1
|
Dey S, Bruner J, Brown M, Roof M, Chowdhury R. Identification and biophysical characterization of epitope atlas of Porcine Reproductive and Respiratory Syndrome Virus. Comput Struct Biotechnol J 2024; 23:3348-3357. [PMID: 39310279 PMCID: PMC11416235 DOI: 10.1016/j.csbj.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) have been a critical threat to swine health since 1987 due to its high mutation rate and substantial economic loss over half a billion dollar in USA. The rapid mutation rate of PRRSV presents a significant challenge in developing an effective vaccine. Even though surveillance and intervention studies have recently (2019) unveiled utilization of PRRSV glycoprotein 5 (GP5; encoded by ORF5 gene) to induce immunogenic reaction and production of neutralizing antibodies in porcine populations, the future viral generations can accrue escape mutations. In this study we identify 63 porcine-PRRSV protein-protein interactions which play primary or ancillary roles in viral entry and infection. Using genome-proteome annotation, protein structure prediction, multiple docking experiments, and binding energy calculations, we identified a list of 75 epitope locations on PRRSV proteins crucial for infection. Additionally, using machine learning-based diffusion model, we designed 56 stable immunogen peptides that contain one or more of these epitopes with their native tertiary structures stabilized through optimized N- and C-terminus flank sequences and interspersed with appropriate linker regions. Our workflow successfully identified numerous known interactions and predicted several novel PRRSV-porcine interactions. By leveraging the structural and sequence insights, this study paves the way for more effective, high-avidity, multi-valent PRRSV vaccines, and leveraging neural networks for immunogen design.
Collapse
Affiliation(s)
- Supantha Dey
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Jennifer Bruner
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Maria Brown
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Mike Roof
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
- Vaccines and Immunotherapeutics Platform, Iowa State University, Ames, IA, USA
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| |
Collapse
|
2
|
He Y, Shen M, Wang X, Yin A, Liu B, Zhu J, Zhang Z. Suppression of Interferon Response and Antiviral Strategies of Bunyaviruses. Trop Med Infect Dis 2024; 9:205. [PMID: 39330894 PMCID: PMC11435552 DOI: 10.3390/tropicalmed9090205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
The order Bunyavirales belongs to the class of Ellioviricetes and is classified into fourteen families. Some species of the order Bunyavirales pose potential threats to human health. The continuously increasing research reveals that various viruses within this order achieve immune evasion in the host through suppressing interferon (IFN) response. As the types and nodes of the interferon response pathway are continually updated or enriched, the IFN suppression mechanisms and target points of different virus species within this order are also constantly enriched and exhibit variations. For instance, Puumala virus (PUUV) and Tula virus (TULV) can inhibit IFN response through their functional NSs inhibiting downstream factor IRF3 activity. Nevertheless, the IFN suppression mechanisms of Dabie bandavirus (DBV) and Guertu virus (GTV) are mostly mediated by viral inclusion bodies (IBs) or filamentous structures (FSs). Currently, there are no effective drugs against several viruses belonging to this order that pose significant threats to society and human health. While the discovery, development, and application of antiviral drugs constitute a lengthy process, our focus on key targets in the IFN response suppression process of the virus leads to potential antiviral strategies, which provide references for both basic research and practical applications.
Collapse
Affiliation(s)
- Yingying He
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Min Shen
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaohe Wang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Anqi Yin
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Bingyan Liu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Zhu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| |
Collapse
|
3
|
Zhang H, Li G, Zheng Y, Luo Q, Sha H, Sun W, Zhao M. NSP4 promotes replication of porcine reproductive and respiratory syndrome virus-2. Vet Microbiol 2024; 295:110121. [PMID: 38889617 DOI: 10.1016/j.vetmic.2024.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most detrimental contagious swine ailments worldwide. Currently, no effective drugs are available for its treatment. Targeting the structural and non-structural proteins (NSP) of the type 2 PRRS virus (PRRSV-2) with small interfering RNA (siRNA) is an effective approach to inhibit PRRSV replication. NSP4, which is highly conserved and possesses 3 C-like serine protease activity (3CLSP), can cleave PRRSV self-proteins, thereby contributing to viral replication. To investigate the mechanism by which NSP4 regulates PRRSV-2 replication and screen for effective siRNA inhibitors of PRRSV-2 replication, the recombinant plasmid pEGFP-C1-NSP4 was constructed, and a control siRNA pair and two siRNA pairs targeting the PRRSV-2 NSP4 gene (shRNA-ctr, shRNA-150, and shRNA-536) were synthesized and cloned into the pSilencer4.1-CMV vector. After 24 h of incubation, Marc-145 cells were transfected with recombinant plasmids, and subsequently infected with different PRRSV-2 (XH-GD, ZQ-GD, GDr180, and JXA1-R). Subsequently, the effects of NSP4 overexpression, shRNA on PRRSV-2 replication were evaluated by assessing cytopathic effects (CPE), TCID50, quantitative real-time PCR (qPCR), immunofluorescence assays (IFA), and Western blotting. The data from these CPE, TCID50, qPCR, and IFA experiments revealed that NSP4 overexpression significantly enhanced PRRSV-2 replication and shRNA targeting NSP4 can inhibit PRRSV-2 replication in Marc-145 cells, indicating that shRNA could serve as candidate molecules for fundamental research on PRRSV-2.
Collapse
Affiliation(s)
- Hang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Gan Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yajie Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Qin Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Huiyang Sha
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Mengmeng Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
4
|
Zhang H, Chen J, Yu C, Pan Y, Ma W, Feng H, Xie J, Chen H, Wang Y, Xia C. Innate Immune Evasion of PRRSV nsp11 through Degradation of the HDAC2 by Its Endoribonuclease Activity. Viruses 2024; 16:678. [PMID: 38793560 PMCID: PMC11125888 DOI: 10.3390/v16050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the Arteriviridae family, represents a persistent menace to the global pig industry, causing reproductive failure and respiratory disease in pigs. In this study, we delved into the role of histone deacetylases (HDAC2) during PRRSV infection. Our findings revealed that HDAC2 expression is downregulated upon PRRSV infection. Notably, suppressing HDAC2 activity through specific small interfering RNA led to an increase in virus production, whereas overexpressing HDAC2 effectively inhibited PRRSV replication by boosting the expression of IFN-regulated antiviral molecules. Furthermore, we identified the virus's nonstructural protein 11 (nsp11) as a key player in reducing HDAC2 levels. Mutagenic analyses of PRRSV nsp11 revealed that its antagonistic effect on the antiviral activity of HDAC2 is dependent on its endonuclease activity. In summary, our research uncovered a novel immune evasion mechanism employed by PRRSV, providing crucial insights into the pathogenesis of this virus and guiding the development of innovative prevention strategies against PRRSV infection.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jianxing Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Changqing Yu
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin 644000, China
| | - Yu Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wenjie Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hao Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jinxin Xie
- College of Veterinary medicine, Xinjiang Agricultural University, Urumqi 830000, China;
| | - Hongyan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
5
|
Zheng Y, Zhang H, Luo Q, Sha H, Li G, Mu X, He Y, Kong W, Wu A, Zhang H, Yu X. Research Progress on NSP11 of Porcine Reproductive and Respiratory Syndrome Virus. Vet Sci 2023; 10:451. [PMID: 37505856 PMCID: PMC10384725 DOI: 10.3390/vetsci10070451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a virulent infectious disease caused by the PRRS virus (PRRSV). The non-structural protein 11 (NSP11) of PRRSV is a nidovirus-specific endonuclease (NendoU), which displays uridine specificity and catalytic functions conserved throughout the entire NendoU family and exerts a wide range of biological effects. This review discusses the genetic evolution of NSP11, its effects on PRRSV replication and virulence, its interaction with other PRRSV and host proteins, its regulation of host immunity, the conserved characteristics of its enzyme activity (NendoU), and its diagnosis, providing an essential theoretical basis for in-depth studies of PRRSV pathogenesis and vaccine design.
Collapse
Affiliation(s)
- Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Huiyang Sha
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Gan Li
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Xuanru Mu
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Yingxin He
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, CA 94158, USA
| | - Anfeng Wu
- Maccura Biotechnology Co., Ltd., Chengdu 510000, China
| | - Haoji Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Xingang Yu
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| |
Collapse
|
6
|
Jang SS, Noh JY, Kim MC, Lim HA, Song MS, Kim HK. α2,3-Linked Sialic Acids Are the Potential Attachment Receptor for Shaan Virus Infection in MARC-145 Cells. Microbiol Spectr 2022; 10:e0125622. [PMID: 35924912 PMCID: PMC9430483 DOI: 10.1128/spectrum.01256-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Shaan virus (ShaV), a novel species of the genus Jeilongvirus, family Paramyxoviridae, was isolated from an insectivore bat (Miniopterus schreibersii) in Korea in 2016. ShaV particles contain a hemagglutinin-neuraminidase (HN) glycoprotein in their envelope that allows the virus to target cells. Typically, diverse paramyxoviruses with HN glycoprotein are reported to interact predominantly with sialic acids, but there are no studies of receptors for ShaV. In this study, the identification of potential receptors for ShaV was demonstrated using sialidase treatments, glycan microarray, magnetic bead-based virus binding assay, and neuraminidase inhibitor treatments. Pretreatment of MARC-145 cells with sialidase, which cleaves α2,3-linked sialic acids, showed higher inhibition of viral infection than α2,6-linked-specific sialidase. These data were supported by the binding of ShaV to predominantly α2,3-linked sialylated glycans in the screening of sialyl linkage patterns through glycan microarray. To further confirm the direct interaction between ShaV and α2,3-linked sialic acids, ShaV was incubated with α2,3- or α2,6-linked sialylated glycans conjugated to magnetic beads, and binding signals were detected only for α2,3-linked sialylated glycans. In addition, the potential of sialic acids as a receptor was demonstrated by the viral replication inhibitory effect of the neuraminidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminicacid (DANA) in the mature virion release steps. Collectively, these results support that α2,3-linked sialic acids are the potential receptor for ShaV infection in MARC-145 cells. IMPORTANCE Bats host major mammalian paramyxoviruses, and novel paramyxoviruses are increasingly being reported around the world. Shaan virus (ShaV), from the genus Jeilongvirus, family Paramyxoviridae, has a potential attachment glycoprotein, HN. Here, we identify that ShaV binds to sialic acid and demonstrate that α2,3-linked sialic acids are the potential receptor for ShaV infection. The presented data regarding ShaV receptor specificity will enable studies into the viral tropism for the host and contribute to the development of new antiviral strategies targeting viral receptors.
Collapse
Affiliation(s)
- Seong Sik Jang
- Department of Biological Sciences and Biotechnology, College of Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Ji Yeong Noh
- Department of Biological Sciences and Biotechnology, College of Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Min Chan Kim
- Department of Biological Sciences and Biotechnology, College of Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyun A. Lim
- Department of Biological Sciences and Biotechnology, College of Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Min Suk Song
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Hye Kwon Kim
- Department of Biological Sciences and Biotechnology, College of Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
7
|
Research Progress in Porcine Reproductive and Respiratory Syndrome Virus–Host Protein Interactions. Animals (Basel) 2022; 12:ani12111381. [PMID: 35681845 PMCID: PMC9179581 DOI: 10.3390/ani12111381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease caused by porcine reproductive and respiratory syndrome virus (PRRSV), which has been regarded as a persistent challenge for the pig industry in many countries. PRRSV is internalized into host cells by the interaction between PRRSV proteins and cellular receptors. When the virus invades the cells, the host antiviral immune system is quickly activated to suppress the replication of the viruses. To retain fitness and host adaptation, various viruses have evolved multiple elegant strategies to manipulate the host machine and circumvent against the host antiviral responses. Therefore, identification of virus–host interactions is critical for understanding the host defense against viral infections and the pathogenesis of the viral infectious diseases. Most viruses, including PRRSV, interact with host proteins during infection. On the one hand, such interaction promotes the virus from escaping the host immune system to complete its replication. On the other hand, the interactions regulate the host cell immune response to inhibit viral infections. As common antiviral drugs become increasingly inefficient under the pressure of viral selectivity, therapeutic agents targeting the intrinsic immune factors of the host protein are more promising because the host protein has a lower probability of mutation under drug-mediated selective pressure. This review elaborates on the virus–host interactions during PRRSV infection to summarize the pathogenic mechanisms of PRRSV, and we hope this can provide insights for designing effective vaccines or drugs to prevent and control the spread of PRRS.
Collapse
|
8
|
Cook GM, Brown K, Shang P, Li Y, Soday L, Dinan AM, Tumescheit C, Mockett APA, Fang Y, Firth AE, Brierley I. Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression. eLife 2022; 11:e75668. [PMID: 35226596 PMCID: PMC9000960 DOI: 10.7554/elife.75668] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
The arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the swine industry worldwide. Here we apply ribosome profiling (RiboSeq) and parallel RNA sequencing (RNASeq) to characterise the transcriptome and translatome of both species of PRRSV and to analyse the host response to infection. We calculated programmed ribosomal frameshift (PRF) efficiency at both sites on the viral genome. This revealed the nsp2 PRF site as the second known example where temporally regulated frameshifting occurs, with increasing -2 PRF efficiency likely facilitated by accumulation of the PRF-stimulatory viral protein, nsp1β. Surprisingly, we find that PRF efficiency at the canonical ORF1ab frameshift site also increases over time, in contradiction of the common assumption that RNA structure-directed frameshift sites operate at a fixed efficiency. This has potential implications for the numerous other viruses with canonical PRF sites. Furthermore, we discovered several highly translated additional viral ORFs, the translation of which may be facilitated by multiple novel viral transcripts. For example, we found a highly expressed 125-codon ORF overlapping nsp12, which is likely translated from novel subgenomic RNA transcripts that overlap the 3' end of ORF1b. Similar transcripts were discovered for both PRRSV-1 and PRRSV-2, suggesting a potential conserved mechanism for temporally regulating expression of the 3'-proximal region of ORF1b. We also identified a highly translated, short upstream ORF in the 5' UTR, the presence of which is highly conserved amongst PRRSV-2 isolates. These findings reveal hidden complexity in the gene expression programmes of these important nidoviruses.
Collapse
Affiliation(s)
- Georgia M Cook
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Katherine Brown
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Pengcheng Shang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Yanhua Li
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Lior Soday
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Adam M Dinan
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | | | | | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Andrew E Firth
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Ian Brierley
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
9
|
Comparison of Primary Virus Isolation in Pulmonary Alveolar Macrophages and Four Different Continuous Cell Lines for Type 1 and Type 2 Porcine Reproductive and Respiratory Syndrome Virus. Vaccines (Basel) 2021; 9:vaccines9060594. [PMID: 34205087 PMCID: PMC8229515 DOI: 10.3390/vaccines9060594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) has a highly restricted cellular tropism. In vivo, the virus primarily infects tissue-specific macrophages in the nose, lungs, tonsils, and pharyngeal lymphoid tissues. In vitro however, the MARC-145 cell line is one of the few PRRSV susceptible cell lines that are routinely used for in vitro propagation. Previously, several PRRSV non-permissive cell lines were shown to become susceptible to PRRSV infection upon expression of recombinant entry receptors (e.g., PK15Sn-CD163, PK15S10-CD163). In the present study, we examined the suitability of different cell lines as a possible replacement of primary pulmonary alveolar macrophages (PAM) cells for isolation and growth of PRRSV. The susceptibility of four different cell lines (PK15Sn-CD163, PK15S10-CD163, MARC-145, and MARC-145Sn) for the primary isolation of PRRSV from PCR positive sera (both PRRSV1 and PRRSV2) was compared with that of PAM. To find possible correlations between the cell tropism and the viral genotype, 54 field samples were sequenced, and amino acid residues potentially associated with the cell tropism were identified. Regarding the virus titers obtained with the five different cell types, PAM gave the highest mean virus titers followed by PK15Sn-CD163, PK15S10-CD163, MARC-145Sn, and MARC-145. The titers in PK15Sn-CD163 and PK15S10-CD163 cells were significantly correlated with virus titers in PAM for both PRRSV1 (p < 0.001) and PRRSV2 (p < 0.001) compared with MARC-145Sn (PRRSV1: p = 0.22 and PRRSV2: p = 0.03) and MARC-145 (PRRSV1: p = 0.04 and PRRSV2: p = 0.12). Further, a possible correlation between cell tropism and viral genotype was assessed using PRRSV whole genome sequences in a Genome-Wide-Association Study (GWAS). The structural protein residues GP2:187L and N:28R within PRRSV2 sequences were associated with their growth in MARC-145. The GP5:78I residue for PRRSV2 and the Nsp11:155F residue for PRRSV1 was linked to a higher replication on PAM. In conclusion, PK15Sn-CD163 and PK15S10-CD163 cells are phenotypically closely related to the in vivo target macrophages and are more suitable for virus isolation and titration than MARC-145/MARC-145Sn cells. The residues of PRRSV proteins that are potentially related with cell tropism will be further investigated in the future.
Collapse
|
10
|
TRIM59 inhibits porcine reproductive and respiratory syndrome virus (PRRSV)-2 replication in vitro. Res Vet Sci 2019; 127:105-112. [PMID: 31683196 DOI: 10.1016/j.rvsc.2019.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/27/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV), has ranked among the major economically significant pathogen in the global swine industry. The PRRSV nonstructural protein (nsp)11 possesses nidovirus endoribonuclease (NendoU) activity, which is important for virus replication and suppression of the host innate immunity system. Recent proteomic study found that TRIM59 (tripartite motif-containing 59) interacted with the nsp11, albeit the exact role it plays in PRRSV infection remains enigmatic. Herein, we first confirmed the interaction between nsp11 and TRIM59 in co-transfected HEK293T cells and PRRSV-infected pulmonary alveolar macrophages (PAMs). The interacting domains between TRIM59 and nsp11 were further determined to be the N-terminal RING domain in TRIM59 and the C-terminal NendoU domain in nsp11, respectively. Moreover, we reported that overexpression of TRIM59 inhibited PRRSV infection in Marc-145 cells. Conversely, small interfering RNA (siRNA) depletion of TRIM59 resulted in enhanced production of PRRSV in PAMs. Together, these data add TRIM59 as a crucial antiviral component against PRRSV and provide new insights for development of new compounds to reduce PRRSV infection.
Collapse
|
11
|
Shi X, Fan X, Nie S, Kou L, Zhang X, Liu H, Ji S, Deng R, Wang A, Zhang G. Identification of a linear B-cell epitope on glycoprotein (GP) 2a of porcine reproductive and respiratory syndrome virus (PRRSV). Int J Biol Macromol 2019; 139:1288-1294. [PMID: 31356943 DOI: 10.1016/j.ijbiomac.2019.07.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022]
Abstract
Glycoprotein (GP) 2a was a minor structural protein of porcine reproductive and respiratory syndrome virus (PRRSV) and was one of crucial proteins for PRRSV to bind cell receptor, which indicated that there were neutralizing epitopes on GP2a. In the present work, we used mouse anti-GP2a41-208aa serum and one GP2a41-208aa specific monoclonal antibody (McAb) to identify B-cell epitopes of GP2a by peptide-based ELISA. A liner B-cell epitope F194PTPGSRPKLHDFQQ208 was identified. However, the results of virus neutralization experiment showed that the McAb could not reduce the titers of PRRSV, which indicated that the identified epitope was not the neutralizing epitope of PRRSV. While the amino acid sequence of this epitope was conserved in North American (type 2) PRRSV, which suggested that this epitope might be diagnostic potential for type 2 PRRSV strains. In conclusion, our present work identified a new epitope on GP2a and this epitope might be diagnostic potential for type 2 PRRSV strains.
Collapse
Affiliation(s)
- Xibao Shi
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaomin Fan
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shouyi Nie
- Department of Bioengineering, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Liyun Kou
- Department of Bioengineering, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiaozhuan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hongliang Liu
- Department of Bioengineering, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Shengdong Ji
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Aiping Wang
- Department of Bioengineering, Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Gaiping Zhang
- Department of Bioengineering, Zhengzhou University, Zhengzhou, Henan 450000, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| |
Collapse
|
12
|
Porcine Reproductive and Respiratory Syndrome Virus nsp11 Antagonizes Type I Interferon Signaling by Targeting IRF9. J Virol 2019; 93:JVI.00623-19. [PMID: 31092569 PMCID: PMC6639278 DOI: 10.1128/jvi.00623-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/06/2019] [Indexed: 12/24/2022] Open
Abstract
The nidovirus-specific endoribonuclease (NendoU) encoded by PRRSV nonstructural protein 11 (nsp11) is a unique NendoU of nidoviruses that infect vertebrates; thus, it is an attractive target for the development of antinidovirus drugs. Previous studies have revealed that the NendoU of nidoviruses, including porcine reproductive and respiratory syndrome virus (PRRSV) and human coronavirus 229E (HCoV-229E), acts as a type I interferon (IFN) antagonist. Here, for the first time, we demonstrated that overexpression of PRRSV nsp11 also inhibits IFN signaling by targeting the C-terminal interferon regulatory factor (IRF) association domain of IRF9. This interaction impaired the ability of IRF9 to form the transcription factor complex IFN-stimulated gene factor 3 (ISGF3) and to act as a signaling protein of IFN signaling. Collectively, our data identify IRF9 as a natural target of PRRSV NendoU and reveal a novel mechanism evolved by an arterivirus to counteract innate immune signaling. Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus from the Nidovirales order that causes reproductive failure and respiratory disease in pigs and poses a constant threat to the global pig industry. The PRRSV-encoded nonstructural protein 11 (nsp11) is a nidovirus-specific endoribonuclease (NendoU) that is conserved throughout the Arteriviridae and Coronaviridae families. Previously, our research and that of others demonstrated that PRRSV nsp11 inhibits type I interferon (IFN) production through NendoU activity-dependent mechanisms. Here, we found that PRRSV nsp11 also inhibited IFN-stimulated response element (ISRE) promoter activity and subsequent transcription of IFN-stimulated genes (ISGs). Detailed analysis showed that nsp11 targeted interferon regulatory factor 9 (IRF9), but not transducer and activator of transcription 1 (STAT1) or STAT2, key molecules in the type I IFN signaling pathway. Furthermore, the nsp11-IRF9 interaction impaired the formation and nuclear translocation of the transcription factor complex IFN-stimulated gene factor 3 (ISGF3) in both nsp11-overexpressed and PRRSV-infected cells. Importantly, nsp11 mutations (H129A, H144A, and K173A) that ablate NendoU activity or its cell cytotoxicity also interacted with IRF9 and retained the ability to block IFN signaling, indicating that the nsp11-IRF9 interaction is independent of NendoU activity or cell cytotoxicity of nsp11. Taking the results together, our study demonstrated that PRRSV nsp11 antagonizes type I IFN signaling by targeting IRF9 via a NendoU activity-independent mechanism, and this report describes a novel strategy evolved by PRRSV to counteract host innate antiviral responses, revealing a potential new function for PRRSV nsp11 in type I IFN signaling. IMPORTANCE The nidovirus-specific endoribonuclease (NendoU) encoded by PRRSV nonstructural protein 11 (nsp11) is a unique NendoU of nidoviruses that infect vertebrates; thus, it is an attractive target for the development of antinidovirus drugs. Previous studies have revealed that the NendoU of nidoviruses, including porcine reproductive and respiratory syndrome virus (PRRSV) and human coronavirus 229E (HCoV-229E), acts as a type I interferon (IFN) antagonist. Here, for the first time, we demonstrated that overexpression of PRRSV nsp11 also inhibits IFN signaling by targeting the C-terminal interferon regulatory factor (IRF) association domain of IRF9. This interaction impaired the ability of IRF9 to form the transcription factor complex IFN-stimulated gene factor 3 (ISGF3) and to act as a signaling protein of IFN signaling. Collectively, our data identify IRF9 as a natural target of PRRSV NendoU and reveal a novel mechanism evolved by an arterivirus to counteract innate immune signaling.
Collapse
|
13
|
Montaner-Tarbes S, Del Portillo HA, Montoya M, Fraile L. Key Gaps in the Knowledge of the Porcine Respiratory Reproductive Syndrome Virus (PRRSV). Front Vet Sci 2019; 6:38. [PMID: 30842948 PMCID: PMC6391865 DOI: 10.3389/fvets.2019.00038] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important swine diseases in the world. It is causing an enormous economic burden due to reproductive failure in sows and a complex respiratory syndrome in pigs of all ages, with mortality varying from 2 to 100% in the most extreme cases of emergent highly pathogenic strains. PRRSV displays complex interactions with the immune system and a high mutation rate, making the development, and implementation of control strategies a major challenge. In this review, the biology of the virus will be addressed focusing on newly discovered functions of non-structural proteins and novel dissemination mechanisms. Secondly, the role of different cell types and viral proteins will be reviewed in natural and vaccine-induced immune response together with the role of different immune evasion mechanisms focusing on those gaps of knowledge that are critical to generate more efficacious vaccines. Finally, novel strategies for antigen discovery and vaccine development will be discussed, in particular the use of exosomes (extracellular vesicles of endocytic origin). As nanocarriers of lipids, proteins and nucleic acids, exosomes have potential effects on cell activation, modulation of immune responses and antigen presentation. Thus, representing a novel vaccination approach against this devastating disease.
Collapse
Affiliation(s)
- Sergio Montaner-Tarbes
- Innovex Therapeutics S.L, Badalona, Spain.,Departamento de Ciencia Animal, Escuela Técnica Superior de Ingenieria Agraria (ETSEA), Universidad de Lleida, Lleida, Spain
| | - Hernando A Del Portillo
- Innovex Therapeutics S.L, Badalona, Spain.,Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - María Montoya
- Innovex Therapeutics S.L, Badalona, Spain.,Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Lorenzo Fraile
- Innovex Therapeutics S.L, Badalona, Spain.,Departamento de Ciencia Animal, Escuela Técnica Superior de Ingenieria Agraria (ETSEA), Universidad de Lleida, Lleida, Spain
| |
Collapse
|