. We sought to develop a multiplexed, targeted next generation sequencing (tNGS) assay that can predict DR and can be performed directly on clinical respiratory specimens. A multiplex PCR was designed to amplify a group of thirteen full-length genes and promoter regions with mutations known to be involved in resistance to first- and second-line MTBC drugs. Long-read amplicon libraries were sequenced with Oxford Nanopore Technologies platforms and high-confidence resistance mutations were identified in real-time using an in-house developed bioinformatics pipeline. Sensitivity, specificity, reproducibility, and accuracy of the tNGS assay was assessed as part of a clinical validation study. In total, tNGS was performed on 72 primary specimens and 55 MTBC-positive cultures and results were compared to clinical whole genome sequencing (WGS) performed on paired patient cultures. Complete or partial susceptibility profiles were generated from 82% of smear positive primary specimens and the resistance mutations identified by tNGS were 100% concordant with WGS. In addition to performing tNGS on primary clinical samples, this assay can be used to sequence MTBC cultures mixed with other mycobacterial species that would not yield WGS results. The assay can be effectively implemented in a clinical/diagnostic laboratory with a two to three day turnaround time and, even if batched weekly, tNGS results are available on average 15 days earlier than culture-derived WGS results. This study demonstrates that tNGS can reliably predict MTBC drug resistance directly from clinical specimens or cultures and provide critical information in a timely manner for the appropriate treatment of patients with DR tuberculosis.
Collapse
|
10
|
Chopra H, Mohanta YK, Rauta PR, Ahmed R, Mahanta S, Mishra PK, Panda P, Rabaan AA, Alshehri AA, Othman B, Alshahrani MA, Alqahtani AS, AL Basha BA, Dhama K. An Insight into Advances in Developing Nanotechnology Based Therapeutics, Drug Delivery, Diagnostics and Vaccines: Multidimensional Applications in Tuberculosis Disease Management. Pharmaceuticals (Basel) 2023; 16:581. [PMID: 37111338 PMCID: PMC10145450 DOI: 10.3390/ph16040581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberculosis (TB), one of the deadliest contagious diseases, is a major concern worldwide. Long-term treatment, a high pill burden, limited compliance, and strict administration schedules are all variables that contribute to the development of MDR and XDR tuberculosis patients. The rise of multidrug-resistant strains and a scarcity of anti-TB medications pose a threat to TB control in the future. As a result, a strong and effective system is required to overcome technological limitations and improve the efficacy of therapeutic medications, which is still a huge problem for pharmacological technology. Nanotechnology offers an interesting opportunity for accurate identification of mycobacterial strains and improved medication treatment possibilities for tuberculosis. Nano medicine in tuberculosis is an emerging research field that provides the possibility of efficient medication delivery using nanoparticles and a decrease in drug dosages and adverse effects to boost patient compliance with therapy and recovery. Due to their fascinating characteristics, this strategy is useful in overcoming the abnormalities associated with traditional therapy and leads to some optimization of the therapeutic impact. It also decreases the dosing frequency and eliminates the problem of low compliance. To develop modern diagnosis techniques, upgraded treatment, and possible prevention of tuberculosis, the nanoparticle-based tests have demonstrated considerable advances. The literature search was conducted using Scopus, PubMed, Google Scholar, and Elsevier databases only. This article examines the possibility of employing nanotechnology for TB diagnosis, nanotechnology-based medicine delivery systems, and prevention for the successful elimination of TB illnesses.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Yugal Kishore Mohanta
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Ri-Bhoi, Baridua 793101, Meghalaya, India
| | | | - Ramzan Ahmed
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Ri-Bhoi, Baridua 793101, Meghalaya, India
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati 781008, Assam, India
| | | | - Paramjot Panda
- School of Biological Sciences, AIPH University, Bhubaneswar 754001, Odisha, India
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Basim Othman
- Department of Public Health, Faculty of Applied Medical Sciences, Albaha University, Albaha 65779, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia
| | - Baneen Ali AL Basha
- Laboratory Department, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| |
Collapse
|
11
|
Brown TS, Robinson DA, Buckee CO, Mathema B. Connecting the dots: understanding how human mobility shapes TB epidemics. Trends Microbiol 2022; 30:1036-1044. [PMID: 35597716 PMCID: PMC10068677 DOI: 10.1016/j.tim.2022.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/13/2023]
Abstract
Tuberculosis (TB) remains a leading infectious cause of death worldwide. Reducing TB infections and TB-related deaths rests ultimately on stopping forward transmission from infectious to susceptible individuals. Critical to this effort is understanding how human host mobility shapes the transmission and dispersal of new or existing strains of Mycobacterium tuberculosis (Mtb). Important questions remain unanswered. What kinds of mobility, over what temporal and spatial scales, facilitate TB transmission? How do human mobility patterns influence the dispersal of novel Mtb strains, including emergent drug-resistant strains? This review summarizes the current state of knowledge on mobility and TB epidemic dynamics, using examples from three topic areas, including inference of genetic and spatial clustering of infections, delineating source-sink dynamics, and mapping the dispersal of novel TB strains, to examine scientific questions and methodological issues within this topic. We also review new data sources for measuring human mobility, including mobile phone-associated movement data, and discuss important limitations on their use in TB epidemiology.
Collapse
Affiliation(s)
- Tyler S Brown
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Infectious Diseases Division, Massachusetts General Hospital, Boston, MA, USA
| | - D Ashley Robinson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Barun Mathema
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Sharma MK, Janella D, McGurran A, Corbett C, Adam H, Akochy PM, Haldane D, MacKenzie H, Minion J, Needle R, Newberry C, Patterson M, Sekirov I, Tyrrell G, Soualhine H. Compilation of 10 Years of MIRU-VNTR Data: Canadian National Tuberculosis Laboratory's Experience. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:3505142. [PMID: 36046174 PMCID: PMC9424012 DOI: 10.1155/2022/3505142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/06/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
Tuberculosis is a significant cause of morbidity worldwide and is a priority at the provincial and federal levels in Canada. It is known that tuberculosis transmission networks are complex and span many years as well as different jurisdictions and countries. MIRU-VNTR is a universal tuberculosis genotyping method that utilizes a 24-loci pattern and it has shown promise in identifying inter and intrajurisdictional clusters within Canada. MIRU-VNTR data collected over 10 years from the National Reference Centre for Mycobacteriology (NRCM) were analyzed in this study. Some clusters were unique to a single province/territory, while others spanned multiple provinces and/or territories in Canada. The use of a universal laboratory test can enhance contact tracing, provide geographical information on circulating genotypes, and hence, aid in tuberculosis investigation by public health. The housing of all data on one platform, technical ease of the method, easy exchange of data between jurisdictions, and strong collaboration with laboratories and surveillance units at the provincial and federal levels have the potential to identify possible outbreaks in real time.
Collapse
Affiliation(s)
- Meenu K. Sharma
- National Reference Centre for Mycobacteriology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Debra Janella
- National Reference Centre for Mycobacteriology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Alisa McGurran
- National Reference Centre for Mycobacteriology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Cindi Corbett
- National Reference Centre for Mycobacteriology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | | | | | - David Haldane
- Public Health Laboratory Network, Halifax, Nova Scotia, Canada
| | - Hope MacKenzie
- Atlantic Health Sciences Corporation, Saint John, New Brunswick, Canada
| | - Jessica Minion
- Saskatchewan Health Authority, Saskatoon, Saskatchewan, Canada
| | - Robert Needle
- Newfoundland and Labrador Public Health Laboratory, Saint John, Newfoundland, Canada
| | - Caroline Newberry
- Office of Chief Public Health Officer, Yellowknife, Northwest Territories, Canada
| | | | - Inna Sekirov
- BC Centre for Disease Control, Vancouver, British Columbia, Canada
| | | | - Hafid Soualhine
- National Reference Centre for Mycobacteriology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
13
|
Che Y, Lin Y, Yang T, Chen T, Sang G, Chen Q, He T. Evaluation of whole-genome sequence to predict drug resistance of nine anti- tuberculosis drugs and characterize resistance genes in clinical rifampicin-resistant Mycobacterium tuberculosis isolates from Ningbo, China. Front Public Health 2022; 10:956171. [PMID: 36062095 PMCID: PMC9433565 DOI: 10.3389/fpubh.2022.956171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/28/2022] [Indexed: 01/24/2023] Open
Abstract
Setting Controlling drug-resistant tuberculosis in Ningbo, China. Objective Whole-genome sequencing (WGS) has not been employed to comprehensively study Mycobacterium tuberculosis isolates, especially rifampicin-resistant tuberculosis, in Ningbo, China. Here, we aim to characterize genes involved in drug resistance in RR-TB and create a prognostic tool for successfully predicting drug resistance in patients with TB. Design Drug resistance was predicted by WGS in a "TB-Profiler" web service after phenotypic drug susceptibility tests (DSTs) against nine anti-TB drugs among 59 clinical isolates. A comparison of consistency, sensitivity, specificity, and positive and negative predictive values between WGS and DST were carried out for each drug. Results The sensitivities and specificities for WGS were 95.92 and 90% for isoniazid (INH), 100 and 64.1% for ethambutol (EMB), 97.37 and 100% for streptomycin (SM), 75 and 100% for amikacin (AM), 80 and 96.3%for capreomycin (CAP), 100 and 97.22% for levofloxacin (LFX), 93.33 and 90.91% for prothionamide (PTO), and 70 and 97.96% for para-aminosalicylic acid (PAS). Around 53 (89.83%) and 6 (10.17%) of the isolates belonged to lineage two (East-Asian) and lineage four (Euro-American), respectively. Conclusion Whole-genome sequencing is a reliable method for predicting resistance to INH, RIF, EMB, SM, AM, CAP, LFX, PTO, and PAS with high consistency, sensitivity, and specificity. There was no transmission that occurred among the patients with RR-TB in Ningbo, China.
Collapse
Affiliation(s)
- Yang Che
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Yi Lin
- Center for Health Economics, Faculty of Humanities and Social Sciences, University of Nottingham, Ningbo, China
| | - Tianchi Yang
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Tong Chen
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Guoxin Sang
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Qin Chen
- Department of Disease Prevention and Health Promotion, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China,*Correspondence: Qin Chen
| | - Tianfeng He
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China,Tianfeng He
| |
Collapse
|
14
|
TB patients: Is sputum disinfection important? Indian J Tuberc 2022; 70:142-146. [PMID: 37100568 DOI: 10.1016/j.ijtb.2022.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Patients with pulmonary tuberculosis (TB) may produce large amount of infectious sputum which needs to be handled carefully both in health care and household settings. As mycobacteria may survive for long duration in sputum; proper collection, disinfection and disposal is necessary to avoid potential disease transmission. We aimed to assess the efficacy of bedside disinfectant treatment of sputum produced by TB patients using easily available disinfectants that can be used both in TB wards and household settings, to sterilize the infected sputum and compared it with sputum without disinfectant treatment. METHODS It was a prospective case control study. Sputum of total 95 patients with sputum smear positive pulmonary tuberculosis was collected in sputum containers with lids. Patients on anti-tubercular treatment for more than 2 weeks were excluded. Each patient was given 3 sterile sputum containers to expectorate, Container A containing 5% Phenol solution, Container B containing 4.8% Chloroxylenol and Container C without any disinfectant, acting as a control. Thick sputum was liquified with Mucolytic agent N-acetyl cysteine (NAC). Aliquots of the sputum were sent for culture in Lowenstein-Jensen medium on day 0 (to confirm alive mycobacteria) and on day 1 i.e., after 24 hours (to evaluate effective sterilization). Drug resistance testing was done on all grown mycobacteria. RESULTS If the samples on day 0 did not grow mycobacteria (indicating non-viable mycobacteria) or day 1 sample grew contaminants in any of the three containers, they were excluded from the analysis (15/95). In remaining 80 patients, bacilli were alive on day 0 and remained alive even after 24 hours (day 1) in control samples (without disinfectants). The sputum was effectively disinfected resulting in no growth after 24 hours (day 1) in 71/80 (88.75%) containing 5% Phenol and 72/80 (90%) with 4.8% Chloroxylenol. The efficacy of disinfection was 71/73 (97.2%) and 72/73 (98.6%) for drug sensitive mycobacteria respectively. The mycobacteria however remained alive with these disinfectants in all 7 samples of drug-resistant mycobacteria with an efficacy of 0%. CONCLUSION We recommend use of simple disinfectants like 5% Phenol or 4.8% Chloroxylenol for safe disposal of sputum of pulmonary tuberculosis patients. It is necessary as sputum collected without disinfection remained infectious after 24 hours. Resistance of all drug resistant mycobacteria to disinfectants was a novel chance finding. This needs further confirmatory studies.
Collapse
|
15
|
Kumar K, Kon OM. Personalised Medicine for Tuberculosis and Non-Tuberculous Mycobacterial Pulmonary Disease. Microorganisms 2021; 9:2220. [PMID: 34835346 PMCID: PMC8624359 DOI: 10.3390/microorganisms9112220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
Personalised medicine, in which clinical management is individualised to the genotypic and phenotypic data of patients, offers a promising means by which to enhance outcomes in the management of mycobacterial pulmonary infections. In this review, we provide an overview of how personalised medicine approaches may be utilised to identify patients at risk of developing tuberculosis (TB) or non-tuberculous mycobacterial pulmonary disease (NTM-PD), diagnose these conditions and guide effective treatment strategies. Despite recent technological and therapeutic advances, TB and NTM-PD remain challenging conditions to diagnose and treat. Studies have identified a range of genetic and immune factors that predispose patients to pulmonary mycobacterial infections. Molecular tests such as nucleic acid amplification assays and next generation sequencing provide a rapid means by which to identify mycobacterial isolates and their antibiotic resistance profiles, thus guiding selection of appropriate antimicrobials. Host-directed therapies and therapeutic drug monitoring offer ways of tailoring management to the clinical needs of patients at an individualised level. Biomarkers may hold promise in differentiating between latent and active TB, as well as in predicting mycobacterial disease progression and response to treatment.
Collapse
Affiliation(s)
- Kartik Kumar
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK;
- Department of Respiratory Medicine, St Mary’s Hospital, Imperial College Healthcare NHS Trust, Praed Street, London W2 1NY, UK
| | - Onn Min Kon
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK;
- Department of Respiratory Medicine, St Mary’s Hospital, Imperial College Healthcare NHS Trust, Praed Street, London W2 1NY, UK
| |
Collapse
|
16
|
Campelo TA, Cardoso de Sousa PR, Nogueira LDL, Frota CC, Zuquim Antas PR. Revisiting the methods for detecting Mycobacterium tuberculosis: what has the new millennium brought thus far? Access Microbiol 2021; 3:000245. [PMID: 34595396 PMCID: PMC8479963 DOI: 10.1099/acmi.0.000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Tuberculosis (TB) affects around 10 million people worldwide in 2019. Approximately 3.4 % of new TB cases are multidrug-resistant. The gold standard method for detecting Mycobacterium tuberculosis, which is the aetiological agent of TB, is still based on microbiological culture procedures, followed by species identification and drug sensitivity testing. Sputum is the most commonly obtained clinical specimen from patients with pulmonary TB. Although smear microscopy is a low-cost and widely used method, its sensitivity is 50-60 %. Thus, owing to the need to improve the performance of current microbiological tests to provide prompt treatment, different methods with varied sensitivity and specificity for TB diagnosis have been developed. Here we discuss the existing methods developed over the past 20 years, including their strengths and weaknesses. In-house and commercial methods have been shown to be promising to achieve rapid diagnosis. Combining methods for mycobacterial detection systems demonstrates a correlation of 100 %. Other assays are useful for the simultaneous detection of M. tuberculosis species and drug-related mutations. Novel approaches have also been employed to rapidly identify and quantify total mycobacteria RNA, including assessments of global gene expression measured in whole blood to identify the risk of TB. Spoligotyping, mass spectrometry and next-generation sequencing are also promising technologies; however, their cost needs to be reduced so that low- and middle-income countries can access them. Because of the large impact of M. tuberculosis infection on public health, the development of new methods in the context of well-designed and -controlled clinical trials might contribute to the improvement of TB infection control.
Collapse
Affiliation(s)
- Thales Alves Campelo
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | | | - Lucas de Lima Nogueira
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Cristiane Cunha Frota
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Paulo Renato Zuquim Antas
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Vogel M, Utpatel C, Corbett C, Kohl TA, Iskakova A, Ahmedov S, Antonenka U, Dreyer V, Ibrahimova A, Kamarli C, Kosimova D, Mohr V, Sahalchyk E, Sydykova M, Umetalieva N, Kadyrov A, Kalmambetova G, Niemann S, Hoffmann H. Implementation of whole genome sequencing for tuberculosis diagnostics in a low-middle income, high MDR-TB burden country. Sci Rep 2021; 11:15333. [PMID: 34321545 PMCID: PMC8319420 DOI: 10.1038/s41598-021-94297-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022] Open
Abstract
Whole genome sequencing (WGS) is revolutionary for diagnostics of TB and its mutations associated with drug-resistances, but its uptake in low- and middle-income countries is hindered by concerns of implementation feasibility. Here, we provide a proof of concept for its successful implementation in such a setting. WGS was implemented in the Kyrgyz Republic. We estimated needs of up to 55 TB-WGS per week and chose the MiSeq platform (Illumina, USA) because of its capacity of up to 60 TB-WGS per week. The project's timeline was completed in 93-weeks. Costs of large equipment and accompanying costs were 222,065 USD and 8462 USD, respectively. The first 174 WGS costed 277 USD per sequence, but this was skewed by training inefficiencies. Based on real prices and presuming optimal utilization of WGS capacities, WGS costs could drop to 167 and 141 USD per WGS using MiSeq Reagent Kits v2 (500-cycles) and v3 (600-cycles), respectively. Five trainings were required to prepare the staff for autonomous WGS which cost 48,250 USD. External assessment confirmed excellent performance of WGS by the Kyrgyz laboratory in an interlaboratory comparison of 30 M. tuberculosis genomes showing complete agreeance of results.
Collapse
Affiliation(s)
- Monica Vogel
- Institute of Microbiology and Laboratory Medicine, Department IML Red GmbH, WHO - Supranational Tuberculosis Reference Laboratory Munich-Gauting, Robert Koch-Allee 2, 82131, Gauting, Germany
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Caroline Corbett
- Institute of Microbiology and Laboratory Medicine, Department IML Red GmbH, WHO - Supranational Tuberculosis Reference Laboratory Munich-Gauting, Robert Koch-Allee 2, 82131, Gauting, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Altyn Iskakova
- Republican Tuberculosis Reference Laboratory, Bishkek, Kyrgyz Republic
| | - Sevim Ahmedov
- USAID, Bureau for Global Health, TB Division, Washington, DC, USA
| | - Uladzimir Antonenka
- Institute of Microbiology and Laboratory Medicine, Department IML Red GmbH, WHO - Supranational Tuberculosis Reference Laboratory Munich-Gauting, Robert Koch-Allee 2, 82131, Gauting, Germany
| | - Viola Dreyer
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Ainura Ibrahimova
- ABT Associates, Defeat TB Project Management, Bishkek, Kyrgyz Republic
| | | | - Dilorom Kosimova
- ABT Associates, Defeat TB Project Management, Bishkek, Kyrgyz Republic
| | - Vanessa Mohr
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Evgeni Sahalchyk
- Institute of Microbiology and Laboratory Medicine, Department IML Red GmbH, WHO - Supranational Tuberculosis Reference Laboratory Munich-Gauting, Robert Koch-Allee 2, 82131, Gauting, Germany
| | - Meerim Sydykova
- Republican Tuberculosis Reference Laboratory, Bishkek, Kyrgyz Republic
| | - Nagira Umetalieva
- Institute of Microbiology and Laboratory Medicine, Department IML Red GmbH, WHO - Supranational Tuberculosis Reference Laboratory Munich-Gauting, Robert Koch-Allee 2, 82131, Gauting, Germany
| | - Abdylat Kadyrov
- Republican Tuberculosis Center, National Tuberculosis Project Management, Bishkek, Kyrgyz Republic
| | | | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Harald Hoffmann
- Institute of Microbiology and Laboratory Medicine, Department IML Red GmbH, WHO - Supranational Tuberculosis Reference Laboratory Munich-Gauting, Robert Koch-Allee 2, 82131, Gauting, Germany.
- SYNLAB Gauting, SYNLAB Human Genetics, Munich-Gauting, Germany.
| |
Collapse
|
18
|
Characterization of genetic diversity and clonal complexes by whole genome sequencing of Mycobacterium tuberculosis isolates from Jalisco, Mexico. Tuberculosis (Edinb) 2021; 129:102106. [PMID: 34218194 DOI: 10.1016/j.tube.2021.102106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022]
Abstract
Whole genome sequencing (WGS) analysis in tuberculosis allows the prediction of drug-resistant phenotypes, identification of lineages, and to better understanding of the epidemiology and transmission chains. Nevertheless the procedure has been scarcely assessed in Mexico, in this work we analyze by WGS isolates of Mycobacterium tuberculosis circulating in Jalisco, Mexico. Lineage and phylogenetic characterization, drug resistant prediction, "in silico" spoligotyping determination, were provided by WGS in 32 M. tuberculosis clinical isolates. Lineage 4 (L4), with 28 isolates (87%) and eleven sublineages was dominant. Forty SNPs and INDELs were found in genes related to first-, and second-line drugs. Eleven isolates were sensitive, seven (22%) were predicted to be resistant to isoniazid, two resistant to rifampicin (6%) and two (6%) were multidrug-resistant tuberuclosis. Spoligotyping shows that SIT 53 (19%) and SIT 119 (16%) were dominant. Four clonal transmission complexes were found. This is the first molecular epidemiological description of TB isolates circulating in western Mexico, achieved through WGS. L4 was dominant and included a high diversity of sublineages. It was possible to track the transmission route of two clonal complexes. The WGS demonstrated to be of great utility and with further implications for clinical and epidemiological study of TB in the region.
Collapse
|
19
|
Tyson GH, Ceric O, Guag J, Nemser S, Borenstein S, Slavic D, Lippert S, McDowell R, Krishnamurthy A, Korosec S, Friday C, Pople N, Saab ME, Fairbrother JH, Janelle I, McMillan D, Bommineni YR, Simon D, Mohan S, Sanchez S, Phillips A, Bartlett P, Naikare H, Watson C, Sahin O, Stinman C, Wang L, Maddox C, DeShambo V, Hendrix K, Lubelski D, Burklund A, Lubbers B, Reed D, Jenkins T, Erol E, Patel M, Locke S, Fortner J, Peak L, Balasuriya U, Mani R, Kettler N, Olsen K, Zhang S, Shen Z, Landinez MP, Thornton JK, Thachil A, Byrd M, Jacob M, Krogh D, Webb B, Schaan L, Patil A, Dasgupta S, Mann S, Goodman LB, Franklin-Guild RJ, Anderson RR, Mitchell PK, Cronk BD, Aprea M, Cui J, Jurkovic D, Prarat M, Zhang Y, Shiplett K, Campos DD, Rubio JVB, Ramanchandran A, Talent S, Tewari D, Thirumalapura N, Kelly D, Barnhart D, Hall L, Rankin S, Dietrich J, Cole S, Scaria J, Antony L, Lawhon SD, Wu J, McCoy C, Dietz K, Wolking R, Alexander T, Burbick C, Reimschuessel R. Genomics accurately predicts antimicrobial resistance in Staphylococcus pseudintermedius collected as part of Vet-LIRN resistance monitoring. Vet Microbiol 2021; 254:109006. [PMID: 33581494 DOI: 10.1016/j.vetmic.2021.109006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Whole-genome sequencing (WGS) has changed our understanding of bacterial pathogens, aiding outbreak investigations and advancing our knowledge of their genetic features. However, there has been limited use of genomics to understand antimicrobial resistance of veterinary pathogens, which would help identify emerging resistance mechanisms and track their spread. The objectives of this study were to evaluate the correlation between resistance genotypes and phenotypes for Staphylococcus pseudintermedius, a major pathogen of companion animals, by comparing broth microdilution antimicrobial susceptibility testing and WGS. From 2017-2019, we conducted antimicrobial susceptibility testing and WGS on S. pseudintermedius isolates collected from dogs in the United States as a part of the Veterinary Laboratory Investigation and Response Network (Vet-LIRN) antimicrobial resistance monitoring program. Across thirteen antimicrobials in nine classes, resistance genotypes correlated with clinical resistance phenotypes 98.4 % of the time among a collection of 592 isolates. Our findings represent isolates from diverse lineages based on phylogenetic analyses, and these strong correlations are comparable to those from studies of several human pathogens such as Staphylococcus aureus and Salmonella enterica. We uncovered some important findings, including that 32.3 % of isolates had the mecA gene, which correlated with oxacillin resistance 97.0 % of the time. We also identified a novel rpoB mutation likely encoding rifampin resistance. These results show the value in using WGS to assess antimicrobial resistance in veterinary pathogens and to reveal putative new mechanisms of resistance.
Collapse
Affiliation(s)
- Gregory H Tyson
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, United States.
| | - Olgica Ceric
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, United States
| | - Jake Guag
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, United States
| | - Sarah Nemser
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, United States
| | - Stacey Borenstein
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, United States
| | - Durda Slavic
- University of Guelph - Animal Health Laboratory, Canada
| | - Sarah Lippert
- University of Guelph - Animal Health Laboratory, Canada
| | | | | | - Shannon Korosec
- Manitoba Agriculture and Resource Development - Veterinary Diagnostic Services, Canada
| | - Cheryl Friday
- Manitoba Agriculture and Resource Development - Veterinary Diagnostic Services, Canada
| | - Neil Pople
- Manitoba Agriculture and Resource Development - Veterinary Diagnostic Services, Canada
| | - Matthew E Saab
- Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Canada
| | | | - Isabelle Janelle
- Complexe de diagnostic et d'épidémiosurveillance vétérinaires du Québec, Canada
| | - Deanna McMillan
- University of Saskatchewan - Prairie Diagnostic Services Inc, Canada
| | | | - David Simon
- Bronson Animal Disease Diagnostic Laboratory, United States
| | - Shipra Mohan
- Bronson Animal Disease Diagnostic Laboratory, United States
| | - Susan Sanchez
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, The University of Georgia, United States
| | - Ashley Phillips
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, The University of Georgia, United States
| | - Paula Bartlett
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, The University of Georgia, United States
| | - Hemant Naikare
- University of Georgia - Tifton Veterinary Diagnostic & Investigational Laboratory, United States
| | - Cynthia Watson
- University of Georgia - Tifton Veterinary Diagnostic & Investigational Laboratory, United States
| | | | | | - Leyi Wang
- University of Illinois Veterinary Diagnostic Laboratory - College of Veterinary Medicine, United States
| | - Carol Maddox
- University of Illinois Veterinary Diagnostic Laboratory - College of Veterinary Medicine, United States
| | - Vanessa DeShambo
- University of Illinois Veterinary Diagnostic Laboratory - College of Veterinary Medicine, United States
| | | | - Debra Lubelski
- Indiana Animal Disease Diagnostic Laboratory, United States
| | | | | | - Debbie Reed
- Murray State University Breathitt Veterinary Center, United States
| | - Tracie Jenkins
- Murray State University Breathitt Veterinary Center, United States
| | | | | | | | | | - Laura Peak
- Louisiana State University, United States
| | | | | | | | - Karen Olsen
- University of Minnesota Veterinary Diagnostic Lab, United States
| | - Shuping Zhang
- University of Missouri Veterinary Medical Diagnostic Laboratory, United States
| | - Zhenyu Shen
- University of Missouri Veterinary Medical Diagnostic Laboratory, United States
| | - Martha Pulido Landinez
- Mississippi State University, Veterinary Research and Diagnostic Lab System, United States
| | - Jay Kay Thornton
- Mississippi State University, Veterinary Research and Diagnostic Lab System, United States
| | - Anil Thachil
- North Carolina Veterinary Diagnostic Lab System, United States
| | | | - Megan Jacob
- North Carolina State University, United States
| | - Darlene Krogh
- North Dakota State University Veterinary Diagnostic Laboratory, United States
| | - Brett Webb
- North Dakota State University Veterinary Diagnostic Laboratory, United States
| | - Lynn Schaan
- North Dakota State University Veterinary Diagnostic Laboratory, United States
| | - Amar Patil
- New Jersey Department of Agriculture, Animal Health Diagnostic Laboratory, United States
| | - Sarmila Dasgupta
- New Jersey Department of Agriculture, Animal Health Diagnostic Laboratory, United States
| | - Shannon Mann
- New Jersey Department of Agriculture, Animal Health Diagnostic Laboratory, United States
| | - Laura B Goodman
- Cornell University, College of Veterinary Medicine, United States
| | | | - Renee R Anderson
- Cornell University, College of Veterinary Medicine, United States
| | | | - Brittany D Cronk
- Cornell University, College of Veterinary Medicine, United States
| | - Missy Aprea
- Cornell University, College of Veterinary Medicine, United States
| | - Jing Cui
- Ohio Animal Disease Diagnostic Lab, United States
| | | | | | - Yan Zhang
- Ohio Animal Disease Diagnostic Lab, United States
| | | | - Dubra Diaz Campos
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, United States
| | - Joany Van Balen Rubio
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, United States
| | - Akhilesh Ramanchandran
- Oklahoma Animal Disease Diagnostic Laboraotry, College of Veterinary Medicine, Oklahoma State University, United States
| | - Scott Talent
- Oklahoma Animal Disease Diagnostic Laboraotry, College of Veterinary Medicine, Oklahoma State University, United States
| | - Deepanker Tewari
- PA Veterinary Laboratory, Pennsylvania Department of Agriculture, United States
| | | | - Donna Kelly
- University of Pennsylvania, New Bolton Center, United States
| | - Denise Barnhart
- University of Pennsylvania, New Bolton Center, United States
| | - Lacey Hall
- University of Pennsylvania, New Bolton Center, United States
| | - Shelley Rankin
- University of Pennsylvania, Ryan Veterinary Hospital, United States
| | - Jaclyn Dietrich
- University of Pennsylvania, Ryan Veterinary Hospital, United States
| | - Stephen Cole
- University of Pennsylvania, Ryan Veterinary Hospital, United States
| | - Joy Scaria
- Animal Disease Research and Diagnostic Laboratory, South Dakota State University, United States
| | - Linto Antony
- Animal Disease Research and Diagnostic Laboratory, South Dakota State University, United States
| | - Sara D Lawhon
- Texas A&M University, College of Veterinary Medicine & Biomedical Sciences, Department of Veterinary Pathobiology, United States
| | - Jing Wu
- Texas A&M University, College of Veterinary Medicine & Biomedical Sciences, Department of Veterinary Pathobiology, United States
| | - Christine McCoy
- Virginia Department of Agriculture and Consumer Services- Lynchburg Regional Animal Health Laboratory, United States
| | - Kelly Dietz
- Virginia Department of Agriculture and Consumer Services- Lynchburg Regional Animal Health Laboratory, United States
| | | | | | | | - Renate Reimschuessel
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, United States
| |
Collapse
|
20
|
Buggiotti L, Cheng Z, Wathes DC. Mining the Unmapped Reads in Bovine RNA-Seq Data Reveals the Prevalence of Bovine Herpes Virus-6 in European Dairy Cows and the Associated Changes in Their Phenotype and Leucocyte Transcriptome. Viruses 2020; 12:v12121451. [PMID: 33339352 PMCID: PMC7768445 DOI: 10.3390/v12121451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
Microbial RNA is detectable in host samples by aligning unmapped reads from RNA sequencing against taxon reference sequences, generating a score proportional to the microbial load. An RNA-Seq data analysis showed that 83.5% of leukocyte samples from six dairy herds in different EU countries contained bovine herpes virus-6 (BoHV-6). Phenotypic data on milk production, metabolic function, and disease collected during their first 50 days in milk (DIM) were compared between cows with low (1–200 and n = 114) or high (201–1175 and n = 24) BoHV-6 scores. There were no differences in milk production parameters, but high score cows had numerically fewer incidences of clinical mastitis (4.2% vs. 12.2%) and uterine disease (54.5% vs. 62.7%). Their metabolic status was worse, based on measurements of IGF-1 and various metabolites in blood and milk. A comparison of the global leukocyte transcriptome between high and low BoHV-6 score cows at around 14 DIM yielded 485 differentially expressed genes (DEGs). The top pathway from Gene Ontology (GO) enrichment analysis was the immune system process. Down-regulated genes in the high BoHV-6 cows included those encoding proteins involved in viral detection (DDX6 and DDX58), interferon response, and E3 ubiquitin ligase activity. This suggested that BoHV-6 may largely evade viral detection and that it does not cause clinical disease in dairy cows.
Collapse
|
21
|
Jang JG, Chung JH. Diagnosis and treatment of multidrug-resistant tuberculosis. Yeungnam Univ J Med 2020; 37:277-285. [PMID: 32883054 PMCID: PMC7606956 DOI: 10.12701/yujm.2020.00626] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
Tuberculosis (TB) is still a major health problem worldwide. Especially, multidrug-resistant TB (MDR-TB), which is defined as TB that shows resistance to both isoniazid and rifampicin, is a barrier in the treatment of TB. Globally, approximately 3.4% of new TB patients and 20% of the patients with a history of previous treatment for TB were diagnosed with MDR-TB. The treatment of MDR-TB requires medications for a long duration (up to 20-24 months) with less effective and toxic second-line drugs and has unfavorable outcomes. However, treatment outcomes are expected to improve due to the introduction of a new agent (bedaquiline), repurposed drugs (linezolid, clofazimine, and cycloserine), and technological advancement in rapid drug sensitivity testing. The World Health Organization (WHO) released a rapid communication in 2018, followed by consolidated guidelines for the treatment of MDR-TB in 2019 based on clinical trials and an individual patient data meta-analysis. In these guidelines, the WHO suggested reclassification of second-line anti-TB drugs and recommended oral treatment regimens that included the new and repurposed agents. The aims of this article are to review the treatment strategies of MDR-TB based on the 2019 WHO guidelines regarding the management of MDR-TB and the diagnostic techniques for detecting resistance, including phenotypic and molecular drug sensitivity tests.
Collapse
Affiliation(s)
- Jong Geol Jang
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Jin Hong Chung
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
22
|
Tornheim JA, Starks AM, Rodwell TC, Gardy JL, Walker TM, Cirillo DM, Jayashankar L, Miotto P, Zignol M, Schito M. Building the Framework for Standardized Clinical Laboratory Reporting of Next-generation Sequencing Data for Resistance-associated Mutations in Mycobacterium tuberculosis Complex. Clin Infect Dis 2020; 69:1631-1633. [PMID: 30883637 PMCID: PMC6792097 DOI: 10.1093/cid/ciz219] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/13/2019] [Indexed: 01/07/2023] Open
Abstract
Tuberculosis is the primary infectious disease killer worldwide, with a growing threat from multidrug-resistant cases. Unfortunately, classic growth-based phenotypic drug susceptibility testing (DST) remains difficult, costly, and time consuming, while current rapid molecular testing options are limited by the diversity of antimicrobial-resistant genotypes that can be detected at once. Next-generation sequencing (NGS) offers the opportunity for rapid, comprehensive DST without the time or cost burden of phenotypic tests and can provide useful information for global surveillance. As access to NGS expands, it will be important to ensure that results are communicated clearly, consistent, comparable between laboratories, and associated with clear guidance on clinical interpretation of results. In this viewpoint article, we summarize 2 expert workshops regarding a standardized report format, focusing on relevant variables, terminology, and required minimal elements for clinical and laboratory reports with a proposed standardized template for clinical reporting NGS results for Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Jeffrey A Tornheim
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angela M Starks
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Timothy C Rodwell
- Foundation for Innovative New Diagnostics, Geneva, Switzerland.,Division of Pulmonary, Critical Care, and Sleep Medicine, University of San Diego, California
| | - Jennifer L Gardy
- School of Population and Public Health, University of British Columbia, Canada.,Clinical Prevention Services, British Columbia Centre for Disease Control, Vancouver, Canada
| | - Timothy M Walker
- Nuffield Department of Medicine, University of Oxford, United Kingdom
| | | | - Lakshmi Jayashankar
- Columbus Technologies, Inc. Contractor to the National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland
| | - Paolo Miotto
- IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Matteo Zignol
- Global TB Programme, World Health Organization, Geneva, Switzerland
| | - Marco Schito
- Critical Path to Tuberculosis Drug Regimens, Critical Path Institute, Tucson, Arizona
| |
Collapse
|
23
|
Tania T, Sudarmono P, Kusumawati RL, Rukmana A, Pratama WA, Regmi SM, Kaewprasert O, Chaiprasert A, Chongsuvivatwong V, Faksri K. Whole-genome sequencing analysis of multidrug-resistant Mycobacterium tuberculosis from Java, Indonesia. J Med Microbiol 2020; 69:1013-1019. [PMID: 32579102 DOI: 10.1099/jmm.0.001221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Multidrug-resistant tuberculosis (MDR-TB) is a major public health problem globally, including in Indonesia. Whole-genome sequencing (WGS) analysis has rarely been used for the study of TB and MDR-TB in Indonesia.Aim. We evaluated the use of WGS for drug-susceptibility testing (DST) and to investigate the population structure of drug-resistant Mycobacterium tuberculosis in Java, Indonesia.Methodology. Thirty suspected MDR-TB isolates were subjected to MGIT 960 system (MGIT)-based DST and to WGS. Phylogenetic analysis was done using the WGS data. Results obtained using MGIT-based DST and WGS-based DST were compared.Results. Agreement between WGS and MGIT was 93.33 % for rifampicin, 83.33 % for isoniazid and 76.67 % for streptomycin but only 63.33 % for ethambutol. Moderate WGS-MGIT agreement was found for second-line drugs including amikacin, kanamycin and fluoroquinolone (73.33-76.67 %). MDR-TB was more common in isolates of the East Asian Lineage (63.3%). No evidence of clonal transmission of DR-TB was found among members of the tested population.Conclusion. Our study demonstrated the applicability of WGS for DST and molecular epidemiology of DR-TB in Java, Indonesia. We found no transmission of DR-TB in Indonesia.
Collapse
Affiliation(s)
- Tryna Tania
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Pratiwi Sudarmono
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - R Lia Kusumawati
- Department of Microbiology, Faculty of Medicine, Universitas Sumatera Utara-Adam Malik General Hospital, Medan, Indonesia
| | - Andriansjah Rukmana
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Wahyu Agung Pratama
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Sanjib Mani Regmi
- Department of Microbiology, Gandaki Medical College Teaching Hospital and Research Center, Pokhara, Nepal
| | - Orawee Kaewprasert
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Angkana Chaiprasert
- Office of Research Affairs, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
24
|
Eletto D, Tosco A, Porta A. Editorial on: Genetic Determinants and Prediction of Antibiotic Resistance Phenotypes in Helicobacter pylori. J Clin Med 2020; 9:jcm9082469. [PMID: 32752161 PMCID: PMC7464660 DOI: 10.3390/jcm9082469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 11/21/2022] Open
|
25
|
Use of whole-genome sequencing to predict Mycobacterium tuberculosis drug resistance in Shanghai, China. Int J Infect Dis 2020; 96:48-53. [DOI: 10.1016/j.ijid.2020.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 11/19/2022] Open
|
26
|
Gopalaswamy R, Shanmugam S, Mondal R, Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections - a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci 2020; 27:74. [PMID: 32552732 PMCID: PMC7297667 DOI: 10.1186/s12929-020-00667-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/05/2020] [Indexed: 12/26/2022] Open
Abstract
Pulmonary diseases due to mycobacteria cause significant morbidity and mortality to human health. In addition to tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), recent epidemiological studies have shown the emergence of non-tuberculous mycobacteria (NTM) species in causing lung diseases in humans. Although more than 170 NTM species are present in various environmental niches, only a handful, primarily Mycobacterium avium complex and M. abscessus, have been implicated in pulmonary disease. While TB is transmitted through inhalation of aerosol droplets containing Mtb, generated by patients with symptomatic disease, NTM disease is mostly disseminated through aerosols originated from the environment. However, following inhalation, both Mtb and NTM are phagocytosed by alveolar macrophages in the lungs. Subsequently, various immune cells are recruited from the circulation to the site of infection, which leads to granuloma formation. Although the pathophysiology of TB and NTM diseases share several fundamental cellular and molecular events, the host-susceptibility to Mtb and NTM infections are different. Striking differences also exist in the disease presentation between TB and NTM cases. While NTM disease is primarily associated with bronchiectasis, this condition is rarely a predisposing factor for TB. Similarly, in Human Immunodeficiency Virus (HIV)-infected individuals, NTM disease presents as disseminated, extrapulmonary form rather than as a miliary, pulmonary disease, which is seen in Mtb infection. The diagnostic modalities for TB, including molecular diagnosis and drug-susceptibility testing (DST), are more advanced and possess a higher rate of sensitivity and specificity, compared to the tools available for NTM infections. In general, drug-sensitive TB is effectively treated with a standard multi-drug regimen containing well-defined first- and second-line antibiotics. However, the treatment of drug-resistant TB requires the additional, newer class of antibiotics in combination with or without the first and second-line drugs. In contrast, the NTM species display significant heterogeneity in their susceptibility to standard anti-TB drugs. Thus, the treatment for NTM diseases usually involves the use of macrolides and injectable aminoglycosides. Although well-established international guidelines are available, treatment of NTM disease is mostly empirical and not entirely successful. In general, the treatment duration is much longer for NTM diseases, compared to TB, and resection surgery of affected organ(s) is part of treatment for patients with NTM diseases that do not respond to the antibiotics treatment. Here, we discuss the epidemiology, diagnosis, and treatment modalities available for TB and NTM diseases of humans.
Collapse
Affiliation(s)
- Radha Gopalaswamy
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chennai, India
| | - Sivakumar Shanmugam
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chennai, India
| | - Rajesh Mondal
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chennai, India
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States.
| |
Collapse
|
27
|
Tshibangu-Kabamba E, Ngoma-Kisoko PDJ, Tuan VP, Matsumoto T, Akada J, Kido Y, Tshimpi-Wola A, Tshiamala-Kashala P, Ahuka-Mundeke S, Mumba Ngoy D, Disashi-Tumba G, Yamaoka Y. Next-Generation Sequencing of the Whole Bacterial Genome for Tracking Molecular Insight into the Broad-Spectrum Antimicrobial Resistance of Helicobacter pylori Clinical Isolates from the Democratic Republic of Congo. Microorganisms 2020; 8:E887. [PMID: 32545318 PMCID: PMC7356661 DOI: 10.3390/microorganisms8060887] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial susceptibility testing (AST) is increasingly needed to guide the Helicobacter pylori (H. pylori) treatment but remains laborious and unavailable in most African countries. To assess the clinical relevance of bacterial whole genome sequencing (WGS)-based methods for predicting drug susceptibility in African H. pylori, 102 strains isolated from the Democratic Republic of Congo were subjected to the phenotypic AST and next-generation sequencing (NGS). WGS was used to screen for the occurrence of genotypes encoding antimicrobial resistance (AMR). We noted the broad-spectrum AMR of H. pylori (rates from 23.5 to 90.0%). A WGS-based method validated for variant discovery in AMR-related genes (discovery rates of 100%) helped in identifying mutations of key genes statistically related to the phenotypic AMR. These included mutations often reported in Western and Asian populations and, interestingly, several putative AMR-related new genotypes in the pbp1A (e.g., T558S, F366L), gyrA (e.g., A92T, A129T), gyrB (e.g., R579C), and rdxA (e.g., R131_K166del) genes. WGS showed high performance for predicting AST phenotypes, especially for amoxicillin, clarithromycin, and levofloxacin (Youden's index and Cohen's Kappa > 0.80). Therefore, WGS is an accurate alternative to the phenotypic AST that provides substantial decision-making information for public health policy makers and clinicians in Africa, while providing insight into AMR mechanisms for researchers.
Collapse
Affiliation(s)
- Evariste Tshibangu-Kabamba
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (E.T.-K.); (V.P.T.); (T.M.); (J.A.); (Y.K.)
- Department of Internal Medicine, Faculty of Medicine, University of Mbujimayi, Mbujimayi, DR Congo;
| | - Patrick de Jesus Ngoma-Kisoko
- Department of Internal Medicine, Gastroenterology and Hepatology Section, Faculty of Medicine, University of Kinshasa, Kinshasa, DR Congo; (P.d.J.N.-K.); (A.T.-W.)
- Department of Gastroenterology and Hepatology, Cinquantenaire’s Hospital, Kinshasa, DR Congo
- Department of Internal Medicine, Gastroenterology and Hepatology Section, General Referential Hospital of Bukavu, DR Congo
| | - Vo Phuoc Tuan
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (E.T.-K.); (V.P.T.); (T.M.); (J.A.); (Y.K.)
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh 70000, Vietnam
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (E.T.-K.); (V.P.T.); (T.M.); (J.A.); (Y.K.)
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (E.T.-K.); (V.P.T.); (T.M.); (J.A.); (Y.K.)
| | - Yasutoshi Kido
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (E.T.-K.); (V.P.T.); (T.M.); (J.A.); (Y.K.)
- Department of Parasitology, Osaka City University, Osaka 545-8585, Japan
| | - Antoine Tshimpi-Wola
- Department of Internal Medicine, Gastroenterology and Hepatology Section, Faculty of Medicine, University of Kinshasa, Kinshasa, DR Congo; (P.d.J.N.-K.); (A.T.-W.)
- Department of Internal Medicine, Gastroenterology and Hepatology Section, Marie-Yvettes Clinics, Kinshasa, DR Congo
| | - Pascal Tshiamala-Kashala
- Department of Internal Medicine, Gastroenterology and Hepatology Section, Astryd Clinics, Kinshasa, DR Congo;
| | - Steve Ahuka-Mundeke
- Department of Virology, National Institute of Biomedical Research, Kinshasa, DR Congo;
| | - Dieudonné Mumba Ngoy
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, DR Congo;
- Department of Tropical Medicine, School of Medicine, University of Kinshasa, Kinshasa, DR Congo
| | - Ghislain Disashi-Tumba
- Department of Internal Medicine, Faculty of Medicine, University of Mbujimayi, Mbujimayi, DR Congo;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (E.T.-K.); (V.P.T.); (T.M.); (J.A.); (Y.K.)
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
28
|
Dohál M, Porvazník I, Pršo K, Rasmussen EM, Solovič I, Mokrý J. Whole-genome sequencing and Mycobacterium tuberculosis: Challenges in sample preparation and sequencing data analysis. Tuberculosis (Edinb) 2020; 123:101946. [PMID: 32741530 DOI: 10.1016/j.tube.2020.101946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022]
Abstract
The numbers of patients with tuberculosis (TB) caused by resistant strains are still alarming. Therefore, it is necessary to determine resistance more quickly and precisely, than it is with the currently used phenotypic and genotypic methods. In recent years, technological advances have been made and the whole-genome sequencing (WGS) method has been introduced as a part of routine diagnostics in clinical laboratories. Comparing a wide range of mycobacterial genomic variations with a reference genome leads to a consistent evaluation of molecular-epidemiology and resistance of Mycobacterium tuberculosis (M. tuberculosis) to a wide range of anti-TB drugs. The quality of the obtained sequencing data is closely related to the type of sample and the method used for DNA extraction and sequencing library preparation. Moreover, the correct interpretation of results is also influenced by a bioinformatic data processing. A large number of bioinformatics pipelines are currently available, the sensitivity of which varies due to the different sizes of databases containing relevant mutations. This review focuses on the individual steps included in the sequencing workflow and factors that may affect the interpretation of final results.
Collapse
Affiliation(s)
- Matúš Dohál
- Department of Pharmacology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia.
| | - Igor Porvazník
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, Vyšné Hágy, Slovakia; Faculty of Health, Catholic University, Ružomberok, Slovakia
| | - Kristián Pršo
- Department of Pharmacology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Erik Michael Rasmussen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Ivan Solovič
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, Vyšné Hágy, Slovakia
| | - Juraj Mokrý
- Department of Pharmacology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| |
Collapse
|
29
|
Tafess K, Ng TTL, Lao HY, Leung KSS, Tam KKG, Rajwani R, Tam STY, Ho LPK, Chu CMK, Gonzalez D, Sayada C, Ma OCK, Nega BH, Ameni G, Yam WC, Siu GKH. Targeted-Sequencing Workflows for Comprehensive Drug Resistance Profiling of Mycobacterium tuberculosis Cultures Using Two Commercial Sequencing Platforms: Comparison of Analytical and Diagnostic Performance, Turnaround Time, and Cost. Clin Chem 2020; 66:809-820. [DOI: 10.1093/clinchem/hvaa092] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Abstract
Background
The emergence of Mycobacterium tuberculosis with complex drug resistance profiles necessitates a rapid and comprehensive drug susceptibility test for guidance of patient treatment. We developed two targeted-sequencing workflows based on Illumina MiSeq and Nanopore MinION for the prediction of drug resistance in M. tuberculosis toward 12 antibiotics.
Methods
A total of 163 M. tuberculosis isolates collected from Hong Kong and Ethiopia were subjected to a multiplex PCR for simultaneous amplification of 19 drug resistance-associated genetic regions. The amplicons were then barcoded and sequenced in parallel on MiSeq and MinION in respective batch sizes of 24 and 12 samples. A web-based bioinformatics pipeline, BacterioChek-TB, was developed to translate the raw datasets into clinician-friendly reports.
Results
Both platforms successfully sequenced all samples with mean read depths of 1,127× and 1,649×, respectively. The variant calling by MiSeq and MinION could achieve 100% agreement if variants with an allele frequency of <40% reported by MinION were excluded. Both workflows achieved a mean clinical sensitivity of 94.8% and clinical specificity of 98.0% when compared with phenotypic drug susceptibility test (pDST). Turnaround times for the MiSeq and MinION workflows were 38 and 15 h, facilitating the delivery of treatment guidance at least 17–18 days earlier than pDST, respectively. The higher cost per sample on the MinION platform ($71.56) versus the MiSeq platform ($67.83) was attributed to differences in batching capabilities.
Conclusion
Our study demonstrates the interchangeability of MiSeq and MinION platforms for generation of accurate and actionable results for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Ketema Tafess
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Department of Medical Laboratory, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Timothy Ting Leung Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Hiu Yin Lao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Kenneth Siu Sing Leung
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kingsley King Gee Tam
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Rahim Rajwani
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Sarah Tsz Yan Tam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Lily Pui Ki Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Corey Mang Kiu Chu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | | | - Chalom Sayada
- Advanced Biological Laboratories (ABL), Metz, France
| | - Oliver Chiu Kit Ma
- KingMed Diagnostics, Science Park, Hong Kong Special Administrative Region, China
| | - Belete Haile Nega
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wing Cheong Yam
- Department of Medical Laboratory, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Gilman Kit Hang Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
30
|
Katale BZ, Mbelele PM, Lema NA, Campino S, Mshana SE, Rweyemamu MM, Phelan JE, Keyyu JD, Majigo M, Mbugi EV, Dockrell HM, Clark TG, Matee MI, Mpagama S. Whole genome sequencing of Mycobacterium tuberculosis isolates and clinical outcomes of patients treated for multidrug-resistant tuberculosis in Tanzania. BMC Genomics 2020; 21:174. [PMID: 32085703 PMCID: PMC7035673 DOI: 10.1186/s12864-020-6577-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/12/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Tuberculosis (TB), particularly multi- and or extensive drug resistant TB, is still a global medical emergency. Whole genome sequencing (WGS) is a current alternative to the WHO-approved probe-based methods for TB diagnosis and detection of drug resistance, genetic diversity and transmission dynamics of Mycobacterium tuberculosis complex (MTBC). This study compared WGS and clinical data in participants with TB. RESULTS This cohort study performed WGS on 87 from MTBC DNA isolates, 57 (66%) and 30 (34%) patients with drug resistant and susceptible TB, respectively. Drug resistance was determined by Xpert® MTB/RIF assay and phenotypic culture-based drug-susceptibility-testing (DST). WGS and bioinformatics data that predict phenotypic resistance to anti-TB drugs were compared with participant's clinical outcomes. They were 47 female participants (54%) and the median age was 35 years (IQR): 29-44). Twenty (23%) and 26 (30%) of participants had TB/HIV co-infection BMI < 18 kg/m2 respectively. MDR-TB participants had MTBC with multiple mutant genes, compared to those with mono or polyresistant TB, and the majority belonged to lineage 3 Central Asian Strain (CAS). Also, MDR-TB was associated with delayed culture-conversion (median: IQR (83: 60-180 vs. 51:30-66) days). WGS had high concordance with both culture-based DST and Xpert® MTB/RIF assay in detecting drug resistance (kappa = 1.00). CONCLUSION This study offers comparison of mutations detected by Xpert and WGS with phenotypic DST of M. tuberculosis isolates in Tanzania. The high concordance between the different methods and further insights provided by WGS such as PZA-DST, which is not routinely performed in most resource-limited-settings, provides an avenue for inclusion of WGS into diagnostic matrix of TB including drug-resistant TB.
Collapse
Affiliation(s)
- Bugwesa Z Katale
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | - Peter M Mbelele
- Kibong'oto Infectious Disease Hospital (KIDH), Sanya Juu, Tanzania
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Nsiande A Lema
- Field Epidemiology and Laboratory Training Programme, Dar es Salaam, Tanzania
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Stephen E Mshana
- Department of Medical Microbiology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Mark M Rweyemamu
- Southern African Centre for Infectious Diseases Surveillance (SACIDS), Sokoine University of Agriculture (SUA), Morogoro, Tanzania
| | - Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Julius D Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | - Mtebe Majigo
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Erasto V Mbugi
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Hazel M Dockrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Mecky I Matee
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania.
| | - Stellah Mpagama
- Kibong'oto Infectious Disease Hospital (KIDH), Sanya Juu, Tanzania
| |
Collapse
|
31
|
Arora J, Suresh N, Porwal C, Pandey P, Pande JN, Singh UB. Genotyping Mycobacterium tuberculosis isolates with few copies of IS6110: Value of additional genetic markers. INFECTION GENETICS AND EVOLUTION 2020; 81:104230. [PMID: 32035976 DOI: 10.1016/j.meegid.2020.104230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE IS6110 restriction fragment length polymorphism (RFLP) analysis is widely used for molecular epidemiological studies of tuberculosis. Role of spoligotyping and Fluorescent Amplified Fragment Length Polymorphism (FAFLP) was studied in low-copy number IS6110 strains of Mycobacterium tuberculosis complex (Mtbc). METHODS The study isolates included 70 strains of Mtbc collected from different regions of India. IS6110 restriction fragment, spoligotyping and FAFLP were performed for genotypic analysis. RESULTS A single copy of IS6110 was found in 30% of isolates with 90.5% of them harboring characteristic 1.5-Kb IS6110 restriction fragment.IS6110RFLP identified 51 different types, FAFLP 41 types, and spoligotyping 31 types. Combination of all three techniques identified 67 different types.IS6110 RFLP analysis was found sensitive for genotyping isolates with more than one copy of IS6110 (Hunter Gaston Discriminatory Index (HGDI-1) while, neither spoligotyping (HGI-0.89) nor FAFLP (HGDI-0.92) or their combinations were as good. The discriminatory power of spoligotyping (HGDI- 0.89) in isolates with a single copy of IS6110 was higher than IS6110-RFLP.Clustering was reduced to 67% using spoligotyping and to 38% with FAFLP. CONCLUSION Combination of FAFLP and Spoligotyping may prove to be valuable in studying the epidemiology of M. tuberculosis strains harboring few copies of IS6110 element.
Collapse
Affiliation(s)
- Jyoti Arora
- Department of Microbiology, All India Institute of Medical Sciences,New Delhi, India
| | - Naga Suresh
- Department of Microbiology, All India Institute of Medical Sciences,New Delhi, India
| | - Chhavi Porwal
- Department of Microbiology, All India Institute of Medical Sciences,New Delhi, India
| | - Pooja Pandey
- Department of Microbiology, All India Institute of Medical Sciences,New Delhi, India
| | | | - Urvashi Balbir Singh
- Department of Microbiology, All India Institute of Medical Sciences,New Delhi, India.
| |
Collapse
|
32
|
Antibiotic resistance by high-level intrinsic suppression of a frameshift mutation in an essential gene. Proc Natl Acad Sci U S A 2020; 117:3185-3191. [PMID: 31992637 PMCID: PMC7022156 DOI: 10.1073/pnas.1919390117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Frameshift mutations have been reported in rpoB, an essential gene encoding the beta-subunit of RNA polymerase, in rifampicin-resistant clinical isolates of Mycobacterium tuberculosis. These have never been experimentally validated, and no mechanisms of action have been proposed. We show that Escherichia coli with a +1-nt frameshift mutation centrally located in rpoB is viable and highly resistant to rifampicin. Spontaneous frameshifting occurs at a high rate on a heptanucleotide sequence downstream of the mutation, with production of active protein increased to 61–71% of wild-type level by a feedback mechanism that increases translation initiation. Accordingly, apparently lethal mutations can be viable and cause clinically relevant phenotypes, a finding that has broad significance for predictions of phenotype from genotype. A fundamental feature of life is that ribosomes read the genetic code in messenger RNA (mRNA) as triplets of nucleotides in a single reading frame. Mutations that shift the reading frame generally cause gene inactivation and in essential genes cause loss of viability. Here we report and characterize a +1-nt frameshift mutation, centrally located in rpoB, an essential gene encoding the beta-subunit of RNA polymerase. Mutant Escherichia coli carrying this mutation are viable and highly resistant to rifampicin. Genetic and proteomic experiments reveal a very high rate (5%) of spontaneous frameshift suppression occurring on a heptanucleotide sequence downstream of the mutation. Production of active protein is stimulated to 61–71% of wild-type level by a feedback mechanism increasing translation initiation. The phenomenon described here could have broad significance for predictions of phenotype from genotype. Several frameshift mutations have been reported in rpoB in rifampicin-resistant clinical isolates of Mycobacterium tuberculosis (Mtb). These mutations have never been experimentally validated, and no mechanisms of action have been proposed. This work shows that frameshift mutations in rpoB can be a mutational mechanism generating antibiotic resistance. Our analysis further suggests that genetic elements supporting productive frameshifting could rapidly evolve de novo, even in essential genes.
Collapse
|
33
|
Gaude G, Vishwanath S. Molecular diagnosis of tuberculosis with emphasis on Xpert Mycobacterium tuberculosis assay – Clinical review. JOURNAL OF CLINICAL SCIENCES 2020. [DOI: 10.4103/jcls.jcls_52_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
34
|
Zenteno-Cuevas R, Fernandez E, Viveros D, Madrazo-Moya CF, Cancino-Muñoz I, Comas I, Gonzalez-Covarrubias V, Barbosa-Amezcua M, Cuevas-Cordoba B. Characterization of Polymorphisms Associated with Multidrug-Resistant Tuberculosis by Whole Genomic Sequencing: A Preliminary Report from Mexico. Microb Drug Resist 2019; 26:732-740. [PMID: 31874045 DOI: 10.1089/mdr.2019.0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Whole genome sequencing (WGS) has been proposed as a tool for the diagnosis of drug resistance in tuberculosis (TB); however, there have been few studies on its effectiveness in countries with significantly high drug resistance rates. This study therefore aimed to evaluate the effectiveness of WGS to identify mutations related to drug resistance in TB isolates from an endemic region of Mexico. The results showed that, of 35 multidrug-resistant isolates analyzed, the values of congruence found between the phenotypic drug susceptibility testing and polymorphisms were 94% for isoniazid, 97% for rifampicin, 90% for ethambutol, and 82% for pyrazinamide. It was also possible to identify eight isolates as potential pre-extensive drug resistant (XDR) and one as XDR. Twenty nine isolates were classified within L4 and two transmission clusters were identified. The results show the potential utility of WGS for predicting resistance against first- and second-line drugs, as well as providing a phylogenetic characterization of TB drug-resistant isolates circulating in Mexico.
Collapse
Affiliation(s)
- Roberto Zenteno-Cuevas
- Instituto de Salud Pública, Universidad Veracruzana, Veracruz, México.,Programa de Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, México.,Programa de Doctorado en Ciencias Biomédicas, Centro de Investigaciones Biomédicas, Universidad Veracruzana, Veracruz, México
| | - Esdras Fernandez
- Instituto de Salud Pública, Universidad Veracruzana, Veracruz, México.,Programa de Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, México
| | - Diana Viveros
- Programa de Doctorado en Ciencias Biomédicas, Centro de Investigaciones Biomédicas, Universidad Veracruzana, Veracruz, México
| | | | - Irving Cancino-Muñoz
- Biomedicine Institute of Valencia IBV-CSIC, Valencia, Spain.,CIBER in Epidemiology and Public Health, Valencia, Spain
| | - Iñaki Comas
- Biomedicine Institute of Valencia IBV-CSIC, Valencia, Spain.,CIBER in Epidemiology and Public Health, Valencia, Spain
| | | | - Martín Barbosa-Amezcua
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Betzaida Cuevas-Cordoba
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| |
Collapse
|
35
|
Ansari S, Yamaoka Y. Helicobacter pylori Virulence Factors Exploiting Gastric Colonization and its Pathogenicity. Toxins (Basel) 2019; 11:E677. [PMID: 31752394 PMCID: PMC6891454 DOI: 10.3390/toxins11110677] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori colonizes the gastric epithelial cells of at least half of the world's population, and it is the strongest risk factor for developing gastric complications like chronic gastritis, ulcer diseases, and gastric cancer. To successfully colonize and establish a persistent infection, the bacteria must overcome harsh gastric conditions. H. pylori has a well-developed mechanism by which it can survive in a very acidic niche. Despite bacterial factors, gastric environmental factors and host genetic constituents together play a co-operative role for gastric pathogenicity. The virulence factors include bacterial colonization factors BabA, SabA, OipA, and HopQ, and the virulence factors necessary for gastric pathogenicity include the effector proteins like CagA, VacA, HtrA, and the outer membrane vesicles. Bacterial factors are considered more important. Here, we summarize the recent information to better understand several bacterial virulence factors and their role in the pathogenic mechanism.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Microbiology, Chitwan Medical College and Teaching Hospital, Bharatpur 44200, Chitwan, Nepal;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Global Oita Medical Advanced Research Center for Health, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, 2002 Holcombe Blvd., Houston, TX 77030, USA
- Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabaru, Sabah 88400, Malaysia
| |
Collapse
|
36
|
Feliciano CS, Menon LJB, Anselmo LMP, Dippenaar A, Warren RM, Silva WA, Bollela VR. Xpert MTB/RIF performance to diagnose tuberculosis and rifampicin resistance in a reference centre in southern Brazil. ERJ Open Res 2019; 5:00043-2019. [PMID: 31404338 PMCID: PMC6680070 DOI: 10.1183/23120541.00043-2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022] Open
Abstract
Effective treatment of tuberculosis (TB) remains a serious public health problem in many countries, including Brazil, especially when considering drug-resistant disease. Xpert MTB/RIF has been implemented in many countries to reduce the time to TB diagnosis and to rapidly detect rifampicin resistance. The study aimed to describe and evaluate Xpert MTB/RIF performance in diagnosing pulmonary TB and rifampicin resistance in a tertiary healthcare facility in Brazil. A cross-sectional study was performed, which included all isolates of confirmed pulmonary TB patients from 2015 to 2018. Both Xpert MTB/RIF and GenoType MTBDRplus assays were performed to detect rifampicin and isoniazid resistance. In addition, isolates with detected resistance to rifampicin and/or isoniazid were analysed by phenotypic testing using MGIT-960 SIRE kit and whole-genome sequencing (WGS) using Illumina MiSeq Sequencing System. 2148 respiratory specimens tested with Xpert MTB/RIF were included: n=1556 sputum, n=348 bronchoalveolar lavage and n=244 gastric washing. The overall Xpert MTB/RIF sensitivity in sputum was 94% and the overall specificity was 98%. The negative predictive value in sputum of all the patients was 99% with a positive predictive value of 89%. The concordance between Xpert MTB/RIF and phenotypic susceptibility test was 94.1%, while its concordance with WGS was 78.9%. Xpert MTB/RIF is a rapid and accurate diagnostic strategy for pulmonary TB, which can contribute to improvement in TB control. However, detection of rifampicin resistance might be associated with false-positive results.
Collapse
Affiliation(s)
- Cinara Silva Feliciano
- Dept of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), São Paulo, Brazil
| | - Lucas José Bazzo Menon
- Dept of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), São Paulo, Brazil
| | - Livia Maria Pala Anselmo
- Dept of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), São Paulo, Brazil
| | - Anzaan Dippenaar
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Robin Mark Warren
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Wilson Araújo Silva
- Center for Medical Genomics, Clinics Hospital at Ribeirão Preto Medical School, FMRP-USP, São Paulo, Brazil.,Dept of Genetics, Ribeirão Preto Medical School, FMRP-USP, São Paulo, Brazil
| | - Valdes Roberto Bollela
- Dept of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), São Paulo, Brazil
| |
Collapse
|
37
|
Madrazo-Moya CF, Cancino-Muñoz I, Cuevas-Córdoba B, González-Covarrubias V, Barbosa-Amezcua M, Soberón X, Muñiz-Salazar R, Martínez-Guarneros A, Bäcker C, Zarrabal-Meza J, Sampieri-Ramirez C, Enciso-Moreno A, Lauzardo M, Comas I, Zenteno-Cuevas R. Whole genomic sequencing as a tool for diagnosis of drug and multidrug-resistance tuberculosis in an endemic region in Mexico. PLoS One 2019; 14:e0213046. [PMID: 31166945 PMCID: PMC6550372 DOI: 10.1371/journal.pone.0213046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background Whole genome sequencing (WGS) has been proposed as a tool for diagnosing drug resistance in tuberculosis. However, reports of its effectiveness in endemic countries with important numbers of drug resistance are scarce. The goal of this study was to evaluate the effectiveness of this procedure in isolates from a tuberculosis endemic region in Mexico. Methods WGS analysis was performed in 81 tuberculosis positive clinical isolates with a known phenotypic profile of resistance against first-line drugs (isoniazid, rifampin, ethambutol, pyrazinamide and streptomycin). Mutations related to drug resistance were identified for each isolate; drug resistant genotypes were predicted and compared with the phenotypic profile. Genotypes and transmission clusters based on genetic distances were also characterized. Findings Prediction by WGS analysis of resistance against isoniazid, rifampicin, ethambutol, pyrazinamide and streptomycin showed sensitivity values of 84%, 96%, 71%, 75% and 29%, while specificity values were 100%, 94%, 90%, 90% and 98%, respectively. Prediction of multidrug resistance showed a sensitivity of 89% and specificity of 97%. Moreover, WGS analysis revealed polymorphisms related to second-line drug resistance, enabling classification of eight and two clinical isolates as pre- and extreme drug-resistant cases, respectively. Lastly, four lineages were identified in the population (L1, L2, L3 and L4). The most frequent of these was L4, which included 90% (77) of the isolates. Six transmission clusters were identified; the most frequent was TC6, which included 13 isolates with a L4.1.1 and a predominantly multidrug-resistant condition. Conclusions The results illustrate the utility of WGS for establishing the potential for prediction of resistance against first and second line drugs in isolates of tuberculosis from the region. They also demonstrate the feasibility of this procedure for use as a tool to support the epidemiological surveillance of drug- and multidrug-resistant tuberculosis.
Collapse
Affiliation(s)
- Carlos Francisco Madrazo-Moya
- Instituto de Salud Pública, Universidad Veracruzana, Veracruz, México
- Programa de Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, México
| | | | - Betzaida Cuevas-Córdoba
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | | | - Martín Barbosa-Amezcua
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Xavier Soberón
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Raquel Muñiz-Salazar
- Laboratorio de Epidemiología y Ecología y Molecular, Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Armando Martínez-Guarneros
- Laboratorio de Micobacterias, Instituto Nacional de Diagnóstico y Referencia Epidemiológica, Ciudad de México, México
| | - Claudia Bäcker
- Laboratorio de Micobacterias, Instituto Nacional de Diagnóstico y Referencia Epidemiológica, Ciudad de México, México
| | - José Zarrabal-Meza
- Laboratorio Estatal de Salud Pública, Secretaria de Salud, Veracruz, México
| | | | | | - Michael Lauzardo
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Iñaki Comas
- Biomedicine Institute of Valencia IBV-CSIC, Valencia, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain
| | - Roberto Zenteno-Cuevas
- Instituto de Salud Pública, Universidad Veracruzana, Veracruz, México
- Programa de Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, México
- * E-mail:
| |
Collapse
|
38
|
Gabrielian A, Engle E, Harris M, Wollenberg K, Juarez-Espinosa O, Glogowski A, Long A, Patti L, Hurt DE, Rosenthal A, Tartakovsky M. TB DEPOT (Data Exploration Portal): A multi-domain tuberculosis data analysis resource. PLoS One 2019; 14:e0217410. [PMID: 31120982 PMCID: PMC6532897 DOI: 10.1371/journal.pone.0217410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
The NIAID TB Portals Program (TBPP) established a unique and growing database repository of socioeconomic, geographic, clinical, laboratory, radiological, and genomic data from patient cases of drug-resistant tuberculosis (DR-TB). Currently, there are 2,428 total cases from nine country sites (Azerbaijan, Belarus, Moldova, Georgia, Romania, China, India, Kazakhstan, and South Africa), 1,611 (66%) of which are multidrug- or extensively-drug resistant and 1,185 (49%), 863 (36%), and 952 (39%) of which contain X-ray, computed tomography (CT) scan, and genomic data, respectively. We introduce the Data Exploration Portal (TB DEPOT, https://depot.tbportals.niaid.nih.gov) to visualize and analyze these multi-domain data. The TB DEPOT leverages the TBPP integration of clinical, socioeconomic, genomic, and imaging data into standardized formats and enables user-driven, repeatable, and reproducible analyses. It furthers the TBPP goals to provide a web-enabled analytics platform to countries with a high burden of multidrug-resistant TB (MDR-TB) but limited IT resources and inaccessible data, and enables the reusability of data, in conformity with the NIH's Findable, Accessible, Interoperable, and Reusable (FAIR) principles. TB DEPOT provides access to "analysis-ready" data and the ability to generate and test complex clinically-oriented hypotheses instantaneously with minimal statistical background and data processing skills. TB DEPOT is also promising for enhancing medical training and furnishing well annotated, hard to find, MDR-TB patient cases. TB DEPOT, as part of TBPP, further fosters collaborative research efforts to better understand drug-resistant tuberculosis and aid in the development of novel diagnostics and personalized treatment regimens.
Collapse
Affiliation(s)
- Andrei Gabrielian
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Eric Engle
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Michael Harris
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Kurt Wollenberg
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Octavio Juarez-Espinosa
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Alexander Glogowski
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Alyssa Long
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Lisa Patti
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Darrell E. Hurt
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Alex Rosenthal
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Mike Tartakovsky
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
39
|
Whole-Genome Sequencing in Relation to Resistance of Mycobacterium Tuberculosis. ACTA MEDICA MARTINIANA 2019. [DOI: 10.2478/acm-2019-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract
Tuberculosis, a disease caused by Mycobacterium tuberculosis, represents one of the deadliest infections worldwide. The incidence of resistant forms is increasing year by year; therefore, it is necessary to involve new methods for rapid diagnostics and treatment. One of the possible solutions is the use of whole-genome sequencing (WGS).
The WGS provides an identification of complete genome of the microorganism, including all genes responsible for resistance, in comparison with other genotypic methods (eg. Xpert MTB / RIF or Hain line-probes) that are capable to detect only basic genes. WGS data are available in 1-9 days and several online software tools (TBProfiler, CASTB, Mykrobe PredictorTB) are used for their interpretation and analysis, compared to 3-8 weeks in the case of classic phenotypic evaluation.
Furthermore, WGS predicts resistance to the first-line antituberculotics with a sensitivity of 85-100% and a specificity of 85-100%.
This review elucidates the importance and summarizes the current knowledge about the possible use of WGS in diagnosis and treatment of resistant forms of tuberculosis elucidates.
WGS of M. tuberculosis brings new possibilities for rapid and accurate diagnostics of resistant forms of tuberculosis. Introducing WGS into routine practice can help to reduce the spread of resistant forms of tuberculosis as well as to increase the success rate of the treatment, especially through an appropriate combination of antituberculotics ATs. Introduction of WGS into routine diagnostics can, in spite of the financial difficulty, significantly improve patient care.
Collapse
|
40
|
Nikolayevskyy V, Niemann S, Anthony R, van Soolingen D, Tagliani E, Ködmön C, van der Werf MJ, Cirillo DM. Role and value of whole genome sequencing in studying tuberculosis transmission. Clin Microbiol Infect 2019; 25:1377-1382. [PMID: 30980928 DOI: 10.1016/j.cmi.2019.03.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Tuberculosis (TB) remains a serious public health threat worldwide. Theoretically ultimate resolution of whole genome sequencing (WGS) for Mycobacterium tuberculosis complex (MTBC) strain classification makes this technology very attractive for epidemiological investigations. OBJECTIVES To summarize the evidence available in peer-reviewed publications on the role and place of WGS in detection of TB transmission. SOURCES A total of 69 peer-reviewed publications identified in Pubmed database. CONTENT Evidence from >30 publications suggests that a cut-off value of fewer than six single nucleotide polymorphisms between strains efficiently excludes cases that are not the result of recent transmission and could be used for the identification of drug-sensitive isolates involved in direct human-to-human TB transmission. Sensitivity of WGS to identify epidemiologically linked isolates is high, reaching 100% in eight studies with specificity (17%-95%) highly dependent on the settings. Drug resistance and specific phylogenetic lineages may be associated with accelerated mutation rates affecting genetic distances. WGS can be potentially used to distinguish between true relapses and re-infections but in high-incidence low-diversity settings this would require consideration of epidemiological links and minority alleles. Data from four studies looking into within-host diversity highlight a need for developing criteria for acceptance or rejection of WGS relatedness results depending on the proportion of minority alleles. IMPLICATIONS WGS will potentially allow for more targeted public health actions preventing unnecessary investigations of false clusters. Consensus on standardization of raw data quality control processing criteria, analytical pipelines and reporting language is yet to be reached.
Collapse
Affiliation(s)
- V Nikolayevskyy
- Public Health England, London, UK; Imperial College, London, UK.
| | - S Niemann
- Molecular and Experimental Mycobacteriology, National Reference Centre for Mycobacteria, Research Centre, Borstel, Germany; German Centre for Infection Research, Borstel site, Germany
| | - R Anthony
- Tuberculosis Reference Laboratory, Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - D van Soolingen
- Tuberculosis Reference Laboratory, Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - E Tagliani
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - C Ködmön
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - M J van der Werf
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - D M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
41
|
Genomics and Precision Medicine: Molecular Diagnostics Innovations Shaping the Future of Healthcare in Qatar. ADVANCES IN PUBLIC HEALTH 2019. [DOI: 10.1155/2019/3807032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Unprecedented developments in genomics research and ancillary technologies are creating the potential for astonishing changes in both the healthcare field and the life sciences sector. The innovative genomics applications include the following: (1) embracing next generation sequencing (NGS) in clinical diagnostics setting (applying both whole genome and exome sequencing), (2) single cell sequencing studies, (3) quantifying gene expression changes (including whole transcriptome sequencing), (4) pharmacogenomics, and (5) cell-free DNA blood-based testing. This minireview describes the impact of clinical genomics disruptive innovations on the healthcare system in order to provide better diagnosis and treatment. The observed evolution is not limited to the point-of-care services. Genomics technological breakthroughs are pushing the healthcare environment towards personalized healthcare with the real potential to attain better wellbeing. In this article, we will briefly discuss the Gulf region population-based genome initiatives that intend to improve personalized healthcare by offering better prevention, diagnosis, and therapy for the individual (precision medicine). Qatar’s endeavor in genomics medicine will be underscored including the private Applied Biomedicine Initiative (ABI).
Collapse
|
42
|
Abstract
Of the 10 million incident cases of tuberculosis (TB) globally in 2017, around 558,000 cases were rifampicin-resistant of which 82% were multidrug-resistant (MDR) TB. In England, 5,102 cases were recorded of which 55 cases (1.8%) were MDR-TB. MDR-TB cases have worse outcomes and are a serious public health issue.Polymerase chain reaction (PCR) tests allow a faster approach to diagnose TB and predict drug susceptibility. The emerging use of whole genome sequencing may improve the diagnostic workflow compared with standard drug susceptibility testing, with more rapid molecular sensitivity results and more precise contact investigation of linked cases.Treatment of MDR-TB remains a challenge as it relies on prolonged second-line drug treatments that are less effective and more toxic than first-line treatments. Two new drug treatments have been approved; bedaquiline and delamanid. In addition, a shorter treatment regimen of 9-12 months can be considered instead of the conventional 20-24 month regimen.
Collapse
Affiliation(s)
- Mirae Park
- Department of Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK
| | | | - Onn Min Kon
- Department of Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
43
|
Chaidir L, Ruesen C, Dutilh BE, Ganiem AR, Andryani A, Apriani L, Huynen MA, Ruslami R, Hill PC, van Crevel R, Alisjahbana B. Use of whole-genome sequencing to predict Mycobacterium tuberculosis drug resistance in Indonesia. J Glob Antimicrob Resist 2019; 16:170-177. [DOI: 10.1016/j.jgar.2018.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/06/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022] Open
|
44
|
Genetic Determinants and Prediction of Antibiotic Resistance Phenotypes in Helicobacter pylori. J Clin Med 2019; 8:jcm8010053. [PMID: 30621024 PMCID: PMC6351930 DOI: 10.3390/jcm8010053] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is a major human pathogen. Diagnosis of H. pylori infection and determination of its antibiotic susceptibility still mainly rely on culture and phenotypic drug susceptibility testing (DST) that is time-consuming and laborious. Whole genome sequencing (WGS) has recently emerged in medical microbiology as a diagnostic tool for reliable drug resistance prediction in bacterial pathogens. The aim of this study was to compare phenotypic DST results with the predictions based on the presence of genetic determinants identified in the H. pylori genome using WGS. Phenotypic resistance to clarithromycin, metronidazole, tetracycline, levofloxacin, and rifampicin was determined in 140 clinical H. pylori isolates by E-Test®, and the occurrence of certain single nucleotide polymorphisms (SNPs) in target genes was determined by WGS. Overall, there was a high congruence of >99% between phenotypic DST results for clarithromycin, levofloxacin, and rifampicin and SNPs identified in the 23S rRNA, gyrA, and rpoB gene. However, it was not possible to infer a resistance phenotype for metronidazole based on the occurrence of distinct SNPs in frxA and rdxA. All 140 H. pylori isolates analysed in this study were susceptible to tetracycline, which was in accordance with the absence of double or triple nucleotide substitutions in the 16S rRNA gene.
Collapse
|
45
|
Mbelele PM, Mohamed SY, Sauli E, Mpolya EA, Mfinanga SG, Addo KK, Heysell SK, Mpagama SG. Meta-narrative review of molecular methods for diagnosis and monitoring of multidrug-resistant tuberculosis treatment in adults. Int J Mycobacteriol 2018; 7:299-309. [PMID: 30531026 PMCID: PMC6548176 DOI: 10.4103/ijmy.ijmy_135_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Early and accurate diagnosis and rigorous clinical and microbiological monitoring of multidrug-resistant tuberculosis (MDR-TB) treatment can curb morbidity and mortality. While others are still under evaluation, the World Health Organization has recommended few novel molecular methods for MDR-TB diagnosis only. We present current molecular methods for diagnosis and monitoring of MDR-TB treatment in TB-endemic settings. A systematic meta-narrative review was conducted according to the RAMESES recommendations. Electronic databases were searched for relevant articles published in English language from January 2013 to June 2018. Based on predefined criteria, two independent reviewers extracted the key messages from relevant articles. Disagreement between them was resolved through discussion and the involvement of a third reviewer, if needed. Key messages were synthesized to create the meta-narratives for method's accuracy, drug-susceptibility capability, and laboratory infrastructure required. We included 33 articles out of 1213 records retrieved, of which 16 (48%) and 12 (36%) were conducted in high- and low-TB-endemic settings, respectively. Xpert® MTB/RIF, GenoType MTBDRplus, GenoType MTBDRsl, FlouroType™ MTBDR, TB TaqMan® array card, and DNA sequencers can accurately guide effective treatment regimens. Molecular bacterial load assay quantifies mycobactericidal impact of these regimens. Although they present inherent advantages compared to the current standard of care, they carry important limitations to implementation and/or scale-up. Therefore, considerable effort must now be directed to implementation and health systems research to maximize these forecasted benefits for individual patient's health outcomes.
Collapse
Affiliation(s)
- Peter M. Mbelele
- Kibong’oto Infectious Diseases Hospital, Sanya Juu,
Siha, Kilimanjaro
- Department of Global Health and Biomedical Sciences, School
of Life Science and Bioengineering, Nelson Mandela-African Institution for Science
and Technology, Arusha
| | - Sagal Y. Mohamed
- Division of Infectious Diseases and International Health,
University of Virginia, Charlottesville, Virginia, USA
| | - Elingarami Sauli
- Department of Global Health and Biomedical Sciences, School
of Life Science and Bioengineering, Nelson Mandela-African Institution for Science
and Technology, Arusha
| | - Emmanuel A. Mpolya
- Department of Global Health and Biomedical Sciences, School
of Life Science and Bioengineering, Nelson Mandela-African Institution for Science
and Technology, Arusha
| | - Sayoki G. Mfinanga
- Muhimbili Centre, National Institute for Medical Research,
Dar es Salaam, Tanzania
| | - Kennedy K. Addo
- Department of Bacteriology, Noguchi Memorial Institute for
Medical Research, University of Ghana, Accra, Ghana
| | - Scott K. Heysell
- Division of Infectious Diseases and International Health,
University of Virginia, Charlottesville, Virginia, USA
| | - Stellah G. Mpagama
- Kibong’oto Infectious Diseases Hospital, Sanya Juu,
Siha, Kilimanjaro
- Department of Global Health and Biomedical Sciences, School
of Life Science and Bioengineering, Nelson Mandela-African Institution for Science
and Technology, Arusha
| |
Collapse
|
46
|
Miotto P, Zhang Y, Cirillo DM, Yam WC. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology 2018; 23:1098-1113. [PMID: 30189463 DOI: 10.1111/resp.13393] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/03/2018] [Accepted: 08/12/2018] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is the deadliest infectious disease and the associated global threat has worsened with the emergence of drug resistance, in particular multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB). Although the World Health Organization (WHO) End-TB Strategy advocates for universal access to antimicrobial susceptibility testing, this is not widely available and/or it is still underused. The majority of drug resistance in clinical MTB strains is attributed to chromosomal mutations. Resistance-related mutations could also exert certain fitness cost to the drug-resistant MTB strains and growth fitness could be restored by the presence of compensatory mutations. Understanding these underlying mechanisms could provide an important insight into TB pathogenesis and predict the future trend of MDR-TB global pandemic. This review covers the mechanisms of resistance in MTB and provides a comprehensive overview of current phenotypic and molecular approaches for drug susceptibility testing, with particular attention to the methods endorsed and recommended by the WHO.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Wing Cheong Yam
- Department of Microbiology, Queen Mary Hospital Compound, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
47
|
Abstract
Resistance to antimycobacterial drugs is a major barrier to effective treatment of Mycobacterium tuberculosis infection. Molecular diagnostic techniques based on the association between specific gene mutations and phenotypic resistance to certain drugs offer the opportunity to rapidly ascertain whether drug resistance is present and to alter treatment before further resistance develops. Current barriers to successful implementation of rapid diagnostics include imperfect knowledge regarding the full spectrum of mutations associated with resistance, limited utilization of molecular diagnostics where they are most needed, and the requirement for specialized laboratory facilities to perform molecular testing. Further understanding of genotypic-phenotypic correlates of resistance and streamlined implementation platforms will be necessary to optimize the public health impact of molecular resistance testing for M. tuberculosis.
Collapse
Affiliation(s)
- Kristen V Dicks
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA; ,
| | - Jason E Stout
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA; ,
| |
Collapse
|
48
|
Ruesen C, Riza AL, Florescu A, Chaidir L, Editoiu C, Aalders N, Nicolosu D, Grecu V, Ioana M, van Crevel R, van Ingen J. Linking minimum inhibitory concentrations to whole genome sequence-predicted drug resistance in Mycobacterium tuberculosis strains from Romania. Sci Rep 2018; 8:9676. [PMID: 29946139 PMCID: PMC6018741 DOI: 10.1038/s41598-018-27962-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/01/2018] [Indexed: 11/23/2022] Open
Abstract
Mycobacterium tuberculosis drug resistance poses a major threat to tuberculosis control. Current phenotypic tests for drug susceptibility are time-consuming, technically complex, and expensive. Whole genome sequencing is a promising alternative, though the impact of different drug resistance mutations on the minimum inhibitory concentration (MIC) remains to be investigated. We examined the genomes of 72 phenotypically drug-resistant Mycobacterium tuberculosis isolates from 72 Romanian patients for drug resistance mutations. MICs for first- and second-line drugs were determined using the MycoTB microdilution method. These MICs were compared to macrodilution critical concentration testing by the Mycobacterium Growth Indicator Tube (MGIT) platform and correlated to drug resistance mutations. Sixty-three (87.5%) isolates harboured drug resistance mutations; 48 (66.7%) were genotypically multidrug-resistant. Different drug resistance mutations were associated with different MIC ranges; katG S315T for isoniazid, and rpoB S450L for rifampicin were associated with high MICs. However, several mutations such as in rpoB, rrs and rpsL, or embB were associated with MIC ranges including the critical concentration for rifampicin, aminoglycosides or ethambutol, respectively. Different resistance mutations lead to distinct MICs, some of which may still be overcome by increased dosing. Whole genome sequencing can aid in the timely diagnosis of Mycobacterium tuberculosis drug resistance and guide clinical decision-making.
Collapse
Affiliation(s)
- Carolien Ruesen
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Anca Lelia Riza
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Adriana Florescu
- "Victor Babes" Infectious Diseases and Pneumophtisiology Hospital Craiova, Dolj County, Romania
| | - Lidya Chaidir
- Health Research Unit, Faculty of Medicine, Padjadjaran University/Hasan Sadikin Hospital, Bandung, Indonesia
| | - Cornelia Editoiu
- "Victor Babes" Infectious Diseases and Pneumophtisiology Hospital Craiova, Dolj County, Romania
| | - Nicole Aalders
- Department of Medical Microbiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Dragos Nicolosu
- "Victor Babes" Infectious Diseases and Pneumophtisiology Hospital Craiova, Dolj County, Romania
| | - Victor Grecu
- "Victor Babes" Infectious Diseases and Pneumophtisiology Hospital Craiova, Dolj County, Romania
| | - Mihai Ioana
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboud university medical center, Nijmegen, The Netherlands.
| |
Collapse
|
49
|
Chhotaray C, Tan Y, Mugweru J, Islam MM, Adnan Hameed HM, Wang S, Lu Z, Wang C, Li X, Tan S, Liu J, Zhang T. Advances in the development of molecular genetic tools for Mycobacterium tuberculosis. J Genet Genomics 2018; 45:S1673-8527(18)30114-0. [PMID: 29941353 DOI: 10.1016/j.jgg.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mycobacterium tuberculosis, a clinically relevant Gram-positive bacterium of great clinical relevance, is a lethal pathogen owing to its complex physiological characteristics and development of drug resistance. Several molecular genetic tools have been developed in the past few decades to study this microorganism. These tools have been instrumental in understanding how M. tuberculosis became a successful pathogen. Advanced molecular genetic tools have played a significant role in exploring the complex pathways involved in M. tuberculosis pathogenesis. Here, we review various molecular genetic tools used in the study of M. tuberculosis. Further, we discuss the applications of clustered regularly interspaced short palindromic repeat interference (CRISPRi), a novel technology recently applied in M. tuberculosis research to study target gene functions. Finally, prospective outcomes of the applications of molecular techniques in the field of M. tuberculosis genetic research are also discussed.
Collapse
Affiliation(s)
- Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Julius Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biological Sciences, University of Embu, P.O Box 6 -60100, Embu, Kenya
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China.
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
50
|
Parvaresh L, Crighton T, Martinez E, Bustamante A, Chen S, Sintchenko V. Recurrence of tuberculosis in a low-incidence setting: a retrospective cross-sectional study augmented by whole genome sequencing. BMC Infect Dis 2018; 18:265. [PMID: 29879906 PMCID: PMC5992641 DOI: 10.1186/s12879-018-3164-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/24/2018] [Indexed: 12/03/2022] Open
Abstract
Background The recurrence of tuberculosis (TB) disease in treated patients can serve as a marker of the efficacy of TB control programs. Recurrent disease represents either endogenous reactivation with the same strain of Mycobacterium tuberculosis due to non-compliance or inadequate therapy or exogenous reinfection with a new strain. Genotyping or whole genome sequencing (WGS) of M. tuberculosis isolates from initial and recurrent cases can differentiate between reinfection and reactivation. This study examined cases of recurrent TB in New South Wales, Australia, using genotyping and WGS. Methods Culture-confirmed TB cases diagnosed at least 12 months apart between January 2011 and December 2016 were included. Isolates of M. tuberculosis from patients were compared using 24-locus Mycobacterial Interspersed Repetitive Unit Variable Number Tandem Repeat (MIRU-24) typing and WGS. Results Eighteen cases of recurrent disease were identified but isolates from only 15 (83%) were available for study. MIRU-24 findings classified 13 (13/15; 87%) as reactivation and two (13%), as reinfection. Sequencing 13 cultivable paired isolates demonstrated 11 reactivations and two reinfections. There was genomic similarity in 10 out of 13 pairs while one case (1/13; 8%) had 12 SNPS differences. Two other cases (2/13;15%) had > 200 SNPs differences and were classified as reinfection. No phenotypic or genomic evidence of drug resistance was observed. Conclusion TB control programs can achieve consistently low rates of recurrent disease in low incidence settings. WGS of implicated isolates augments the differentiation between reactivation and reinfection and indicates that the majority of recurrences are due to reactivation rather than reinfection. Predominance of reactivation over reinfection indicates high-quality public health practices and a low risk of local transmission. Trial registration This study was approved by the Western Sydney Local Health District (WSLHD) Human Research Ethics Committee (HREC Ref: AU RED LNR/17/WMEAD/190; SSA Ref: LNR SSA/17/WMEAD/191).
Collapse
Affiliation(s)
- Laila Parvaresh
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, cnr Hawkesbury and Darcy Roads, Westmead, NSW, 2145, Australia.
| | - Taryn Crighton
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, cnr Hawkesbury and Darcy Roads, Westmead, NSW, 2145, Australia.,NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead, NSW, 2145, Australia
| | - Elena Martinez
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, cnr Hawkesbury and Darcy Roads, Westmead, NSW, 2145, Australia.,NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead, NSW, 2145, Australia
| | - Andrea Bustamante
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, cnr Hawkesbury and Darcy Roads, Westmead, NSW, 2145, Australia.,NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead, NSW, 2145, Australia
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, cnr Hawkesbury and Darcy Roads, Westmead, NSW, 2145, Australia.,NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead, NSW, 2145, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead Hospital, and Sydney Medical School, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, cnr Hawkesbury and Darcy Roads, Westmead, NSW, 2145, Australia.,NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead, NSW, 2145, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead Hospital, and Sydney Medical School, The University of Sydney, Westmead, NSW, 2145, Australia
| |
Collapse
|