1
|
Li C, Wang F, Ma Y, Wang W, Guo Y. Investigation of the regulatory mechanisms of Guiqi Yimu Powder on dairy cow fatty liver cells using a multi-omics approach. Front Vet Sci 2024; 11:1475564. [PMID: 39444735 PMCID: PMC11497463 DOI: 10.3389/fvets.2024.1475564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Fatty liver disease in dairy cows is a metabolic disorder that significantly affects their health and productivity, imposing a notable economic burden on the global dairy industry. Traditional Chinese medicine (TCM), characterized by its multi-component and multi-target features, has shown unique advantages in the prevention and treatment of various diseases. Guiqi Yimu Powder, a traditional TCM formula, enhances growth, boosts production efficiency, and strengthens immune function in livestock by regulating antioxidant along with anti-inflammatory pathways. However, its specific regulatory mechanisms on fatty liver in dairy cows remain unclear. This study aims to investigate the molecular-level effects and potential regulatory mechanisms of Guiqi Yimu Powder in a Trimethylamine N-oxide (TMAO) induced fatty liver cell model of dairy cows. Methods We employed a comprehensive analysis integrating transcriptomics, proteomics, metabolomics, and network pharmacology. An in vitro dairy cow fatty liver cell model was established using TMAO to induce lipid accumulation. Cells were treated with the optimal TMAO concentration identified through preliminary experiments, and further divided into a lipid accumulation group and Guiqi Yimu Powder treatment groups. The treatment groups received varying concentrations of Guiqi Yimu Powder (10, 20, 30, 40, or 50 g/L). High-throughput omics sequencing technologies were utilized to perform a comprehensive analysis of the treated cells. Bioinformatics methods were applied to explore the regulatory effects, aiming to elucidate the specific impacts of Guiqi Yimu Powder on lipid metabolism, liver function, and related signaling pathways, thereby providing scientific evidence for its potential application in the prevention and treatment of fatty liver in dairy cows. Results Guiqi Yimu Powder treatment significantly affected 1,536 genes, 152 proteins, and 259 metabolites. KEGG enrichment analysis revealed that the significantly altered molecules are involved in multiple pathways related to the pathology of fatty liver, including metabolic pathways, glutathione metabolism, hepatitis B, and AMPK signaling pathway (p < 0.05). Notably, joint analysis highlighted the regulatory mechanisms of Guiqi Yimu Powder on glutathione cycling, with L-5-Oxoproline identified as an important metabolic compound. These findings indicate its impact on oxidative stress, energy metabolism, and liver function, suggesting potential therapeutic applications for fatty liver in dairy cows. Discussion This study elucidated the regulatory mechanisms of Guiqi Yimu Powder on fatty liver cells in dairy cows, providing new scientific evidence for its potential application in the prevention and treatment of fatty liver disease.
Collapse
Affiliation(s)
- Chenlei Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Feifei Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yanfen Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Wenjia Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yansheng Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
2
|
Brinker EJ, Hardcastle MR, Dittmer KE, Graff EC. Endocrine fibroblast growth factors in domestic animals. Domest Anim Endocrinol 2024; 89:106872. [PMID: 39059301 DOI: 10.1016/j.domaniend.2024.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Fibroblast growth factors (FGFs) are a group of structurally homologous yet functionally pleiotropic proteins. Canonical and intracellular FGFs have primarily autocrine or paracrine effects. However, the FGF19 subfamily, composed of FGF15/19, FGF21, and FGF23, act as endocrine hormones that regulate bile acid, metabolic, and phosphorus homeostasis, respectively. Current research in human and rodent models demonstrates the potential of these endocrine FGFs to target various diseases, including disorders of inherited hypophosphatemia, chronic liver disease, obesity, and insulin resistance. Many diseases targeted for therapeutic use in humans have pathophysiological overlaps in domestic animals. Despite the potential clinical and economic impact, little is known about endocrine FGFs and their signaling pathways in major domestic animal species compared with humans and laboratory animals. This review aims to describe the physiology of these endocrine FGFs, discuss their current therapeutic use, and summarize the contemporary literature regarding endocrine FGFs in domestic animals, focusing on potential future directions.
Collapse
Affiliation(s)
- Emily J Brinker
- Department of Pathobiology, College of Veterinary Medicine, 166 Greene Hall, Auburn University, AL, USA 36849; Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, USA 01536
| | - Michael R Hardcastle
- IDEXX Laboratories Pty. Ltd., 20A Maui Street, Pukete, Hamilton 3200, New Zealand
| | - Keren E Dittmer
- School of Veterinary Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Emily C Graff
- Department of Pathobiology, College of Veterinary Medicine, 166 Greene Hall, Auburn University, AL, USA 36849; Scott-Ritchey Research Center, College of Veterinary Medicine, Dr. Auburn University, 1265 HC Morgan, AL, USA 36849.
| |
Collapse
|
3
|
Jiang W, Mooney MH, Shirali M. Unveiling the Genetic Landscape of Feed Efficiency in Holstein Dairy Cows: Insights into Heritability, Genetic Markers, and Pathways via Meta-Analysis. J Anim Sci 2024; 102:skae040. [PMID: 38354297 PMCID: PMC10957122 DOI: 10.1093/jas/skae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Improving the feeding efficiency of dairy cows is a key component to improve the utilization of land resources and meet the demand for high-quality protein. Advances in genomic methods and omics techniques have made it possible to breed more efficient dairy cows through genomic selection. The aim of this review is to obtain a comprehensive understanding of the biological background of feed efficiency (FE) complex traits in purebred Holstein dairy cows including heritability estimate, and genetic markers, genes, and pathways participating in FE regulation mechanism. Through a literature search, we systematically reviewed the heritability estimation, molecular genetic markers, genes, biomarkers, and pathways of traits related to feeding efficiency in Holstein dairy cows. A meta-analysis based on a random-effects model was performed to combine reported heritability estimates of FE complex. The heritability of residual feed intake, dry matter intake, and energy balance was 0.20, 0.34, and 0.22, respectively, which proved that it was reasonable to include the related traits in the selection breeding program. For molecular genetic markers, a total of 13 single-nucleotide polymorphisms and copy number variance loci, associated genes, and functions were reported to be significant across populations. A total of 169 reported candidate genes were summarized on a large scale, using a higher threshold (adjusted P value < 0.05). Then, the subsequent pathway enrichment of these genes was performed. The important genes reported in the articles were included in a gene list and the gene list was enriched by gene ontology (GO):biological process (BP), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis. Three GO:BP terms and four KEGG terms were statistically significant, which mainly focused on adenosine triphosphate (ATP) synthesis, electron transport chain, and OXPHOS pathway. Among these pathways, involved genes such as ATP5MC2, NDUFA, COX7A2, UQCR, and MMP are particularly important as they were previously reported. Twenty-nine reported biological mechanisms along with involved genes were explained mainly by four biological pathways (insulin-like growth factor axis, lipid metabolism, oxidative phosphorylation pathways, tryptophan metabolism). The information from this study will be useful for future studies of genomic selection breeding and genetic structures influencing animal FE. A better understanding of the underlying biological mechanisms would be beneficial, particularly as it might address genetic antagonism.
Collapse
Affiliation(s)
- Wentao Jiang
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL, UK
- Agri-Food and Biosciences Institute, Large Park, Hillsborough, BT26 6DR, UK
| | - Mark H Mooney
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL, UK
| | - Masoud Shirali
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL, UK
- Agri-Food and Biosciences Institute, Large Park, Hillsborough, BT26 6DR, UK
| |
Collapse
|
4
|
Gross JJ. Hepatic Lipidosis in Ruminants. Vet Clin North Am Food Anim Pract 2023; 39:371-383. [PMID: 37032295 DOI: 10.1016/j.cvfa.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
Abstract
Hepatic lipidosis (ie, fatty liver) occurs primarily during the first weeks of lactation in dairy cows because of excessive lipolysis overwhelming the concomitant capacity for beta-oxidation and hepatic export of triglycerides. Besides economic losses due to reduced lactational and reproductive performance, close associations with concomitantly occurring infectious and metabolic health disorders, in particular ketosis, exist. Hepatic lipidosis is not only a consequence from the postpartal negative energy balance but also acts as a disease component for further health disorders.
Collapse
Affiliation(s)
- Josef J Gross
- Veterinary Physiology, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland.
| |
Collapse
|
5
|
Gessner DK, Sandrock LM, Most E, Koch C, Ringseis R, Eder K. Performance and Metabolic, Inflammatory, and Oxidative Stress-Related Parameters in Early Lactating Dairy Cows with High and Low Hepatic FGF21 Expression. Animals (Basel) 2022; 13:ani13010131. [PMID: 36611740 PMCID: PMC9817787 DOI: 10.3390/ani13010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Induction of FGF21 expression in the liver and a significant increase in plasma FGF21 concentration have been demonstrated in cows during early lactation, but knowledge about the function of FGF21 in dairy cows remains limited. In order to improve the understanding of the physiological role of FGF21 in dairy cows, the present study aimed to investigate differences in metabolic pathways between dairy cows with high and low hepatic expression of FGF21 at week 1 of lactation (n = 8/group) by liver transcriptomics, targeted plasma metabolomics, and analysis of inflammatory and oxidative stress-related parameters. Dry matter intake, energy balance, milk yield, and energy-corrected milk yield at days 8−14 postpartum did not differ between cows with high and low hepatic FGF21 expression. However, cows with high FGF21 expression showed an upregulation of genes involved in endoplasmic reticulum stress, inflammation, and nuclear factor E2-related factor 2 (Nrf2)-dependent cytoprotection compared to cows with low FGF21 expression at week 1 postpartum (p < 0.05). Concentrations of important antioxidants (tocopherols, β-carotene, and glutathione) in the liver and plasma, trolox equivalent antioxidant capacity in plasma, concentrations of oxidative stress-related compounds (thiobarbituric acid-reactive substances and protein carbonyls), and levels of most acute phase proteins at week 1 postpartum did not differ between cows with high or low FGF21 expression. Moreover, among a total of >200 metabolites assayed in the plasma, concentrations of only 7 metabolites were different between cows with high or low FGF21 expression (p < 0.05). Overall, the results showed that cows with high and low FGF21 hepatic expression had only moderate differences in metabolism, but FGF21 might be important in the adaptation of dairy cows to stress conditions during early lactation.
Collapse
Affiliation(s)
- Denise K. Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Lena M. Sandrock
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Christian Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, 67728 Münchweiler an der Alsenz, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-641-9939230
| |
Collapse
|
6
|
Protective effects of monoammonium glycyrrhizinate on fatty deposit degeneration induced in primary calf hepatocytes by sodium oleate administration in vitro. Res Vet Sci 2022; 150:213-223. [DOI: 10.1016/j.rvsc.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022]
|
7
|
FGF21 Reduces Lipid Accumulation in Bovine Hepatocytes by Enhancing Lipid Oxidation and Reducing Lipogenesis via AMPK Signaling. Animals (Basel) 2022; 12:ani12070939. [PMID: 35405926 PMCID: PMC8996872 DOI: 10.3390/ani12070939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
During the periparturient period, dairy cows suffer drastic metabolic stress because of plasma increased non-esterified fatty acids (NEFAs) that stem from a negative energy balance. Fibroblast growth factor 21 (FGF21) is a hepatokine that activates the AMP-activated protein kinase (AMPK) signaling pathway to maintain intracellular energy balance and tissue integrity via the promotion of catabolism and the inhibition of anabolic regulation. FGF21 treatment caused a 50% reduction in triglyceride (TG) content in liver in dairy cows. However, it is not clear whether FGF21 regulates lipid metabolism in bovine liver. The purpose of this study was to evaluate the influence of FGF21 on lipid metabolism via AMPK signaling in bovine hepatocytes. The hepatocytes isolated from calves were treated with different concentrations of FGF21 or co-treated with AMPK inhibitor (BML-275). Herein, the study showed that FGF21 significantly reduced TG content in a dose–response manner and promoted very-low-density lipoprotein (VLDL) secretion via an up-regulation of the proteins (ApoB 100, ApoE and MTTP) involved in VLDL secretion. Otherwise, the genes associated with lipid transport (LDLR and CD36) and lipid oxidation (PPARGC1A, ACOX1 and CPT1A), were up-regulated following FGF21 treatment. Moreover, FGF21 treatment inhibited lipogenesis via SREBF1, ACACA, FASN and ACLY inhibition. After being co-treated with the AMPK inhibitor, FGF21-induced changes were reversed in some genes. In conclusion, these results indicate that FGF21 adaptively regulates energy metabolism for a negative impact on lipogenesis, strengthens lipid oxidation, and inhibited lipid transportation via AMPK signaling in bovine hepatocytes. The present data suggest the possibility that FGF21 has potential value in alleviating perinatal metabolic diseases in dairy cows, and specific research in vivo should be studied in more detail.
Collapse
|
8
|
Nolte W, Weikard R, Albrecht E, Hammon HM, Kühn C. Metabogenomic analysis to functionally annotate the regulatory role of long non-coding RNAs in the liver of cows with different nutrient partitioning phenotype. Genomics 2021; 114:202-214. [PMID: 34923089 DOI: 10.1016/j.ygeno.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 07/26/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) hold gene regulatory potential, but require substantial further functional annotation in livestock. Applying two metabogenomic approaches by combining transcriptomic and metabolomic analyses, we aimed to identify lncRNAs with potential regulatory function for divergent nutrient partitioning of lactating crossbred cows and to establish metabogenomic interaction networks comprising metabolites, genes and lncRNAs. Through correlation analysis of lncRNA expression with transcriptomic and metabolomic data, we unraveled lncRNAs that have a putative regulatory role in energy and lipid metabolism, the urea and tricarboxylic acid cycles, and gluconeogenesis. Especially FGF21, which correlated with a plentitude of differentially expressed genes, differentially abundant metabolites, as well as lncRNAs, suggested itself as a key metabolic regulator. Notably, lncRNAs in close physical proximity to coding-genes as well as lncRNAs with natural antisense transcripts appear to perform a fine-tuning function in gene expression involved in metabolic pathways associated with different nutrient partitioning phenotypes.
Collapse
Affiliation(s)
- Wietje Nolte
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Rosemarie Weikard
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Harald M Hammon
- Institute of Nutritional Physiology "Oskar Kellner", Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Christa Kühn
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany.
| |
Collapse
|
9
|
Kong F, Li Y, Diao Q, Bi Y, Tu Y. The crucial role of lysine in the hepatic metabolism of growing Holstein dairy heifers as revealed by LC-MS-based untargeted metabolomics. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:1152-1161. [PMID: 34754957 PMCID: PMC8556487 DOI: 10.1016/j.aninu.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 02/05/2023]
Abstract
The objective of this experiment was to evaluate the effect of supplementing rumen-protected Lys based on a Lys-deficient diet on liver metabolism in growing Holstein heifers. The experiment was conducted for 3 months with 36 Holstein heifers (initial body weight: 200 ± 9.0 kg; 7-month-old). Heifers were randomly assigned to 2 diets based on corn, soybean meal, alfalfa hay, and wheat bran: control, Lys-deficient diet (LD; 0.66% Lys in diet), and Lys-adequate diet (LA; 1.00% Lys in diet). The results showed no difference in growth performance between the 2 groups (P > 0.05). However, there was a clear trend of increasing feed conversion rate with Lys supplementation (0.05 < P < 0.01). The serum urea nitrogen concentration was significantly decreased, and the aspartate aminotransferase-to-alanine aminotransferase ratio was significantly decreased by Lys supplementation (P < 0.05). Moreover, growing heifers fed a Lys-adequate diet had lower levels of urine nitrogen excretion and higher levels of the biological value of nitrogen (P < 0.05). Metabolomic analysis revealed that 5 types of phosphatidylcholine and 3 types of ceramide were significantly increased and enriched in sphingolipid metabolism and glycerophospholipid metabolism (P < 0.05). His, Leu, and Asp levels were significantly decreased in the liver following Lys supplementation (P < 0.05). In conclusion, Lys supplementation may promote the synthesis of body tissue proteins, as evidenced by significantly decreased amino acids in the liver and urine N excretion, it also improves hepatic lipid metabolism by providing lipoprotein precursors.
Collapse
Affiliation(s)
- Fanlin Kong
- Beijing Key Laboratory for Dairy Cow Nutrition, Sino-US Joint Lab on Nutrition and Metabolism of Ruminants, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuan Li
- Beijing Key Laboratory for Dairy Cow Nutrition, Sino-US Joint Lab on Nutrition and Metabolism of Ruminants, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiyu Diao
- Beijing Key Laboratory for Dairy Cow Nutrition, Sino-US Joint Lab on Nutrition and Metabolism of Ruminants, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanliang Bi
- Beijing Key Laboratory for Dairy Cow Nutrition, Sino-US Joint Lab on Nutrition and Metabolism of Ruminants, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Tu
- Beijing Key Laboratory for Dairy Cow Nutrition, Sino-US Joint Lab on Nutrition and Metabolism of Ruminants, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
10
|
NEFA Promotes Autophagosome Formation through Modulating PERK Signaling Pathway in Bovine Hepatocytes. Animals (Basel) 2021; 11:ani11123400. [PMID: 34944177 PMCID: PMC8697899 DOI: 10.3390/ani11123400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
During the perinatal period, the abnormally high plasma non-esterified fatty acids (NEFA) concentration caused by the negative energy balance (NEB) can impose a significant metabolic stress on the liver of dairy cows. Endoplasmic reticulum (ER) stress is an important adaptive response that can serve to maintain cell homeostasis in the event of stress. The protein kinase R-like endoplasmic reticulum kinase (PERK) pathway is the most rapidly activated cascade when ER stress occurs in cells and has an important impact on the regulation of hepatic lipid metabolism and autophagy modulation. However, it is unknown whether NEFA can affect autophagy through modulating the PERK pathway, under NEB conditions. In this study, we provide evidence that NEFA treatment markedly increased lipid accumulation, the phosphorylation level of PERK and eukaryotic initiation factor 2α (eIF2α), and the expression of glucose-regulated protein 78 (Grp78), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). More importantly, NEFA treatment can cause a substantial increase in the protein levels of autophagy-related gene 7 (ATG7), Beclin-1 (BECN1), sequestosome-1 (p62), and microtubule-associated protein 1 light chain 3 (LC3)-II, and in the number of autophagosomes in primary bovine hepatocytes. The addition of GSK2656157 (PERK phosphorylation inhibitor) can significantly inhibit the effect of NEFA on autophagy and can further increase lipid accumulation. Overall, our results indicate that NEFA could promote autophagy via the PERK pathway in bovine hepatocytes. These findings provide novel evidence about the potential role of the PERK signaling pathway in maintaining bovine hepatocyte homeostasis.
Collapse
|
11
|
Eder K, Gessner DK, Ringseis R. Fibroblast growth factor 21 in dairy cows: current knowledge and potential relevance. J Anim Sci Biotechnol 2021; 12:97. [PMID: 34517929 PMCID: PMC8439079 DOI: 10.1186/s40104-021-00621-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/12/2021] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) has been identified as an important regulator of carbohydrate and lipid metabolism, which plays an important role for metabolic regulation, particularly under conditions of energy deprivation or stress conditions. Dairy cows are subjected to a negative energy balance and various kinds of stress particularly during the periparturient phase and during early lactation. It has been shown that the plasma concentration of FGF21 in dairy cows is dramatically increased at parturition and remains high during the first weeks of lactation. This finding suggests that FGF21 might exert similar functions in dairy cows than in other species, such as mice or humans. However, the role of FGF21 in dairy cows has been less investigated so far. Following a brief summary of the previous findings about the function of FGF21 in humans and mice, the present review aims to present the current state of knowledge about the role of FGF21 in dairy cows. The first part of the review deals with the tissue localization of FGF21 and with conditions leading to an upregulation of FGF21 expression in the liver of dairy cows. In the second part, the influence of nutrition on FGF21 expression and the role of FGF21 for metabolic diseases in dairy cows is addressed. In the third part, findings of exogenous FGF21 application on metabolism in dairy cows are reported. Finally, the potential relevance of FGF21 in dairy cows is discussed. It is concluded that FGF21 might be of great importance for metabolic adaptation to negative energy balance and stress conditions in dairy cows. However, further studies are needed for a better understanding of the functions of FGF21 in dairy cows.
Collapse
Affiliation(s)
- Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Denise K. Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
12
|
Huang Y, Wen J, Kong Y, Zhao C, Liu S, Liu Y, Li L, Yang J, Zhu X, Zhao B, Cao B, Wang J. Oxidative status in dairy goats: periparturient variation and changes in subclinical hyperketonemia and hypocalcemia. BMC Vet Res 2021; 17:238. [PMID: 34229683 PMCID: PMC8258950 DOI: 10.1186/s12917-021-02947-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A better comprehension of the redox status during the periparturient period may facilitate the development of management and nutritional solutions to prevent subclinical hyperketonemia (SCHK) and subclinical hypocalcemia (SCHC) in dairy goats. We aimed to evaluate the variation in the redox status of dairy goats with SCHK and SCHC during their periparturient periods. Guanzhong dairy goats (n = 30) were assigned to SCHK (n = 10), SCHC (n = 10), and healthy (HEAL, n = 10) groups based on their blood β-hydroxybutyrate (BHBA) and calcium (Ca) concentrations. Blood were withdrawn from goats every week from 3 weeks before the expected parturition date to 3 weeks post-kidding. On the same day, the body condition scores (BCS) were evaluated, and the milk yield was recorded for each goat. The metabolic profile parameters and the indicators of oxidative status were determined by using the standard biochemical techniques. RESULTS In comparison with the HEAL goats, SCHK and SCHC goats presented with a more dramatic decline of BCS post-kidding and a significant decrease in the milk yield at 2- and 3-weeks postpartum, ignoring the obvious increase at 1-week postpartum. The levels of non-esterified fatty acids (NEFA) peaked at parturition, exhibiting significantly higher levels from 1-week prepartum to the parturition day in the SCHK and SCHC groups. The malondialdehyde (MDA) concentration was increased in the SCHK goats from 1-week antepartum until 3-weeks postpartum, with its concentration being significantly higher in the SCHC goats at parturition. The hydrogen peroxide (H2O2) concentration was significantly lower in the SCHK and SCHC goats from 2-weeks antepartum to 1-week post-kidding. The total antioxidant capacity (T-AOC) and the superoxide dismutase (SOD) level were decreased at 1-week antepartum in the SCHK and SCHC goats, respectively. The glutathione peroxidase (GSH-Px) level was increased in the SCHK and SCHC goats during the early lactation period. CONCLUSIONS The SCHK and SCHC goats exerted more efforts to maintain their redox homeostasis and to ensure the production performance than the HEAL goats during their periparturient period, probably owing to more intense fat mobilization and lipid peroxidation in the former.
Collapse
Affiliation(s)
- Yan Huang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Jing Wen
- College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Siqi Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yaoquan Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Lan Li
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Jiaqi Yang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
13
|
Li S, Zheng X, Zhang X, Yu H, Han B, Lv Y, Liu Y, Wang X, Zhang Z. Exploring the liver fibrosis induced by deltamethrin exposure in quails and elucidating the protective mechanism of resveratrol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111501. [PMID: 33254389 DOI: 10.1016/j.ecoenv.2020.111501] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/25/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Deltamethrin (DLM) is widely used in agriculture and the prevention of human insect-borne diseases. However, the molecular mechanism of DLM induced liver injury remains unclear to date. This study investigated the potential molecular mechanism that DLM induced liver fibrosis in quails. Japanese quails received resveratrol (500 mg/kg) daily with or without DLM (45 mg/kg) exposure for 12 weeks. Histopathology, transmission electron microscopy, biochemical indexes, TUNEL, quantitative real-time PCR, and western blot analysis were performed. DLM exposure induced hepatic steatosis, oxidative stress, inflammation, and apoptosis. Most importantly, the Nrf2/TGF-β1/Smad3 signaling pathway played an important role on DLM-induced liver fibrosis in quails. Interestingly, the addition of resveratrol, an Nrf2 activator, alleviates oxidative stress and inflammation response by activating Nrf2, thereby inhibits the liver fibrosis induced by DLM in quails. Collectively, these findings demonstrate that chronic exposure to DLM induces oxidative stress via the Nrf2 expression inhibition and apoptosis, and then results in liver fibrosis in quails by the activation of NF-κB/TNF-α and TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China
| | - Xiaoyan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Xiaoya Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Hongxiang Yu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
14
|
Wu ZL, Chen SY, Hu S, Jia X, Wang J, Lai SJ. Metabolomic and Proteomic Profiles Associated With Ketosis in Dairy Cows. Front Genet 2020; 11:551587. [PMID: 33391334 PMCID: PMC7772412 DOI: 10.3389/fgene.2020.551587] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022] Open
Abstract
Ketosis is a common metabolic disease in dairy cows during early lactation. However, information about the metabolomic and proteomic profiles associated with the incidence and progression of ketosis is still limited. In this study, an integrated metabolomics and proteomics approach was performed on blood serum sampled from cows diagnosed with clinical ketosis (case, ≥ 2.60 mmol/L plasma β-hydroxybutyrate; BHBA) and healthy controls (control, < 1.0 mmol/L BHBA). Samples were taken 2 weeks before parturition and 2 weeks after parturition from 19 animals (nine cases, 10 controls). All serum samples (n = 38) were subjected to Liquid Chromatography-Mass Spectrometry (LC-MS) based metabolomic analysis, and 20 samples underwent Data-Independent Acquisition (DIA) LC-MS based proteomic analysis. A total of 97 metabolites and 540 proteins were successfully identified, and multivariate analysis revealed significant differences in both metabolomic and proteomic profiles between cases and controls. We investigated clinical ketosis-associated metabolomic and proteomic changes using statistical analyses. Correlation analysis of statistically significant metabolites and proteins showed 78 strong correlations (correlation coefficient, R ≥ 0.7) between 38 metabolites and 25 proteins, which were then mapped to pathways using IMPaLA. Results showed that ketosis altered a wide range of metabolic pathways, such as metabolism, metabolism of proteins, gene expression and post-translational protein modification, vitamin metabolism, signaling, and disease related pathways. Findings presented here are relevant for identifying molecular targets for ketosis and biomarkers for ketosis detection during the transition period.
Collapse
Affiliation(s)
| | | | | | | | | | - Song-Jia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Kong Y, Zhao C, Huang Y, Liu Y, Liu S, Guo Y, Li M, Xu T, Zhao B, Wang J. Angiopoietin-like protein 4 promotes very-low-density lipoprotein assembly and secretion in bovine hepatocytes in vitro. IUBMB Life 2020; 72:2710-2721. [PMID: 33205615 DOI: 10.1002/iub.2403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 01/20/2023]
Abstract
In dairy cows, fatty liver is one of the most common metabolic diseases that occurs during the periparturient period. Angiopoietin-like protein 4 (ANGPTL4) is a well-known downstream target of peroxisome proliferator-activated receptors (PPARs), which regulate the glucose and fatty acid metabolisms. The inhibition of lipoprotein lipase (LPL) activity interferes with the storage of triglycerides (TG) in adipocytes, which plays an essential role in lipid metabolism in rodents. However, it remains unclear whether ANGPTL4 is involved in the pathological process of fatty liver in dairy cows as a result of the regulation of the hepatocellular lipid transport system. This study intended to investigate the effect of ANGPTL4 on the very-low-density lipoprotein (VLDL) assembly and secretion in bovine hepatocytes. Bovine hepatocytes were isolated using a modified two-step perfusion and collagenase digestion process, and treated with different concentrations of ANGPTL4 (0, 4, 12, and 24 ng/ml) for 24 hr. The results showed that a high concentration of ANGPTL4 could significantly increase the extracellular concentration of VLDL while reducing the intracellular content of TG. Thus, it was confirmed that ANGPTL4 could promote the transport of TG in the form of VLDL by partially regulating the expression of related proteins in hepatocytes, thereby contributing to the partial adaptive regulation of lipid transport in dairy cows.
Collapse
Affiliation(s)
- Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yan Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yaoquan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Siqi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yazhou Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Manxia Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Tingxuan Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Zhang B, Li M, Yang W, Loor JJ, Liang Y, Wang S, Zhao Y, Guo H, Ma X, Yu L, Xu C. Mitochondrial dysfunction and endoplasmic reticulum stress in calf hepatocytes are associated with fatty acid-induced ORAI calcium release-activated calcium modulator 1 signaling. J Dairy Sci 2020; 103:11945-11956. [PMID: 32981726 DOI: 10.3168/jds.2020-18684] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022]
Abstract
The store-operated Ca2+ entry (SOCE) moiety ORAI calcium release-activated calcium modulator 1 (ORAI1) located in the endoplasmic reticulum (ER) participates in key cellular functions such as protein folding, transport, and secretion, and lipid metabolism. We used an in vitro approach to test whether exogenous fatty acids alter ORAI1 signaling and to explore potential consequences on mitochondrial dysfunction and ER stress. First, hepatocytes isolated from 4 healthy female calves (1 d old, 40-50 kg) were challenged with a 1.2 mM mixture of oleic, linoleic, palmitic, stearic, and palmitoleic acids for 0.5, 1, 3, 6, 9, and 12 h to measure oxidative stress [intracellular reduced glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and hydrogen peroxide] and ER stress (protein abundance of PERK, IRE, ATF6, and GRP78). Concentrations of GSH and SOD decreased at 0.5 h, and MDA and hydrogen peroxide increased at 1 h; ER stress proteins increased at 6 h. To determine whether ER stress was caused by oxidative stress, primary calf hepatocytes were treated with the same 1.2 mM fatty acid mix or the reactive oxygen species (ROS) inhibitor N-acetylcysteine (NAC) for 6 h. We found that NAC prevented an increase in ER stress protein abundance. Next, the role of ORAI1 on ER stress was measured by transfecting hepatocytes with small interfering (si)ORAI1 or the ORAI1 inhibitor BTP2, followed by a challenge with 1.2 mM fatty acids for 3 h. Without inhibiting ORAI1, exogenous fatty acids upregulated ORAI1 mRNA and protein abundance, oxidative stress, ER stress proteins, and protein abundance of marker indicators of an opened mitochondrial permeability transition pore (mPTP). Inhibition with BPT2 or silencing via siORAI1 abrogated oxidative stress, including increased GSH concentration and SOD activity, decreased MDA, hydrogen peroxide, and ROS concentration; ER stress protein abundance was downregulated, and mitochondrial function was restored. Last, changes in markers of mPTP opening were evaluated by culturing hepatocytes for 6 h with the sarcoendoplasmic Ca2+ ATPase inhibitor thapsigargin or the calcium ionophore ionomycin. We detected an increase in VDAC1, CLPP, and CypD protein abundance, all of which indicated opening of the mPTP. Overall, data from these in vitro studies suggest that ORAI1 mediates ER stress induced by high concentrations of fatty acids, in part through alleviating mitochondrial dysfunction caused by oxidative stress.
Collapse
Affiliation(s)
- Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Ming Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Yusheng Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Shuang Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Yingying Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Han Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Xinru Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Liyun Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
| |
Collapse
|
17
|
Clinical Ketosis-Associated Alteration of Gene Expression in Holstein Cows. Genes (Basel) 2020; 11:genes11020219. [PMID: 32093082 PMCID: PMC7073836 DOI: 10.3390/genes11020219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Ketosis is one of the most prevalent transition metabolic disorders in dairy cows, and has been intrinsically influenced by both genetic and nutritional factors. However, altered gene expression with respective to dairy cow ketosis has not been addressed yet, especially at the genome-wide level. In this study, we recruited nine Holsteins diagnosed with clinical ketosis and ten healthy controls, for which whole blood samples were collected at both prepartum and postpartum. Four groups of blood samples were defined: from cows with ketosis at prepartum (PCK, N = 9) and postpartum (CK, N = 9), respectively, and controls at prepartum (PHC, N = 10) and postpartum (HC, N = 10). RNA-Seq approach was used for investigating gene expression, by which a total of 27,233 genes were quantified with four billion high-quality reads. Subsequently, we revealed 75 and four differentially expressed genes (DEGs) between sick and control cows at postpartum and prepartum, respectively, which indicated that sick and control cows had similar gene expression patterns at prepartum. Meanwhile, there were 95 DEGs between postpartum and prepartum for sick cows, which showed depressed changes of gene expression during this transition period in comparison with healthy cows (428 DEGs). Functional analyses revealed the associated DEGs with ketosis were mainly involved in biological stress response, ion homeostasis, AA metabolism, energy signaling, and disease related pathways. Finally, we proposed that the expression level of STX1A would be potentially used as a new biomarker because it was the only gene that was highly expressed in sick cows at both prepartum and postpartum. These results could significantly help us to understand the underlying molecular mechanisms for incidence and progression of ketosis in dairy cows.
Collapse
|
18
|
Abstract
The experiments reported in this research communication aimed to compare the serum nonesterified fatty acid (NEFA) composition in ketotic cows and healthy cows during the perinatal period. NEFAs play significant roles in etiology and pathology of ketosis. We hypothesized that ketotic cows will display a different serum NEFA composition compared to healthy controls, and fatty acid related indicators for ketosis prediction can be screened. Pre-partum healthy cows were recruited, and blood samples were collected on -7, 3, 7, 14 and 21 d postpartum. Cows were further divided into a healthy control group (C group, n = 6) and a ketosis group (K group, n = 6) if blood β-hydroxybutyric acid levels exceeded 1.2 mm during the experiment. NEFA composition was then analyzed by means of Gas Chromatography-Mass Spectrometer (GC-MS). Only C12 : 0% was significantly higher in C group than K group on 7 d pre-partum (P < 0.05), when the cows were not diagnosed with ketosis. Five fatty acids displayed statistical differences in composition between C and K group (P < 0.05), namely C12 : 0, C16 : 0, C17 : 0, C18 : 1n9 and C22 : 1n9. Saturates%, unsaturates%, mono-unsaturates% and saturates/unsaturates were also different between C and K group (P < 0.05). Of note, C18 : 1n9/C12 : 0 and C18 : 1n9/C22 : 1n9 in K group were significantly higher than those in controls on 7 d pre-partum (P < 0.05). It is suggested that the ratios show potential as indicators for prediction of ketosis.
Collapse
|
19
|
Oliveira HR, Lourenco DAL, Masuda Y, Misztal I, Tsuruta S, Jamrozik J, Brito LF, Silva FF, Cant JP, Schenkel FS. Single-step genome-wide association for longitudinal traits of Canadian Ayrshire, Holstein, and Jersey dairy cattle. J Dairy Sci 2019; 102:9995-10011. [PMID: 31477296 DOI: 10.3168/jds.2019-16821] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022]
Abstract
Estimating single nucleotide polymorphism (SNP) effects over time is essential to identify and validate candidate genes (or quantitative trait loci) associated with time-dependent variation of economically important traits and to better understand the underlying mechanisms of lactation biology. Therefore, in this study, we aimed to estimate time-dependent effects of SNP and identifying candidate genes associated with milk (MY), fat (FY), and protein (PY) yields, and somatic cell score (SCS) in the first 3 lactations of Canadian Ayrshire, Holstein, and Jersey breeds, as well as suggest their potential pattern of phenotypic effect over time. Random regression coefficients for the additive direct genetic effect were estimated for each animal using single-step genomic BLUP, based on 2 random regression models: one considering MY, FY, and PY in the first 3 lactations and the other considering SCS in the first 3 lactations. Thereafter, SNP solutions were obtained for random regression coefficients, which were used to estimate the SNP effects over time (from 5 to 305 d in lactation). The top 1% of SNP that showed a high magnitude of SNP effect in at least 1 d in lactation were selected as relevant SNP for further analyses of candidate genes, and clustered according to the trajectory of their SNP effects over time. The majority of SNP selected for MY, FY, and PY increased the magnitude of their effects over time, for all breeds. In contrast, for SCS, most selected SNP decreased the magnitude of their effects over time, especially for the Holstein and Jersey breeds. In general, we identified a different set of candidate genes for each breed, and similar genes were found across different lactations for the same trait in the same breed. For some of the candidate genes, the suggested pattern of phenotypic effect changed among lactations. Among the lactations, candidate genes (and their suggested phenotypic effect over time) identified for the second and third lactations were more similar to each other than for the first lactation. Well-known candidate genes with major effects on milk production traits presented different suggested patterns of phenotypic effect across breeds, traits, and lactations in which they were identified. The candidate genes identified in this study can be used as target genes in studies of gene expression.
Collapse
Affiliation(s)
- H R Oliveira
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil.
| | - D A L Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - Y Masuda
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - I Misztal
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - S Tsuruta
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - J Jamrozik
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Canadian Dairy Network, Guelph, ON, N1K 1E5, Canada
| | - L F Brito
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - F F Silva
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - J P Cant
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - F S Schenkel
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|