1
|
Laus F, Bazzano M, Spaterna A, Laghi L, Marchegiani A. Nuclear Magnetic Resonance (NMR) Metabolomics: Current Applications in Equine Health Assessment. Metabolites 2024; 14:269. [PMID: 38786746 PMCID: PMC11123227 DOI: 10.3390/metabo14050269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Metabolomics can allow for the comprehensive identification of metabolites within biological systems, at given time points, in physiological and pathological conditions. In the last few years, metabolomic analysis has gained popularity both in human and in veterinary medicine, showing great potential for novel applications in clinical activity. The aim of applying metabolomics in clinical practice is understanding the mechanisms underlying pathological conditions and the influence of certain stimuli (i.e., drugs, nutrition, exercise) on body systems, in the attempt of identifying biomarkers that can help in the diagnosis of diseases. Proton Nuclear Magnetic Resonance spectroscopy (1H-NMR) is well tailored to be used as an analytical platform for metabolites' detection at the base of metabolomics studies, due to minimal sample preparation and high reproducibility. In this mini-review article, the scientific production of NMR metabolomic applications to equine medicine is examined. The research works are very different in methodology and difficult to compare. Studies are mainly focused on exercise, reproduction, and nutrition, other than respiratory and musculoskeletal diseases. The available information on this topic is still scant, but a greater collection of data could allow researchers to define new reliable markers to be used in clinical practice for diagnostic and therapeutical purposes.
Collapse
Affiliation(s)
- Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, Italy; (F.L.); (A.S.); (A.M.)
| | - Marilena Bazzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, Italy; (F.L.); (A.S.); (A.M.)
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, Italy; (F.L.); (A.S.); (A.M.)
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy;
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, Italy; (F.L.); (A.S.); (A.M.)
| |
Collapse
|
2
|
de Freitas Santi T, Barbosa B, Weber SH, Michelotto PV. Exhaled breath condensate analysis in horses: A scoping review. Res Vet Sci 2024; 168:105160. [PMID: 38278027 DOI: 10.1016/j.rvsc.2024.105160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Exhaled breath condensate (EBC) collection is a non-invasive sampling method that provides valuable information regarding the health status of the respiratory system by measuring inflammatory mediators, such as pH, hydrogen peroxide, and leukotriene B4. This scoping review aimed to provide an update on the collection and analysis of EBC in horses. A systematic search of three electronic databases, PubMed, Google Scholar, Science Direct, identified 40,978 articles, of which 1590 duplicates were excluded. Moreover, 39,388 articles were excluded because of irrelevance to this review, such as studies on other species, studies on respiratory exhalation, reviews, and theses. Finally, we evaluated 14 articles in this review. Our review revealed significant differences in the collection, storage, and processing of EBC samples, emphasizing the need for standardizing the technique and using specific equipment to improve the interpretation of the results.
Collapse
Affiliation(s)
- Thasla de Freitas Santi
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Prado Velho, 80215-901 Curitiba, PR, Brazil
| | - Bianca Barbosa
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Prado Velho, 80215-901 Curitiba, PR, Brazil
| | - Saulo Henrique Weber
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Prado Velho, 80215-901 Curitiba, PR, Brazil
| | - Pedro Vicente Michelotto
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Prado Velho, 80215-901 Curitiba, PR, Brazil.
| |
Collapse
|
3
|
Barosova R, Baranovicova E, Hanusrichterova J, Mokra D. Metabolomics in Animal Models of Bronchial Asthma and Its Translational Importance for Clinics. Int J Mol Sci 2023; 25:459. [PMID: 38203630 PMCID: PMC10779398 DOI: 10.3390/ijms25010459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Bronchial asthma is an extremely heterogenous chronic respiratory disorder with several distinct endotypes and phenotypes. These subtypes differ not only in the pathophysiological changes and/or clinical features but also in their response to the treatment. Therefore, precise diagnostics represent a fundamental condition for effective therapy. In the diagnostic process, metabolomic approaches have been increasingly used, providing detailed information on the metabolic alterations associated with human asthma. Further information is brought by metabolomic analysis of samples obtained from animal models. This article summarizes the current knowledge on metabolomic changes in human and animal studies of asthma and reveals that alterations in lipid metabolism, amino acid metabolism, purine metabolism, glycolysis and the tricarboxylic acid cycle found in the animal studies resemble, to a large extent, the changes found in human patients with asthma. The findings indicate that, despite the limitations of animal modeling in asthma, pre-clinical testing and metabolomic analysis of animal samples may, together with metabolomic analysis of human samples, contribute to a novel way of personalized treatment of asthma patients.
Collapse
Affiliation(s)
- Romana Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Eva Baranovicova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Juliana Hanusrichterova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
| |
Collapse
|
4
|
Mönki J, Holopainen M, Ruhanen H, Karikoski N, Käkelä R, Mykkänen A. Lipid species profiling of bronchoalveolar lavage fluid cells of horses housed on two different bedding materials. Sci Rep 2023; 13:21778. [PMID: 38066223 PMCID: PMC10709413 DOI: 10.1038/s41598-023-49032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
The lipidome of equine BALF cells has not been described. The objectives of this prospective repeated-measures study were to explore the BALF cells' lipidome in horses and to identify lipids associated with progression or resolution of airway inflammation. BALF cells from 22 horses exposed to two bedding materials (Peat 1-Wood shavings [WS]-Peat 2) were studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effects of bedding on lipid class and species compositions were tested with rmANOVA. Correlations between lipids and cell counts were examined. The BALF cells' lipidome showed bedding-related differences for molar percentage (mol%) of 60 species. Whole phosphatidylcholine (PC) class and its species PC 32:0 (main molecular species 16:0_16:0) had higher mol% after Peat 2 compared with WS. Phosphatidylinositol 38:4 (main molecular species 18:0_20:4) was higher after WS compared with both peat periods. BALF cell count correlated positively with mol% of the lipid classes phosphatidylserine, sphingomyelin, ceramide, hexosylceramide, and triacylglycerol but negatively with PC. BALF cell count correlated positively with phosphatidylinositol 38:4 mol%. In conclusion, equine BALF cells' lipid profiles explored with MS-based lipidomics indicated subclinical inflammatory changes after WS. Inflammatory reactions in the cellular lipid species composition were detected although cytological responses indicating inflammation were weak.
Collapse
Affiliation(s)
- Jenni Mönki
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland.
| | - Minna Holopainen
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Hanna Ruhanen
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Ninja Karikoski
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Anna Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland
| |
Collapse
|
5
|
Mass spectrometry for breath analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
The Immune Mechanisms of Severe Equine Asthma-Current Understanding and What Is Missing. Animals (Basel) 2022; 12:ani12060744. [PMID: 35327141 PMCID: PMC8944511 DOI: 10.3390/ani12060744] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Severe equine asthma is a chronic respiratory disease of adult horses, occurring when genetically susceptible individuals are exposed to environmental aeroallergens. This results in airway inflammation, mucus accumulation and bronchial constriction. Although several studies aimed at evaluating the genetic and immune pathways associated with the disease, the results reported are inconsistent. Furthermore, the complexity and heterogeneity of this disease bears great similarity to what is described for human asthma. Currently available studies identified two chromosome regions (ECA13 and ECA15) and several genes associated with the disease. The inflammatory response appears to be mediated by T helper cells (Th1, Th2, Th17) and neutrophilic inflammation significantly contributes to the persistence of airway inflammatory status. This review evaluates the reported findings pertaining to the genetical and immunological background of severe equine asthma and reflects on their implications in the pathophysiology of the disease whilst discussing further areas of research interest aiming at advancing treatment and prognosis of affected individuals.
Collapse
|
7
|
The Dynamics of Circulating Immune Complexes in Horses with Severe Equine Asthma. Animals (Basel) 2021; 11:ani11041001. [PMID: 33918401 PMCID: PMC8066133 DOI: 10.3390/ani11041001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/13/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Equine asthma syndrome is a cost-consuming equine respiratory disease of the lower airways in horses. Non-invasive biomarkers from blood or urine are sought. The aim of this study was to assess the circulating immune complexes (CICs) during the exacerbation and remission of an asthma episode—with and without additional treatment and the potential usefulness of CIC levels in the diagnosis, monitoring, and treatment progression. The control group, asthma group, and treated asthma group each contained six horses. The horses were kept in a dusty environment for seven days and then moved to an asthma-friendly environment for over three weeks (the treated group received injections of glucocorticoids). Blood was collected at baseline and on the 1st, 2nd, 3rd, 7th, 14th and 30th days. CICs measured in the time points did not show statistical differences. When CICs were analysed within the groups, there was a significant decrease in CIC in the treated group and a significant increase in CIC in the non-treated group on day 30. CIC did not support the diagnosis procedure of equine asthma syndrome, although it may help in monitoring patients with and without treatment. To the best of the authors’ knowledge, this is the first study to analyse the dynamics of CIC in equine asthma patients during an environmental challenge, remission, and treatment. Abstract Non-invasive diagnostic biomarkers of equine asthma syndrome (EAS) from blood or urine are sought. The aim of this study was to assess the absorbance of circulating immune complexes (CICs) during the exacerbation, remission, and treatment of an asthma episode and assess the potential usefulness of CIC levels in the diagnosis and monitoring of the disease. The control group, asthma group, and treated asthma group each contained six horses. Following an initial examination and group classification, the horses were kept in a dusty environment for seven days and then moved to an asthma-friendly environment for three weeks (the treated group received injections of glucocorticoids). Blood was collected at baseline and on the 1st, 2nd, 3rd, 7th, 14th and 30th days. CIC was measured using the modified Haskova method. The time points did not show significant statistical differences. There was a significant decrease in CIC in the treated group, and a significant increase in CIC in the non-treated group on day 30. CIC did not support the EAS diagnosis, although it may help in monitoring patients. To the best of the authors’ knowledge, this is the first study to analyse the dynamics of CIC during environmental challenge, remission, and treatment.
Collapse
|
8
|
Bazzano M, Laghi L, Zhu C, Lotito E, Sgariglia S, Tesei B, Laus F. Exercise Induced Changes in Salivary and Serum Metabolome in Trained Standardbred, Assessed by 1H-NMR. Metabolites 2020; 10:metabo10070298. [PMID: 32708237 PMCID: PMC7407172 DOI: 10.3390/metabo10070298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022] Open
Abstract
In the present study, data related to the metabolomics of saliva and serum in trained standardbred horses are provided for the first time. Metabolomic analysis allows to analyze all the metabolites within selected biofluids, providing a better understanding of biochemistry modifications related to exercise. On the basis of the current advances observed in metabolomic research on human athletes, we aimed to investigate the metabolites’ profile of serum and saliva samples collected from healthy standardbred horses and the relationship with physical exercise. Twelve trained standardbred horses were sampled for blood and saliva before (T0) and immediately after (T1) standardized exercise. Metabolomic analysis of both samples was performed by 1H-NMR spectroscopy. Forty-six metabolites in serum and 62 metabolites in saliva were detected, including alcohols, amino acids, organic acids, carbohydrates and purine derivatives. Twenty-six and 14 metabolites resulted to be significantly changed between T0 and T1 in serum and saliva, respectively. The findings of 2-hydroxyisobutyrate and 3-hydroxybutyrate in serum and GABA in equine saliva, as well as their modifications following exercise, provide new insights about the physiology of exercise in athletic horses. Glycerol might represent a novel biomarker for fitness evaluation in sport horses.
Collapse
Affiliation(s)
- Marilena Bazzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, Italy; (M.B.); (E.L.); (B.T.); (F.L.)
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy;
- Correspondence:
| | - Chenglin Zhu
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy;
| | - Enrica Lotito
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, Italy; (M.B.); (E.L.); (B.T.); (F.L.)
| | | | - Beniamino Tesei
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, Italy; (M.B.); (E.L.); (B.T.); (F.L.)
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, Italy; (M.B.); (E.L.); (B.T.); (F.L.)
| |
Collapse
|