1
|
Moreno J, Gluud LL, Galsgaard ED, Hvid H, Mazzoni G, Das V. Identification of ligand and receptor interactions in CKD and MASH through the integration of single cell and spatial transcriptomics. PLoS One 2024; 19:e0302853. [PMID: 38768139 PMCID: PMC11104622 DOI: 10.1371/journal.pone.0302853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Chronic Kidney Disease (CKD) and Metabolic dysfunction-associated steatohepatitis (MASH) are metabolic fibroinflammatory diseases. Combining single-cell (scRNAseq) and spatial transcriptomics (ST) could give unprecedented molecular disease understanding at single-cell resolution. A more comprehensive analysis of the cell-specific ligand-receptor (L-R) interactions could provide pivotal information about signaling pathways in CKD and MASH. To achieve this, we created an integrative analysis framework in CKD and MASH from two available human cohorts. RESULTS The analytical framework identified L-R pairs involved in cellular crosstalk in CKD and MASH. Interactions between cell types identified using scRNAseq data were validated by checking the spatial co-presence using the ST data and the co-expression of the communicating targets. Multiple L-R protein pairs identified are known key players in CKD and MASH, while others are novel potential targets previously observed only in animal models. CONCLUSION Our study highlights the importance of integrating different modalities of transcriptomic data for a better understanding of the molecular mechanisms. The combination of single-cell resolution from scRNAseq data, combined with tissue slide investigations and visualization of cell-cell interactions obtained through ST, paves the way for the identification of future potential therapeutic targets and developing effective therapies.
Collapse
Affiliation(s)
- Jaime Moreno
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| | - Lise Lotte Gluud
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Henning Hvid
- Global Drug Discovery, Novo Nordisk A/S, Maløv, Denmark
| | - Gianluca Mazzoni
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| | - Vivek Das
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| |
Collapse
|
2
|
Linares-Pineda TM, Peña-Montero N, Gutiérrez-Repiso C, Lima-Rubio F, Sánchez-Pozo A, Tinahones FJ, Molina-Vega M, Picón-César MJ, Morcillo S. Epigenome wide association study in peripheral blood of pregnant women identifies potential metabolic pathways related to gestational diabetes. Epigenetics 2023; 18:2211369. [PMID: 37192269 DOI: 10.1080/15592294.2023.2211369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023] Open
Abstract
Gestational diabetes mellitus (GDM) increases the risk of developing metabolic disorders in both pregnant women and their offspring. Factors such as nutrition or the intrauterine environment may play an important role, through epigenetic mechanisms, in the development of GDM. The aim of this work is to identify epigenetic marks involved in the mechanisms or pathways related to gestational diabetes. A total of 32 pregnant women were selected, 16 of them with GDM and 16 non-GDM. DNA methylation pattern was obtained from Illumina Methylation Epic BeadChip, from peripheral blood samples at the diagnostic visit (26-28 weeks). Differential methylated positions (DMPs) were extracted using ChAMP and limma package in R 2.9.10, with a threshold of FDR <0.05, deltabeta >|5|% and B >0. A total of 1.141 DMPs were found, and 714 were annotated in genes. A functional analysis was performed, and we found 23 genes significantly related to carbohydrate metabolism. Finally, a total of 27 DMPs were correlated with biochemical variables such as glucose levels at different points of oral glucose tolerance test, fasting glucose, cholesterol, HOMAIR and HbA1c, at different visits during pregnancy and postpartum. Our results show that there is a differentiated methylation pattern between GDM and non-GDM. Furthermore, the genes annotated to the DMPs could be implicated in the development of GDM as well as in alterations in related metabolic variables.
Collapse
Affiliation(s)
- Teresa María Linares-Pineda
- Departamento de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Obesidad, diabetes y sus comorbilidades: prevención y tratamiento, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Departamento de Bioquímica y Biología Molecular 2, Universidad de Granada, Granada, Spain
| | - Nerea Peña-Montero
- Departamento de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Obesidad, diabetes y sus comorbilidades: prevención y tratamiento, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
| | - Carolina Gutiérrez-Repiso
- Departamento de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Obesidad, diabetes y sus comorbilidades: prevención y tratamiento, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Fuensanta Lima-Rubio
- Departamento de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Obesidad, diabetes y sus comorbilidades: prevención y tratamiento, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
| | - Antonio Sánchez-Pozo
- Departamento de Bioquímica y Biología Molecular 2, Universidad de Granada, Granada, Spain
| | - Francisco J Tinahones
- Departamento de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Obesidad, diabetes y sus comorbilidades: prevención y tratamiento, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, Málaga, Spain
| | - María Molina-Vega
- Departamento de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Obesidad, diabetes y sus comorbilidades: prevención y tratamiento, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
| | - María José Picón-César
- Departamento de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Obesidad, diabetes y sus comorbilidades: prevención y tratamiento, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
| | - Sonsoles Morcillo
- Departamento de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Obesidad, diabetes y sus comorbilidades: prevención y tratamiento, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Zhang H, Yin M, Huang H, Zhao G, Lu M. METTL16 in human diseases: What should we do next? Open Med (Wars) 2023; 18:20230856. [PMID: 38045858 PMCID: PMC10693013 DOI: 10.1515/med-2023-0856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
METTL16 is a class-I methyltransferase that is responsible for depositing a vertebrate-conserved S-adenosylmethionine site. Since 2017, there has been a growing body of research focused on METTL16, particularly in the field of structural studies. However, the role of METTL16 in cell biogenesis and human diseases has not been extensively studied, with limited understanding of its function in disease pathology. Recent studies have highlighted the complex and sometimes contradictory role that METTL16 plays in various diseases. In this work, we aim to provide a comprehensive summary of the current research on METTL16 in human diseases.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Gastroenterology, Wuhan Tongji Aerospace City Hospital, Wuhan, Hubei Province, 430000, China
| | - Mengqi Yin
- Department of Neurology, Wuhan No. 1 Hospital, Wuhan, Hubei Province, 430000, China
| | - Hua Huang
- Department of Gastroenterology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 665000, Yunnan Province, China
| | - Gongfang Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 665000, Yunnan Province, China
| | - Mingliang Lu
- Department of Gastroenterology, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, PR China
| |
Collapse
|
4
|
Hu M, Bodnar B, Zhang Y, Xie F, Li F, Li S, Zhao J, Zhao R, Gedupoori N, Mo Y, Lin L, Li X, Meng W, Yang X, Wang H, Barbe MF, Srinivasan S, Bethea JR, Mo X, Xu H, Hu W. Defective neurite elongation and branching in Nibp/Trappc9 deficient zebrafish and mice. Int J Biol Sci 2023; 19:3226-3248. [PMID: 37416774 PMCID: PMC10321293 DOI: 10.7150/ijbs.78489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Loss of function in transport protein particles (TRAPP) links a new set of emerging genetic disorders called "TRAPPopathies". One such disorder is NIBP syndrome, characterized by microcephaly and intellectual disability, and caused by mutations of NIBP/TRAPPC9, a crucial and unique member of TRAPPII. To investigate the neural cellular/molecular mechanisms underlying microcephaly, we developed Nibp/Trappc9-deficient animal models using different techniques, including morpholino knockdown and CRISPR/Cas mutation in zebrafish and Cre/LoxP-mediated gene targeting in mice. Nibp/Trappc9 deficiency impaired the stability of the TRAPPII complex at actin filaments and microtubules of neurites and growth cones. This deficiency also impaired elongation and branching of neuronal dendrites and axons, without significant effects on neurite initiation or neural cell number/types in embryonic and adult brains. The positive correlation of TRAPPII stability and neurite elongation/branching suggests a potential role for TRAPPII in regulating neurite morphology. These results provide novel genetic/molecular evidence to define patients with a type of non-syndromic autosomal recessive intellectual disability and highlight the importance of developing therapeutic approaches targeting the TRAPPII complex to cure TRAPPopathies.
Collapse
Affiliation(s)
- Min Hu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Brittany Bodnar
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Fangxin Xie
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
- Department of Clinical Laboratory, Xi'an NO. 3 Hospital, Xi'an, Shaanxi, 710018, China
| | - Fang Li
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Siying Li
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Jin Zhao
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ruotong Zhao
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Naveen Gedupoori
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yifan Mo
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Lanyi Lin
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Xue Li
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Wentong Meng
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Mary F. Barbe
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Hong Xu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Wenhui Hu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
5
|
Jin H, Kim YA, Lee Y, Kwon SH, Do AR, Seo S, Won S, Seo JH. Identification of genetic variants associated with diabetic kidney disease in multiple Korean cohorts via a genome-wide association study mega-analysis. BMC Med 2023; 21:16. [PMID: 36627639 PMCID: PMC9832630 DOI: 10.1186/s12916-022-02723-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The pathogenesis of diabetic kidney disease (DKD) is complex, involving metabolic and hemodynamic factors. Although DKD has been established as a heritable disorder and several genetic studies have been conducted, the identification of unique genetic variants for DKD is limited by its multiplex classification based on the phenotypes of diabetes mellitus (DM) and chronic kidney disease (CKD). Thus, we aimed to identify the genetic variants related to DKD that differentiate it from type 2 DM and CKD. METHODS We conducted a large-scale genome-wide association study mega-analysis, combining Korean multi-cohorts using multinomial logistic regression. A total of 33,879 patients were classified into four groups-normal, DM without CKD, CKD without DM, and DKD-and were further analyzed to identify novel single-nucleotide polymorphisms (SNPs) associated with DKD. Additionally, fine-mapping analysis was conducted to investigate whether the variants of interest contribute to a trait. Conditional analyses adjusting for the effect of type 1 DM (T1D)-associated HLA variants were also performed to remove confounding factors of genetic association with T1D. Moreover, analysis of expression quantitative trait loci (eQTL) was performed using the Genotype-Tissue Expression project. Differentially expressed genes (DEGs) were analyzed using the Gene Expression Omnibus database (GSE30529). The significant eQTL DEGs were used to explore the predicted interaction networks using search tools for the retrieval of interacting genes and proteins. RESULTS We identified three novel SNPs [rs3128852 (P = 8.21×10-25), rs117744700 (P = 8.28×10-10), and rs28366355 (P = 2.04×10-8)] associated with DKD. Moreover, the fine-mapping study validated the causal relationship between rs3128852 and DKD. rs3128852 is an eQTL for TRIM27 in whole blood tissues and HLA-A in adipose-subcutaneous tissues. rs28366355 is an eQTL for HLA-group genes present in most tissues. CONCLUSIONS We successfully identified SNPs (rs3128852, rs117744700, and rs28366355) associated with DKD and verified the causal association between rs3128852 and DKD. According to the in silico analysis, TRIM27 and HLA-A can define DKD pathophysiology and are associated with immune response and autophagy. However, further research is necessary to understand the mechanism of immunity and autophagy in the pathophysiology of DKD and to prevent and treat DKD.
Collapse
Affiliation(s)
- Heejin Jin
- Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Ye An Kim
- Division of Endocrinology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Jinhwangdo-ro 61-gil 53, Gangdong-gu, Seoul, Korea
| | - Seung-Hyun Kwon
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Jinhwangdo-ro 61-gil 53, Gangdong-gu, Seoul, Korea
| | - Ah Ra Do
- Interdisciplinary Program of Bioinformatics, College of National Sciences, Seoul National University, Seoul, South Korea
| | - Sujin Seo
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, Seoul, Korea.,Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Korea.,RexSoft Corps, Seoul, Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Jinhwangdo-ro 61-gil 53, Gangdong-gu, Seoul, Korea.
| |
Collapse
|