1
|
Kapri A, Singh D, Onteru SK. Deciphering Aflatoxin B1 affected critical molecular pathways governing cancer: A bioinformatics study using CTD and PANTHER databases. Mycotoxin Res 2024:10.1007/s12550-024-00563-0. [PMID: 39417919 DOI: 10.1007/s12550-024-00563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Aflatoxin B1 (AFB1) is a fungal toxin consistently found as a contaminant in food products such as cereals, nuts, spices, and oilseeds. AFB1 exposure can lead to hepatotoxicity, cancer, immune suppression, reproductive deficiency, nutritional dysfunction, and growth impairment. AFB1 has also been listed as one of the most potent human carcinogens by the International Agency for Research on Cancer. Although the correlation between AFB1 exposure and cancer initiation and progression is already reported in the literature, very little information is available about what molecular pathways are affected during cancer development. Considering this, we first selected AFB1-responsive genes involved in five deadliest cancer types including lung, colorectal, liver, stomach, and breast cancers from the Comparative Toxicogenomics Database (CTD). Then, using the PANTHER database, a statistical overrepresentation test was performed to identify the significantly affected pathways in each cancer type. The gonadotropin-releasing hormone receptor (GnRHR) pathway, the CCKR signaling pathway, and angiogenesis were found to be the most affected pathways in lung, breast, liver, and stomach cancers. In addition, AFB1 toxicity majorly impacted apoptosis and Wnt signaling pathways in liver and stomach cancers, respectively. Moreover, the most affected pathways in colorectal cancer were the Wnt, CCKR, and GnRHR pathways. Furthermore, gene analysis was also performed for the most affected pathways associated with each cancer and identified thirteen key genes (e.g., FOS, AKT1) that may serve as biological markers for a particular type of AFB1-induced cancer as well as for in vitro AFB1 toxicological studies using specific cancer cell lines.
Collapse
Affiliation(s)
- Ankita Kapri
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
2
|
Cendron F, Rosani U, Franzoi M, Boselli C, Maggi F, De Marchi M, Penasa M. Analysis of miRNAs in milk of four livestock species. BMC Genomics 2024; 25:859. [PMID: 39277740 PMCID: PMC11401297 DOI: 10.1186/s12864-024-10783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Milk is essential for mammalian nutrition because it provides vital nutrients for growth and development. Milk composition, which is influenced by genetic and environmental factors, supports lactation, a complex process crucial for milk production and quality. Recent research has focused on noncoding RNAs, particularly microRNAs (miRNAs), which are present in body fluids and regulate gene expression post-transcriptionally. This study comprehensively characterizes miRNAs in milk of four livestock species, namely Bubalus bubalis, Capra hircus, Equus asinus, and Ovis aries and identifies potential target genes. RESULTS High-throughput sequencing of milk RNA resulted in distinct read counts across species: B. bubalis (8,790,441 reads), C. hircus (12,976,275 reads), E. asinus (9,385,067 reads), and O. aries (7,295,297 reads). E. asinus had the highest RNA mapping rate (94.6%) and O. aries the lowest (84.8%). A substantially greater proportion of miRNAs over other small RNAs was observed for the donkey milk sample (7.74%) compared to buffalo (0.87%), goat (1.57%), and sheep (1.12%). Shared miRNAs, which included miR-200a, miR-200b, miR-200c, and miR-23a among others, showed varying expression levels across species, confirmed by qPCR analysis. Functional annotation of predicted miRNA target genes highlighted diverse roles, with an enrichment in functions linked to metabolism and immunity. Pathway analysis identified immune response pathways as significant, with several miRNAs targeting specific genes across species, suggesting their regulatory function in milk. CONCLUSIONS Both conserved and species-specific miRNAs were detected in milk of the investigated species. The identified target genes of these miRNAs have important roles in neonatal development, adaptation, growth, and immune response. Furthermore, they influence milk and meat production traits in livestock.
Collapse
Affiliation(s)
- Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, Legnaro (PD), 35020, Italy.
| | - Umberto Rosani
- Department of Biology (DiBio), University of Padova, Viale Giuseppe Colombo 3, Padua, 35131, Italy
| | - Marco Franzoi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, Legnaro (PD), 35020, Italy
| | - Carlo Boselli
- Istituto Zooprofilattico Sperimentale del Lazio E Della Toscana "M. Aleandri" - National Reference Centre for Ovine and Caprine Milk and Dairy Products Quality (C.Re.L.D.O.C.), Rome, 00178, Italy
| | - Flavio Maggi
- Azienda Sanitaria Locale, Roma 4, Distretto 4, Via G. Verdi 1, Rignano Flaminio, Rome, 00068, Italy
| | - Massimo De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, Legnaro (PD), 35020, Italy
| | - Mauro Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, Legnaro (PD), 35020, Italy
| |
Collapse
|
3
|
Kern-Lunbery RJ, Rathert-Williams AR, Foote AP, Cunningham-Hollinger HC, Kuehn LA, Meyer AM, Lindholm-Perry AK. Genes involved in the cholecystokinin receptor signaling map were differentially expressed in the jejunum of steers with variation in residual feed intake. Vet Anim Sci 2024; 24:100357. [PMID: 38812584 PMCID: PMC11133974 DOI: 10.1016/j.vas.2024.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
The jejunum is a critical site for nutrient digestion and absorption, and variation in its ability to take up nutrients within the jejunum is likely to affect feed efficiency. The purpose of this study was to determine differences in gene expression in the jejunum of beef steers divergent for residual feed intake (RFI) in one cohort of steers (Year 1), and to validate those genes in animals from a second study (Year 2). Steers from Year 1 (n = 16) were selected for high and low RFI. Jejunum mucosal tissue was obtained for RNA-seq. Thirty-two genes were differentially expressed (PFDR≤0.15), and five were over-represented in pathways including inflammatory mediator, cholecystokinin receptor (CCKR) signaling, and p38 MAPK pathways. Several differentially expressed genes (ALOX12, ALPI, FABP6, FABP7, FLT1, GSTA2, MEF2B, PDK4, SPP1, and TTF2) have been previously associated with RFI in other studies. Real-time qPCR was used to validate nine differentially expressed genes in the Year 1 steers used for RNA-seq, and in the Year 2 validation cohort. Six genes were validated as differentially expressed (P < 0.1) using RT-qPCR in the Year 1 population. In the Year 2 population, five genes displayed the same direction of expression as the Year 1 population and 3 were differentially expressed (P < 0.1). The CCKR pathway is involved in digestion, appetite control, and regulation of body weight making it a compelling candidate for feed efficiency in cattle, and the validation of these genes in a second population of cattle is suggestive of a role in feed efficiency.
Collapse
Affiliation(s)
- Rebecca J. Kern-Lunbery
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
- Ward Laboratories, Inc., Kearney, NE 68848, USA
| | - Abigail R. Rathert-Williams
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
- University of Missouri, Division of Animal Sciences, Columbia, MO 65211, USA
| | - Andrew P. Foote
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
- Oklahoma State University, Department of Animal & Food Sciences, Stillwater, OK 74078, USA
| | | | - Larry A. Kuehn
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Allison M. Meyer
- University of Missouri, Division of Animal Sciences, Columbia, MO 65211, USA
- University of Wyoming, Department of Animal Science, Laramie, WY 82071, USA
| | | |
Collapse
|
4
|
Ancona P, Trentini A, Terrazzan A, Grassilli S, Navals P, Gates EWJ, Rosta V, Cervellati C, Bergamini CM, Pignatelli A, Keillor JW, Taccioli C, Bianchi N. Transcriptomics Studies Reveal Functions of Transglutaminase 2 in Breast Cancer Cells Using Membrane Permeable and Impermeable Inhibitors. J Mol Biol 2024; 436:168569. [PMID: 38604527 DOI: 10.1016/j.jmb.2024.168569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Transglutaminase 2 (TG2) performs many functions both under physiological and pathological conditions. In cancer, its expression is associated with aggressiveness, propensity to epithelial-mesenchymal transition, and metastasis. Since TG2 performs key functions both outside and inside the cell, using inhibitors with different membrane permeability we analyzed the changes in the transcriptome induced in two triple-negative cell lines (MDA-MB-436 and MDA-MB-231) with aggressive features. By characterizing pathways and gene networks, we were able to define the effects of TG2 inhibitors (AA9, membrane-permeable, and NCEG2, impermeable) in relation to the roles of the enzyme in the intra- and extracellular space within the context of breast cancer. The deregulated genes revealed p53 and integrin signaling to be the common pathways with some genes showing opposite changes in expression. In MDA-MB-436, AA9 induced apoptosis, modulated cadherin, Wnt, gastrin and cholecystokinin receptors (CCKR) mediated signaling, with RHOB and GNG2 playing significant roles, and affected the Warburg effect by decreasing glycolytic enzymes. In MDA-MB-231 cells, AA9 strongly impacted HIF-mediated hypoxia, including AKT and mTOR pathway. These effects suggest an anti-tumor activity by blocking intracellular TG2 functions. Conversely, the use of NCEG2 stimulated the expression of ATP synthase and proteins involved in DNA replication, indicating a potential promotion of cell proliferation through inhibition of extracellular TG2. To effectively utilize these molecules as an anti-tumor strategy, an appropriate delivery system should be evaluated to target specific functions and avoid adverse effects. Additionally, considering combinations with other pathway modulators is crucial.
Collapse
Affiliation(s)
- Pietro Ancona
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Alessandro Trentini
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy.
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Silvia Grassilli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy.
| | - Pauline Navals
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Eric W J Gates
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Valentina Rosta
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy.
| | - Carlo Cervellati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Carlo M Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| | - Angela Pignatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy.
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
5
|
Pant P, Chitme H, Sircar R, Prasad R, Prasad HO. Differential Gene Expression Analysis of Human Ovarian Follicular Cumulus and Mural Granulosa Cells Under the Influence of Insulin in IVF Ovulatory Women and Polycystic Ovary Syndrome Patients Through Network Analysis. Endocr Res 2024; 49:22-45. [PMID: 37874895 DOI: 10.1080/07435800.2023.2272629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is a commonly occurring reproductive disorder among the reproductive-aged women. Its global occurrence varies based on diagnostic guidelines, ethnicities, and locations of concern. Insulin resistance (IR) is commonly observed around 65-70% of women diagnosed with PCOS, representing a prevalent association. Consequently, the study was designed with an objective of illustrating the effect of insulin on mural and cumulus granulosa cells (GCs) of PCOS patients in comparison to normal ovulating women. METHODOLOGY This study is a case-control design, wherein a total of 80 participants were recruited meeting criterion of inclusion and exclusion, divided into 8 groups with each group consisting of 10 samples. The process involves the isolation and culturing of mural granulosa cells (MGC) and cumulus granulosa cells (CGC) with and without exposure to insulin. The proteins released by untreated GCs and insulin-treated GCs were extracted, and complex protein mixtures were digested with trypsin, followed by tandem mass spectrometry analysis and data processing using bioinformatics. RESULTS We found 595 proteins in both control and PCOS samples, of which 310 were contributed by MGCs and 285 by CGCs. The PCOS MGCs expressed 20%, both the normal MGCs and CGCs have equal representation of 16% by each, whereas the PCOS CGCs proteins contributed 15% of the total of the proteomic expression. However, the poor expression observed with the Insulin exposure, the Insulin treated PCOS CGCs contributes 13%, PCOS MGCs contributes 8%. The normal MGCs upon the Insulin treatment give 8% then and there only 4% of proteins expressed by normal CGCs after Insulin treatment. The Venn analysis widened on their precise expression topographies. The examination of strings exhibited important protein-protein interaction pathways. CONCLUSION This is a pioneering investigation aimed to establish the link between hyperinsulinemia in localized follicular GCs and PCOS mechanisms by comparing them to control group. The examination of various attributes, mechanisms, and traits shown by genes and proteins in individuals with PCOS compared to control populations, alongside the investigation of the dynamics of these genes and proteins following exposure to insulin, holds promise for the formulation of novel hypotheses and strategies in the identification of new biomarkers.
Collapse
Affiliation(s)
- Pankaj Pant
- Faculty of Pharmacy, DIT University, Dehradun, India
| | | | - Reema Sircar
- Gynaecology, Indira IVF Hospital, Dehradun, India
| | - Ritu Prasad
- Gynaecology, Morpheus Prasad International Hospital, Dehradun, India
| | - Hari Om Prasad
- Gynaecology, Morpheus Prasad International Hospital, Dehradun, India
| |
Collapse
|
6
|
Asim M, Wang H, Waris A. Altered neurotransmission in stress-induced depressive disorders: The underlying role of the amygdala in depression. Neuropeptides 2023; 98:102322. [PMID: 36702033 DOI: 10.1016/j.npep.2023.102322] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Depression is the second leading cause of disability in the world population, for which currently available pharmacological therapies either have poor efficacy or have some adverse effects. Accumulating evidence from clinical and preclinical studies demonstrates that the amygdala is critically implicated in depressive disorders, though the underlying pathogenesis mechanism needs further investigation. In this literature review, we overviewed depression and the key role of Gamma-aminobutyric acid (GABA) and Glutamate neurotransmission in depression. Notably, we discussed a new cholecystokinin-dependent plastic changes mechanism under stress and a possible antidepressant response of cholecystokinin B receptor (CCKBR) antagonist. Moreover, we discussed the fundamental role of the amygdala in depression, to discuss and understand the pathophysiology of depression and the inclusive role of the amygdala in this devastating disorder.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of Biomedical science, City University of Hong Kong, Kowloon Tong 0000, Hong Kong; City University of Hong Kong Shenzhen research institute, Shenzhen 518507, PR China; Department of Neuroscience, City University of Hong Kong, Kowloon Tong 0000, Hong Kong.
| | - Huajie Wang
- City University of Hong Kong Shenzhen research institute, Shenzhen 518507, PR China; Department of Neuroscience, City University of Hong Kong, Kowloon Tong 0000, Hong Kong
| | - Abdul Waris
- Department of Biomedical science, City University of Hong Kong, Kowloon Tong 0000, Hong Kong; City University of Hong Kong Shenzhen research institute, Shenzhen 518507, PR China
| |
Collapse
|
7
|
The potential role of the cholecystokinin system in declarative memory. Neurochem Int 2023; 162:105440. [PMID: 36375634 DOI: 10.1016/j.neuint.2022.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
As one of the most abundant neuropeptides in the central nervous system, cholecystokinin (CCK) has been suggested to be associated with higher brain functions, including learning and memory. In this review, we examined the potential role of the CCK system in declarative memory. First, we summarized behavioral studies that provide evidence for an important role of CCK in two forms of declarative memory-fear memory and spatial memory. Subsequently, we examined the electrophysiological studies that support the diverse roles of CCK-2 receptor activation in neocortical and hippocampal synaptic plasticity, and discussed the potential mechanisms that may be involved. Last but not least, we discussed whether the reported CCK-mediated synaptic plasticity can explain the strong influence of the CCK signaling system in neocortex and hippocampus dependent declarative memory. The available research supports the role of CCK-mediated synaptic plasticity in neocortex dependent declarative memory acquisition, but further study on the association between CCK-mediated synaptic plasticity and neocortex dependent declarative memory consolidation and retrieval is necessary. Although a direct link between CCK-mediated synaptic plasticity and hippocampus dependent declarative memory is missing, noticeable evidence from morphological, behavioral, and electrophysiological studies encourages further investigation regarding the potential role of CCK-dependent synaptic plasticity in hippocampus dependent declarative memory.
Collapse
|
8
|
García-Arnáez I, Romero-Gavilán F, Cerqueira A, Elortza F, Azkargorta M, Muñoz F, Mata M, de Llano JM, Suay J, Gurruchaga M, Goñi I. Correlation between biological responses in vitro and in vivo to Ca-doped sol-gel coatings assessed using proteomic analysis. Colloids Surf B Biointerfaces 2022; 220:112962. [DOI: 10.1016/j.colsurfb.2022.112962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
|
9
|
Xiang T, Li JH, Su HY, Bai KH, Wang S, Traub RJ, Cao DY. Spinal CCK1 Receptors Contribute to Somatic Pain Hypersensitivity Induced by Malocclusion via a Reciprocal Neuron-Glial Signaling Cascade. THE JOURNAL OF PAIN 2022; 23:1629-1645. [PMID: 35691467 PMCID: PMC9560966 DOI: 10.1016/j.jpain.2022.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have shown that the incidence of chronic primary pain including temporomandibular disorders (TMD) and fibromyalgia syndrome (FMS) often exhibit comorbidities. We recently reported that central sensitization and descending facilitation system contributed to the development of somatic pain hypersensitivity induced by orofacial inflammation combined with stress. The purpose of this study was to explore whether TMD caused by unilateral anterior crossbite (UAC) can induce somatic pain hypersensitivity, and whether the cholecystokinin (CCK) receptor-mediated descending facilitation system promotes hypersensitivity through neuron-glia cell signaling cascade. UAC evoked thermal and mechanical pain hypersensitivity of the hind paws from day 5 to 70 that peaked at week 4 post UAC. The expression levels of CCK1 receptors, interleukin-18 (IL-18) and IL-18 receptors (IL-18R) were significantly up-regulated in the L4 to L5 spinal dorsal horn at 4 weeks post UAC. Intrathecal injection of CCK1 and IL-18 receptor antagonists blocked somatic pain hypersensitivity. IL-18 mainly co-localized with microglia, while IL-18R mainly co-localized with astrocytes and to a lesser extent with neurons. These findings indicate that the signaling transduction between neurons and glia at the spinal cord level contributes to the descending pain facilitation through CCK1 receptors during the development of the comorbidity of TMD and FMS. PERSPECTIVE: CCK1 receptor-dependent descending facilitation may mediate central mechanisms underlying the development of widespread somatic pain via a reciprocal neuron-glial signaling cascade, providing novel therapeutic targets for the clinical treatment of TMD and FMS comorbidities.
Collapse
Affiliation(s)
- Ting Xiang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China; Department of Orthodontics, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Jia-Heng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Han-Yu Su
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Kun-Hong Bai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Shuang Wang
- Department of Orthodontics, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China
| | - Richard J Traub
- Department of Neural and Pain Sciences, School of Dentistry; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, Maryland.
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Morales-Magaña J, Arciniega-Martínez IM, Drago-Serrano ME, Reséndiz-Albor AA, Jarillo-Luna RA, Cruz-Baquero A, Gómez-López M, Guzmán-Mejía F, Pacheco-Yépez J. Cholecystokinin Outcome on Markers of Intestinal IgA Antibody Response. Curr Issues Mol Biol 2022; 44:2542-2553. [PMID: 35735614 PMCID: PMC9221551 DOI: 10.3390/cimb44060173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Cholecystokinin 8 (CCK8) is an entero-octapeptide that participates in crosstalk with components of intestinal immunity via the CCK receptor (CCKR), but its role in modulation of the IgA response is not fully known under physiological conditions. Male eight-week-old BALB/c mice each were intraperitoneally injected once during 7 days with CCK8, devazapide (CCKR1 antagonist), L365,260 (CCKR2 antagonist) or vehicle (sham group). In intestinal lavages, total and secretory IgA (SIgA) were determined by ELISA; in lamina propria, IgA+ B lymphocytes and IgA+ plasma cells were analyzed by flow cytometry; mRNA levels of polymeric immunoglobulin receptor (pIgR) in epithelial cells and α chain, interleukins (ILs) in lamina propria cells were assessed by qRTPCR. Regarding the sham conditions, IgA+ plasma-cell percentage and IL-2, IL-5, IL-10 and transforming growth factor-β (TGF-β) mRNA levels were either increased by CCK8 or decreased by both CCKR antagonists. For IgA/SIgA responses, IL-4/IL-6 mRNA levels were decreased by all drugs and pIgR mRNA was increased by CCK8 and reduced by L365,260. IgA+ B cell percentage and α chain mRNA levels were elicited by CCK8 and L365,260. Data suggested a presumable differential role of CCK/CCKR on the IgA-response; outcome of L365,260 on the elicitation of IgA+ B cells and α chain mRNA needs further examination.
Collapse
Affiliation(s)
- Juan Morales-Magaña
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (J.M.-M.); (R.A.J.-L.); (M.G.-L.)
| | - Ivonne Maciel Arciniega-Martínez
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (I.M.A.-M.); (A.A.R.-A.)
| | - Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso No. 1100, Mexico City 04960, Mexico; (M.E.D.-S.); (F.G.-M.)
| | - Aldo Arturo Reséndiz-Albor
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (I.M.A.-M.); (A.A.R.-A.)
| | - Rosa Adriana Jarillo-Luna
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (J.M.-M.); (R.A.J.-L.); (M.G.-L.)
- Departamento de Formación Básica Disciplinaria, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico
| | - Andrea Cruz-Baquero
- Bacteriología, Facultad de Ciencias de la Salud, Universidad Colegio Mayor de Cundinamarca, Bogotá 111311, Colombia;
| | - Modesto Gómez-López
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (J.M.-M.); (R.A.J.-L.); (M.G.-L.)
| | - Fabiola Guzmán-Mejía
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso No. 1100, Mexico City 04960, Mexico; (M.E.D.-S.); (F.G.-M.)
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (J.M.-M.); (R.A.J.-L.); (M.G.-L.)
- Correspondence: ; Tel.: +52-5557296000 (ext. 62817)
| |
Collapse
|
11
|
Valencia FP, Marino AF, Noutsos C, Poon K. Concentration-dependent change in hypothalamic neuronal transcriptome by the dietary fatty acids: oleic and palmitic acids. J Nutr Biochem 2022; 106:109033. [DOI: 10.1016/j.jnutbio.2022.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/20/2021] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
|
12
|
Zhao Y, Wang Q, Zeng Y, Xie Y, Zhou J. Gastrin/CCK-B Receptor Signaling Promotes Cell Invasion and Metastasis by Upregulating MMP-2 and VEGF Expression in Gastric Cancer. J Cancer 2022; 13:134-145. [PMID: 34976177 PMCID: PMC8692687 DOI: 10.7150/jca.51854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/09/2021] [Indexed: 11/05/2022] Open
Abstract
Accumulated evidence suggests that a functional loop composed of gastrin and cholecystokinin B receptor (CCK-BR) may exist in gastric carcinogenesis. However, this suggestion is not completely supported due to a lack of direct evidence, and the underlying mechanism is not completely understood. Here, we evaluated the effects of gastrin/CCK-BR signaling on the cell growth, invasion, and expression of MMP-2 and VEGF, as well as xenograft growth in vivo. Furthermore, we detected gastrin mRNA content in human gastric cancer tissues, metastatic lymph nodes, and adjacent nontumor tissues. We found that the forced gastrin could promote the proliferation, migration, and invasion of gastric cancer cells by upregulating the expression of MMP-2 and VEGF. Blocking gastrin/CCK-BR signal using either Proglumide, a CCK-BR antagonist, or shRNA against GASTRIN significantly inhibited the gastrin-promoting effects. In vivo study revealed that the tumor growth in nude mice inoculated with gastrin-overexpressed cells was significantly faster than control cells. The gastrin mRNA content in metastatic lymph nodes was higher in patients with gastric cancer than in primary gastric cancer and adjacent nontumor tissues. In conclusion, we provided direct evidence and possible mechanism of gastrin/CCK-BR signaling in the initiation and progression of gastric cancer.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Zeng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
13
|
Touré V, Flobak Å, Niarakis A, Vercruysse S, Kuiper M. The status of causality in biological databases: data resources and data retrieval possibilities to support logical modeling. Brief Bioinform 2021; 22:bbaa390. [PMID: 33378765 PMCID: PMC8294520 DOI: 10.1093/bib/bbaa390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Causal molecular interactions represent key building blocks used in computational modeling, where they facilitate the assembly of regulatory networks. Logical regulatory networks can be used to predict biological and cellular behaviors by system perturbations and in silico simulations. Today, broad sets of causal interactions are available in a variety of biological knowledge resources. However, different visions, based on distinct biological interests, have led to the development of multiple ways to describe and annotate causal molecular interactions. It can therefore be challenging to efficiently explore various resources of causal interaction and maintain an overview of recorded contextual information that ensures valid use of the data. This review lists the different types of public resources with causal interactions, the different views on biological processes that they represent, the various data formats they use for data representation and storage, and the data exchange and conversion procedures that are available to extract and download these interactions. This may further raise awareness among the targeted audience, i.e. logical modelers and other scientists interested in molecular causal interactions, but also database managers and curators, about the abundance and variety of causal molecular interaction data, and the variety of tools and approaches to convert them into one interoperable resource.
Collapse
Affiliation(s)
- Vasundra Touré
- Department of Biology of the Norwegian University of Science and Technology
| | | | - Anna Niarakis
- Department of Biology, Univ Evry, University of Paris-Saclay, affiliated with the laboratory GenHotel in Genopole campus, and a delegate at the Lifeware Group, INRIA Saclay
| | - Steven Vercruysse
- Researcher in computer science and computational biology and focuses on building a bridge between human and computer understanding
| | - Martin Kuiper
- systems biology at the Department of Biology of the Norwegian University of Science and Technology
| |
Collapse
|
14
|
Tan YJ, Lee YT, Mancera RL, Oon CE. BZD9L1 sirtuin inhibitor: Identification of key molecular targets and their biological functions in HCT 116 colorectal cancer cells. Life Sci 2021; 284:119747. [PMID: 34171380 DOI: 10.1016/j.lfs.2021.119747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/22/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
BZD9L1 was previously described as a SIRT1/2 inhibitor with anti-cancer activities in colorectal cancer (CRC), either as a standalone chemotherapy or in combination with 5-fluorouracil. BZD9L1 was reported to induce apoptosis in CRC cells; however, the network of intracellular pathways and crosstalk between molecular players mediated by BZD9L1 is not fully understood. This study aimed to uncover the mechanisms involved in BZD9L1-mediated cytotoxicity based on previous and new findings for the prediction and identification of related pathways and key molecular players. BZD9L1-regulated candidate targets (RCTs) were identified using a range of molecular, cell-based and biochemical techniques on the HCT 116 cell line. BZD9L1 regulated major cancer pathways including Notch, p53, cell cycle, NFκB, Myc/MAX, and MAPK/ERK signalling pathways. BZD9L1 also induced reactive oxygen species (ROS), regulated apoptosis-related proteins, and altered cell polarity and adhesion profiles. In silico analyses revealed that most RCTs were interconnected, and were involved in the modulation of catalytic activity, metabolism and transcription regulation, response to cytokines, and apoptosis signalling pathways. These RCTs were implicated in p53-dependent apoptosis pathway. This study provides the first assessment of possible associations of molecular players underlying the cytotoxic activity of BZD9L1, and establishes the links between RCTs and apoptosis through the p53 pathway.
Collapse
Affiliation(s)
- Yi Jer Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia; Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI) and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Yeuan Ting Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI) and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
15
|
Pidíková P, Herichová I. miRNA Clusters with Up-Regulated Expression in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13122979. [PMID: 34198662 PMCID: PMC8232258 DOI: 10.3390/cancers13122979] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary As miRNAs show the capacity to be used as CRC biomarkers, we analysed experimentally validated data about frequently up-regulated miRNA clusters in CRC tissue. We identified 15 clusters that showed increased expression in CRC: miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224. Cluster positions in the genome are intronic or intergenic. Most clusters are regulated by several transcription factors, and by long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. The members of the selected clusters target 181 genes. Their functions and corresponding pathways were revealed with the use of Panther analysis. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research. Abstract Colorectal cancer (CRC) is one of the most common malignancies in Europe and North America. Early diagnosis is a key feature of efficient CRC treatment. As miRNAs can be used as CRC biomarkers, the aim of the present study was to analyse experimentally validated data on frequently up-regulated miRNA clusters in CRC tissue and investigate their members with respect to clinicopathological characteristics of patients. Based on available data, 15 up-regulated clusters, miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224, were selected. The positions of such clusters in the genome can be intronic or intergenic. Most clusters are regulated by several transcription factors, and miRNAs are also sponged by specific long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. Based on experimental evidence, 181 target genes of selected clusters were identified. Panther analysis was used to reveal the functions of the target genes and their corresponding pathways. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research.
Collapse
|
16
|
Suresh NT, Ravindran VE, Krishnakumar U. A Computational Framework to Identify Cross Association Between Complex Disorders by Protein-protein Interaction Network Analysis. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200724145434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
It is a known fact that numerous complex disorders do not happen in
isolation indicating the plausible set of shared causes common to several different sicknesses.
Hence, analysis of comorbidity can be utilized to explore the association between several
disorders. In this study, we have proposed a network-based computational approach, in which
genes are organized based on the topological characteristics of the constructed Protein-Protein
Interaction Network (PPIN) followed by a network prioritization scheme, to identify distinctive
key genes and biological pathways shared among diseases.
Methods:
The proposed approach is initiated from constructed PPIN of any randomly chosen
disease genes in order to infer its associations with other diseases in terms of shared pathways, coexpression,
co-occurrence etc. For this, initially, proteins associated to any disease based on
random choice were identified. Secondly, PPIN is organized through topological analysis to define
hub genes. Finally, using a prioritization algorithm a ranked list of newly predicted
multimorbidity-associated proteins is generated. Using Gene Ontology (GO), cellular pathways
involved in multimorbidity-associated proteins are mined.
Result and Conclusion:
: The proposed methodology is tested using three disorders, namely
Diabetes, Obesity and blood pressure at an atomic level and the results suggest the comorbidity of
other complex diseases that have associations with the proteins included in the disease of present
study through shared proteins and pathways. For diabetes, we have obtained key genes like
GAPDH, TNF, IL6, AKT1, ALB, TP53, IL10, MAPK3, TLR4 and EGF with key pathways like
P53 pathway, VEGF signaling pathway, Ras Pathway, Interleukin signaling pathway, Endothelin
signaling pathway, Huntington disease etc. Studies on other disorders such as obesity and blood
pressure also revealed promising results.
Collapse
Affiliation(s)
- Nikhila T. Suresh
- Department of Computer Science and IT, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kochi Campus, Kochi, India
| | - Vimina E. Ravindran
- Department of Computer Science and IT, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kochi Campus, Kochi, India
| | - Ullattil Krishnakumar
- Department of Computer Science and IT, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kochi Campus, Kochi, India
| |
Collapse
|
17
|
Abu-Halima M, Wagner V, Becker LS, Ayesh BM, Abd El-Rahman M, Fischer U, Meese E, Abdul-Khaliq H. Integrated microRNA and mRNA Expression Profiling Identifies Novel Targets and Networks Associated with Ebstein's Anomaly. Cells 2021; 10:cells10051066. [PMID: 33946378 PMCID: PMC8146150 DOI: 10.3390/cells10051066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Little is known about abundance level changes of circulating microRNAs (miRNAs) and messenger RNAs (mRNA) in patients with Ebstein’s anomaly (EA). Here, we performed an integrated analysis to identify the differentially abundant miRNAs and mRNA targets and to identify the potential therapeutic targets that might be involved in the mechanisms underlying EA. A large panel of human miRNA and mRNA microarrays were conducted to determine the genome-wide expression profiles in the blood of 16 EA patients and 16 age and gender-matched healthy control volunteers (HVs). Differential abundance level of single miRNA and mRNA was validated by Real-Time quantitative PCR (RT-qPCR). Enrichment analyses of altered miRNA and mRNA abundance levels were identified using bioinformatics tools. Altered miRNA and mRNA abundance levels were observed between EA patients and HVs. Among the deregulated miRNAs and mRNAs, 76 miRNAs (49 lower abundance and 27 higher abundance, fold-change of ≥2) and 29 mRNAs (25 higher abundance and 4 lower abundance, fold-change of ≥1.5) were identified in EA patients compared to HVs. Bioinformatics analysis identified 37 pairs of putative miRNA-mRNA interactions. The majority of the correlations were detected between the lower abundance level of miRNA and higher abundance level of mRNA, except for let-7b-5p, which showed a higher abundance level and their target gene, SCRN3, showed a lower abundance level. Pathway enrichment analysis of the deregulated mRNAs identified 35 significant pathways that are mostly involved in signal transduction and cellular interaction pathways. Our findings provide new insights into a potential molecular biomarker(s) for the EA that may guide the development of novel targeting therapies.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany; (V.W.); (L.S.B.); (U.F.); (E.M.)
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421 Homburg, Germany; (M.A.E.-R.); (H.A.-K.)
- Correspondence:
| | - Viktoria Wagner
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany; (V.W.); (L.S.B.); (U.F.); (E.M.)
- Center for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Lea Simone Becker
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany; (V.W.); (L.S.B.); (U.F.); (E.M.)
| | - Basim M. Ayesh
- Department of Laboratory Medical Sciences, Alaqsa University, Gaza 4051, Palestine;
| | - Mohammed Abd El-Rahman
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421 Homburg, Germany; (M.A.E.-R.); (H.A.-K.)
| | - Ulrike Fischer
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany; (V.W.); (L.S.B.); (U.F.); (E.M.)
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany; (V.W.); (L.S.B.); (U.F.); (E.M.)
| | - Hashim Abdul-Khaliq
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421 Homburg, Germany; (M.A.E.-R.); (H.A.-K.)
| |
Collapse
|
18
|
Nakamura T, Takagi S, Okuzaki D, Matsui S, Fujisato T. Hypoxia transactivates cholecystokinin gene expression in 3D-engineered muscle. J Biosci Bioeng 2021; 132:64-70. [PMID: 33840593 DOI: 10.1016/j.jbiosc.2021.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 12/30/2022]
Abstract
At high altitudes, the hypoxic atmosphere decreases the oxygen partial pressure in the body, inducing several metabolic changes in tissues and cells. Furthermore, it exerts potent anorectic effects, thus causing an energy deficit. Two decades ago, a marked increase in the resting level of plasma cholecystokinin (CCK) was observed in humans at the Mt. Kanchenjunga basecamp, located at 5100 m above the sea level, compared to sea-level control values. Interestingly, acute exercise also raises plasma CCK and exerts potent anorectic effects under normoxic conditions. However, the transcriptional regulations of Cck gene underlying these effects have not yet been established. Here, we employed acute electrical pulse stimulation (EPS) followed by microarray analysis to discover novel myokines in 3D-engineered muscle. Acute EPS affects the contractile function, inducing a decline in the contractile force. Surprisingly, microarray analysis revealed an EPS-induced activation of cholecystokinin receptor (CCKR)-mediated signaling. Furthermore, Cck was constitutively upregulated in 3D-engineered muscle, and its expression increased under hypoxic conditions. Notably, a hypoxia-responsive element was detected in the Cck promoters of mice and humans. Our results suggested that hypoxia transactivated Cck expression in 3D-engineered muscle. Furthermore, the elevation in plasma CCK levels following acute exercise or at high altitude might be partly attributed to myogenic cells.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Division of Human Sciences, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan.
| | - Shunya Takagi
- Graduate Course in Applied Chemistry, Environmental and Biomedical Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan.
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Seika Matsui
- Department of Biomedical Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan.
| | - Toshia Fujisato
- Graduate Course in Applied Chemistry, Environmental and Biomedical Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan.
| |
Collapse
|
19
|
Aghamiri SS, Singh V, Naldi A, Helikar T, Soliman S, Niarakis A. Automated inference of Boolean models from molecular interaction maps using CaSQ. Bioinformatics 2021; 36:4473-4482. [PMID: 32403123 PMCID: PMC7575051 DOI: 10.1093/bioinformatics/btaa484] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Motivation Molecular interaction maps have emerged as a meaningful way of representing biological mechanisms in a comprehensive and systematic manner. However, their static nature provides limited insights to the emerging behaviour of the described biological system under different conditions. Computational modelling provides the means to study dynamic properties through in silico simulations and perturbations. We aim to bridge the gap between static and dynamic representations of biological systems with CaSQ, a software tool that infers Boolean rules based on the topology and semantics of molecular interaction maps built with CellDesigner. Results We developed CaSQ by defining conversion rules and logical formulas for inferred Boolean models according to the topology and the annotations of the starting molecular interaction maps. We used CaSQ to produce executable files of existing molecular maps that differ in size, complexity and the use of Systems Biology Graphical Notation (SBGN) standards. We also compared, where possible, the manually built logical models corresponding to a molecular map to the ones inferred by CaSQ. The tool is able to process large and complex maps built with CellDesigner (either following SBGN standards or not) and produce Boolean models in a standard output format, Systems Biology Marked Up Language-qualitative (SBML-qual), that can be further analyzed using popular modelling tools. References, annotations and layout of the CellDesigner molecular map are retained in the obtained model, facilitating interoperability and model reusability. Availability and implementation The present tool is available online: https://lifeware.inria.fr/∼soliman/post/casq/ and distributed as a Python package under the GNU GPLv3 license. The code can be accessed here: https://gitlab.inria.fr/soliman/casq. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sara Sadat Aghamiri
- GenHotel, Département de Biologie, Univ. èvry, Université Paris-Saclay, Genopole, èvry 91025, France
| | - Vidisha Singh
- GenHotel, Département de Biologie, Univ. èvry, Université Paris-Saclay, Genopole, èvry 91025, France
| | - Aurélien Naldi
- Département de Biologie, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), ècole Normale Supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Sylvain Soliman
- Lifeware Group, Inria Saclay-île de France, Palaiseau 91120, France
| | - Anna Niarakis
- GenHotel, Département de Biologie, Univ. èvry, Université Paris-Saclay, Genopole, èvry 91025, France
| |
Collapse
|
20
|
Touré V, Dräger A, Luna A, Dogrusoz U, Rougny A. The Systems Biology Graphical Notation: Current Status and Applications in Systems Medicine. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11515-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Suresh NT, E R V, U K. Multi-scale top-down approach for modelling epileptic protein-protein interaction network analysis to identify driver nodes and pathways. Comput Biol Chem 2020; 88:107323. [PMID: 32653778 DOI: 10.1016/j.compbiolchem.2020.107323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022]
Abstract
Protein - Protein Interaction Network (PPIN) analysis unveils molecular level mechanisms involved in disease condition. To explore the complex regulatory mechanisms behind epilepsy and to address the clinical and biological issues of epilepsy, in silico techniques are feasible in a cost- effective manner. In this work, a hierarchical procedure to identify influential genes and regulatory pathways in epilepsy prognosis is proposed. To obtain key genes and pathways causing epilepsy, integration of two benchmarked datasets which are exclusively devoted for complex disorders is done as an initial step. Using STRING database, PPIN is constructed for modelling protein-protein interactions. Further, key interactions are obtained from the established PPIN using network centrality measures followed by network propagation algorithm -Random Walk with Restart (RWR). The outcome of the method reveals some influential genes behind epilepsy prognosis, along with their associated pathways like PI3 kinase, VEGF signaling, Ras, Wnt signaling etc. In comparison with similar works, our results have shown improvement in identifying unique molecular functions, biological processes, gene co-occurrences etc. Also, CORUM provides an annotation for approximately 60% of similarity in human protein complexes with the obtained result. We believe that the formulated strategy can put-up the vast consideration of indigenous drugs towards meticulous identification of genes encoded by protein against several combinatorial disorders.
Collapse
Affiliation(s)
- Nikhila T Suresh
- Department of Computer Science and IT, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kochi Campus, India
| | - Vimina E R
- Department of Computer Science and IT, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kochi Campus, India.
| | - Krishnakumar U
- Department of Computer Science and IT, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kochi Campus, India
| |
Collapse
|
22
|
The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management. Int J Mol Sci 2020. [DOI: 10.3390/ijms21103494
expr 969553959 + 931886332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Colorectal cancer (CRC), classified as the third most prevalent cancer worldwide, remains to be a clinical and research challenge. It is estimated that ~50% of CRC patients die from distant metastases, with treatment of this complication still posing significant difficulties. While liver metastasis (LM) cascade is known in the literature, its mechanisms are still unclear and remain studied in different research models. A connection is suggested between nervous system dysfunctions and a range of Neurotransmitters (Nts) (including Neuropeptides, NPs), Neurotrophins (Ntt) and their receptors (Rs) in CRC liver metastasis development. Studies on the role of NP/NP-Rs in the progression and metastasis of CRC, show the complexity of brain–tumor interactions, caused by their different forms of release to the extracellular environment (endocrine, autocrine, paracrine and neurocrine). Many stages of LM are connected to the activity of pro-inflammatory, e.g., Corticotropin-releasing Hormone Receptor 1 (CRHR1), Neuropeptide Y (NPY) and Neurotensin (NT), anti-inflammatory, e.g., Calcitonin Gene-related Peptide (CGRP), CRHR2 and Vasoactive Intestinal Polypeptide (VIP) or dual role neuropeptides, e.g., Substance P (SP). The regulation of the local immunological profile (e.g., CRH/CRHRs), dysfunctions of enteroprotective role of NPs on epithelial cells (e.g., NT/NT-R), as well as structural-functional changes in enteric nervous system innervation of the tumor are also important. More research is needed to understand the exact mechanisms of communication between the neurons and tumor cells. The knowledge on the mechanisms regulating tumor growth and different stages of metastasis, as well as effects of the action of a numerous group of Nts/NPs/Ntt as growth factors, have implications for future therapeutic strategies. To obtain the best treatment outcomes, it is important to use signaling pathways common for many NPs, as well to develop a range of broad-spectrum antagonists. This review aims to summarize the current knowledge on the importance of neuroactive molecules in the promotion of the invasion-metastasis cascade in CRC, as well as the improvements of clinical management of CRC liver metastasis.
Collapse
|
23
|
The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management. Int J Mol Sci 2020; 21:ijms21103494. [PMID: 32429087 PMCID: PMC7279011 DOI: 10.3390/ijms21103494] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC), classified as the third most prevalent cancer worldwide, remains to be a clinical and research challenge. It is estimated that ~50% of CRC patients die from distant metastases, with treatment of this complication still posing significant difficulties. While liver metastasis (LM) cascade is known in the literature, its mechanisms are still unclear and remain studied in different research models. A connection is suggested between nervous system dysfunctions and a range of Neurotransmitters (Nts) (including Neuropeptides, NPs), Neurotrophins (Ntt) and their receptors (Rs) in CRC liver metastasis development. Studies on the role of NP/NP-Rs in the progression and metastasis of CRC, show the complexity of brain–tumor interactions, caused by their different forms of release to the extracellular environment (endocrine, autocrine, paracrine and neurocrine). Many stages of LM are connected to the activity of pro-inflammatory, e.g., Corticotropin-releasing Hormone Receptor 1 (CRHR1), Neuropeptide Y (NPY) and Neurotensin (NT), anti-inflammatory, e.g., Calcitonin Gene-related Peptide (CGRP), CRHR2 and Vasoactive Intestinal Polypeptide (VIP) or dual role neuropeptides, e.g., Substance P (SP). The regulation of the local immunological profile (e.g., CRH/CRHRs), dysfunctions of enteroprotective role of NPs on epithelial cells (e.g., NT/NT-R), as well as structural-functional changes in enteric nervous system innervation of the tumor are also important. More research is needed to understand the exact mechanisms of communication between the neurons and tumor cells. The knowledge on the mechanisms regulating tumor growth and different stages of metastasis, as well as effects of the action of a numerous group of Nts/NPs/Ntt as growth factors, have implications for future therapeutic strategies. To obtain the best treatment outcomes, it is important to use signaling pathways common for many NPs, as well to develop a range of broad-spectrum antagonists. This review aims to summarize the current knowledge on the importance of neuroactive molecules in the promotion of the invasion-metastasis cascade in CRC, as well as the improvements of clinical management of CRC liver metastasis.
Collapse
|
24
|
Almanza-Aguilera E, Hernáez A, Corella D, Aguayo DM, Ros E, Portolés O, Valussi J, Estruch R, Coltell O, Subirana I, Salas-Salvadó J, Ruiz-Canela M, de la Torre R, Nonell L, Fitó M, Castañer O. Transcriptional response to a Mediterranean diet intervention exerts a modulatory effect on neuroinflammation signaling pathway. Nutr Neurosci 2020; 25:256-265. [PMID: 32290787 DOI: 10.1080/1028415x.2020.1749334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: The Traditional Mediterranean Diet (TMD) is known to have beneficial effects on several chronic diseases. However, data concerning the whole transcriptome modulation of the TMD are scarce.Objective: We aimed to explore the effects of the TMD on the whole transcriptome of individuals at high cardiovascular risk.Methods: Thirty-four participants at high cardiovascular risk were randomly assigned to a TMD enriched with extra-virgin olive oil (TMD + VOO), mixed nuts (TMD + Nuts), or a control diet based on low-fat diet recommendations. A microarray analysis in circulating peripheral blood mononuclear cells of the participants was conducted before and after 3 months of the intervention. The association of changes in gene expression was modeled into canonical pathways by conducting an untargeted functional analysis with the Ingenuity Pathway Analysis® (IPA). Effects were considered significant when the absolute z-score values were ≥2.0 and the logarithm P (adjusted by the Benjamini-Hochberg procedure [BH]) values were ≥1.30.Results: According to IPA, interventions with TMD + Nuts, TMD + VOO, and control diet downregulated neuroinflammation, triggering receptor expressed on myeloid cells 1 , and cholecystokinin/gastrin-mediated signaling pathways, respectively. The gene expression among these pathways included cytokines, T-cell activation receptors, nuclear factor kappa β/inflammasome components, pro-inflammatory enzymes and cell cycle regulators.Conclusion: The current findings suggest that the TMD enriched with mixed nuts or VOO downregulate transcriptomic pathways, including those related to neuroinflammation, which could influence development of neurodegenerative diseases. Our data should be corroborated in other tissue cells, such as neurons and glial cells. The PREDIMED trial was registered at https://www.controlled-trials.com (ISRCTN35739639).
Collapse
Affiliation(s)
- Enrique Almanza-Aguilera
- Cardiovascular Risk and Nutrition research group (CARIN), Hospital del Mar Research Institute (IMIM) Barcelona, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Alvaro Hernáez
- Blanquerna School of Life Sciences, Universitat Ramón Llull, Barcelona, Spain.,Cardiovascular Risk, Nutrition and Aging Research Unit, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III Madrid, Spain.,Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Daniel Muñoz Aguayo
- Cardiovascular Risk and Nutrition research group (CARIN), Hospital del Mar Research Institute (IMIM) Barcelona, Spain.,Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III Madrid, Spain
| | - Emilio Ros
- Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III Madrid, Spain.,Department of Internal Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Olga Portolés
- Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III Madrid, Spain.,Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Julieta Valussi
- Cardiovascular Risk and Nutrition research group (CARIN), Hospital del Mar Research Institute (IMIM) Barcelona, Spain
| | - Ramon Estruch
- Cardiovascular Risk, Nutrition and Aging Research Unit, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III Madrid, Spain.,Department of Internal Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Oscar Coltell
- Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III Madrid, Spain.,Department of Computer Science and Languages, University Jaume I, Castellon, Spain
| | - Isaac Subirana
- Cardiovascular Epidemiology and Genetics Research Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Salas-Salvadó
- Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III Madrid, Spain.,Human Nutrition Department, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, University Rovira i Virgili, Reus, Spain
| | - Miguel Ruiz-Canela
- Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III Madrid, Spain.,Department of Preventive Medicine and Public Health, University of Navarra-Institute of Health Research of Navarra, Pamplona, Spain
| | - Rafael de la Torre
- Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III Madrid, Spain.,Integrative Pharmacology and Systems Neuroscience research group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Barcelona, Spain
| | - Lara Nonell
- Microarrays analysis service, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Montserrat Fitó
- Cardiovascular Risk and Nutrition research group (CARIN), Hospital del Mar Research Institute (IMIM) Barcelona, Spain.,Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III Madrid, Spain
| | - Olga Castañer
- Cardiovascular Risk and Nutrition research group (CARIN), Hospital del Mar Research Institute (IMIM) Barcelona, Spain.,Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III Madrid, Spain
| |
Collapse
|
25
|
Singh V, Kalliolias GD, Ostaszewski M, Veyssiere M, Pilalis E, Gawron P, Mazein A, Bonnet E, Petit-Teixeira E, Niarakis A. RA-map: building a state-of-the-art interactive knowledge base for rheumatoid arthritis. Database (Oxford) 2020; 2020:baaa017. [PMID: 32311035 PMCID: PMC7170216 DOI: 10.1093/database/baaa017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/21/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a progressive, inflammatory autoimmune disease of unknown aetiology. The complex mechanism of aetiopathogenesis, progress and chronicity of the disease involves genetic, epigenetic and environmental factors. To understand the molecular mechanisms underlying disease phenotypes, one has to place implicated factors in their functional context. However, integration and organization of such data in a systematic manner remains a challenging task. Molecular maps are widely used in biology to provide a useful and intuitive way of depicting a variety of biological processes and disease mechanisms. Recent large-scale collaborative efforts such as the Disease Maps Project demonstrate the utility of such maps as versatile tools to organize and formalize disease-specific knowledge in a comprehensive way, both human and machine-readable. We present a systematic effort to construct a fully annotated, expert validated, state-of-the-art knowledge base for RA in the form of a molecular map. The RA map illustrates molecular and signalling pathways implicated in the disease. Signal transduction is depicted from receptors to the nucleus using the Systems Biology Graphical Notation (SBGN) standard representation. High-quality manual curation, use of only human-specific studies and focus on small-scale experiments aim to limit false positives in the map. The state-of-the-art molecular map for RA, using information from 353 peer-reviewed scientific publications, comprises 506 species, 446 reactions and 8 phenotypes. The species in the map are classified to 303 proteins, 61 complexes, 106 genes, 106 RNA entities, 2 ions and 7 simple molecules. The RA map is available online at ramap.elixir-luxembourg.org as an open-access knowledge base allowing for easy navigation and search of molecular pathways implicated in the disease. Furthermore, the RA map can serve as a template for omics data visualization.
Collapse
Affiliation(s)
- Vidisha Singh
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| | - George D Kalliolias
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
- Weill Cornell Medical Center, Weill Department of Medicine, 525 East 68th Street, New York, NY 10065, USA
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Maëva Veyssiere
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| | - Eleftherios Pilalis
- eNIOS Applications P.C., R&D department, Alexandrou Pantou 25, 17671, Kallithea-Athens, Greece
| | - Piotr Gawron
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Eric Bonnet
- Centre National de Recherche en Génomique Humaine (CNRGH), CEA, 2 rue Gaston Crémieux, CP5706 91057 EVRY-GENOPOLE cedex, Evry, France
| | - Elisabeth Petit-Teixeira
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| | - Anna Niarakis
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| |
Collapse
|
26
|
Zygulska AL, Furgala A, Kaszuba-Zwoińska J, Krzemieniecki K, Gil K. Changes in plasma levels of cholecystokinin, neurotensin, VIP and PYY in gastric and colorectal cancer - Preliminary results. Peptides 2019; 122:170148. [PMID: 31541684 DOI: 10.1016/j.peptides.2019.170148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Abstract
Physiological roles of enterohormones such as secretion, absorption and digestion were supported by clinical data. Overexpression of cholecystokinin (CCK), neurotensin (NT) and vasoactive intestinal peptide (VIP) receptors occur in gastrointestinal (GI) malignancies. The aim of the paper was to compare plasma levels of CCK, peptide YY (PYY), VIP and NT in patients with gastrointestinal malignancies and healthy controls. The study included 80 patients (37 men and 43 women) with GI malignancies (20 with gastric and 60 with colorectal cancers). Median age of the patients was 62.9 years (range: 40-85 years). Control group was comprised of 30 healthy persons with median age 59.8 years (range: 40-82 years). Fasting plasma concentrations of CKK, PYY, NT, and VIP were determined at rest, using ELISA kits for automated systems. Comparative analysis of enterohormone levels in patients with various types of gastrointestinal malignancies demonstrated presence of some cancer-specific alterations. Patients with gastric cancers presented with lower plasma concentrations of CCK than healthy controls and individuals from colorectal cancers (p = 0.02). The highest plasma concentrations of neurotensin was found in colorectal cancer patients in comparison to gastric (p = 0.02). The plasma levels of VIP observed in gastric cancer group were lower than in colorectal cancer patients (p = 0.01). Patients with GI malignancies may present with tumor-specific alterations in plasma enterohormone levels.
Collapse
Affiliation(s)
- Aneta Lidia Zygulska
- Department of Oncology, Krakow University Hospital, 10 Sniadeckich St., 31-531, Krakow, Poland.
| | - Agata Furgala
- Department of Pathophysiology, Jagiellonian University Medical College, 18 Czysta St., 31-121, Krakow, Poland.
| | - Jolanta Kaszuba-Zwoińska
- Department of Pathophysiology, Jagiellonian University Medical College, 18 Czysta St., 31-121, Krakow, Poland.
| | - Krzysztof Krzemieniecki
- Department of Oncology, Krakow University Hospital, 10 Sniadeckich St., 31-531, Krakow, Poland; Department of Oncology, Jagiellonian University, 10 Sniadeckich St., 31-531, Krakow, Poland.
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, 18 Czysta St., 31-121, Krakow, Poland.
| |
Collapse
|
27
|
Bollard J, Patte C, Radkova K, Massoma P, Chardon L, Valantin J, Gadot N, Goddard I, Vercherat C, Hervieu V, Gouysse G, Poncet G, Scoazec JY, Walter T, Roche C. Neuropilin-2 contributes to tumor progression in preclinical models of small intestinal neuroendocrine tumors. J Pathol 2019; 249:343-355. [PMID: 31257576 DOI: 10.1002/path.5321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 05/21/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
Abstract
The identification of novel regulators of tumor progression is a key challenge to gain knowledge on the biology of small intestinal neuroendocrine tumors (SI-NETs). We recently identified the loss of the axon guidance protein semaphorin 3F as a protumoral event in SI-NETs. Interestingly the expression of its receptor neuropilin-2 (NRP-2) was still maintained. This study aimed at deciphering the potential role of NRP-2 as a contributor to SI-NET progression. The role of NRP-2 in SI-NET progression was addressed using an approach integrating human tissue and serum samples, cell lines and in vivo models. Data obtained from human SI-NET tissues showed that membranous NRP-2 expression is present in a majority of tumors, and is correlated with invasion, metastatic abilities, and neovascularization. In addition, NRP-2 soluble isoform was found elevated in serum samples from metastatic patients. In preclinical mouse models of NET progression, NRP-2 silencing led to a sustained antitumor effect, partly driven by the downregulation of VEGFR2. In contrast, its ectopic expression conferred a gain of aggressiveness, driven by the activation of various oncogenic signaling pathways. Lastly, NRP-2 inhibition led to a decrease of tumor cell viability, and sensitized to therapeutic agents. Overall, our results point out NRP-2 as a potential therapeutic target for SI-NETs, and will foster the development of innovative strategies targeting this receptor. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Julien Bollard
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| | - Céline Patte
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| | - Kristina Radkova
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| | - Patrick Massoma
- INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| | - Laurence Chardon
- Department of Biology and Hormonology, Lyon-Est Hospital, Bron, France
| | - Julie Valantin
- Pathology-Research Platform, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Nicolas Gadot
- Pathology-Research Platform, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Isabelle Goddard
- Laboratoire des Modèles Tumoraux, Lyon Synergie Cancer, Lyon, France
| | - Cécile Vercherat
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| | - Valérie Hervieu
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France.,Department of Pathology, Lyon-Est Hospital, Bron, France
| | | | - Gilles Poncet
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France.,Department of Medical Oncology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jean-Yves Scoazec
- Department of Pathology, Gustave-Roussy Cancer Campus, Villejuif, France
| | - Thomas Walter
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France.,Department of Medical Oncology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Colette Roche
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| |
Collapse
|
28
|
Wang X, Ali MS, Lacerda CMR. Osteogenesis inducers promote distinct biological responses in aortic and mitral valve interstitial cells. J Cell Biochem 2019; 120:11158-11171. [PMID: 30746757 DOI: 10.1002/jcb.28392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/27/2018] [Accepted: 01/09/2019] [Indexed: 01/24/2023]
Abstract
Both aortic and mitral valves calcify in pathological conditions; however, the prevalence of aortic valve calcification is high whereas mitral valve leaflet calcification is somewhat rare. Patterns of valvular calcification may differ due to valvular architecture, but little is known to that effect. In this study, we investigated the intrinsic osteogenic differentiation potential of aortic versus mitral valve interstitial cells provided minimal differentiation conditions. For the assessment of calcification at the cellular level, we used classic inducers of osteogenesis in stem cells: β-glycerophosphate (β-Gly), dexamethasone (Dex), and ascorbate (Asc). In addition to proteomic analyses, osteogenic markers and calcium precipitates were evaluated across treatments of aortic and mitral valve cells. The combination of β-Gly, Asc, and Dex induced aortic valve interstitial cells to synthesize extracellular matrix, overexpress osteoblastic markers, and deposit calcium. However, no strong evidence showed the calcification of mitral valve interstitial cells. Mitral cells mainly responded to Asc and Dex by cell activation. These findings provide a deeper understanding of the physiological properties of aortic and mitral valves and tendencies for calcific changes within each valve type, contributing to the development of future therapeutics for heart valve diseases.
Collapse
Affiliation(s)
- Xinmei Wang
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas
| | - Mir S Ali
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas
| | - Carla M R Lacerda
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas
| |
Collapse
|
29
|
Investigating the Protein Signature of Adamantinomatous Craniopharyngioma Pediatric Brain Tumor Tissue: Towards the Comprehension of Its Aggressive Behavior. DISEASE MARKERS 2019; 2019:3609789. [PMID: 31191748 PMCID: PMC6525946 DOI: 10.1155/2019/3609789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/14/2019] [Accepted: 03/31/2019] [Indexed: 02/07/2023]
Abstract
Although histologically benign, adamantinomatous craniopharyngioma (AC) pediatric brain tumor is a locally aggressive disease that frequently determines symptoms and hormonal dysfunctions related to the mass effect on the surrounding structures. Another typical feature of this benign neoplasm is the presence of voluminous liquid cysts frequently associated with the solid component. Even if studies have been devoted to the proteomic characterization of the tumor intracystic fluid, poor explorations have been performed on its solid part, principally investigated by transcriptomics technologies. In the present study, seven specimens of AC whole tumor tissue have been analyzed by LC-MS for a preliminary assessment of the proteomic profile by a top-down/bottom-up integrated approach. Thymosin beta 4, ubiquitin, calmodulin, S100 proteins, prothymosin α isoform 2, alpha-defensins 1-4, and fragments largely belonging to vimentin, hemoglobin, and glial fibrillary acidic protein characterized the intact proteome. The identification of alpha-defensins, formerly characterized in AC intracystic fluid, reinforces the hypothesis of a role for inflammation in tumor pathogenesis. A total number of 1798 unique elements were identified by a bottom-up approach with a special focus on the 433 proteins commonly characterized in the 85.7% of the samples analyzed. Their gene ontology classification evidenced the involvement of the adherence system, intermediate filaments, and actin cytoskeleton in tumor pathogenesis and of elements part of the Wnt, FGF, and EGFR signaling pathways. In addition, proteins involved in calcium modulation, innate immunity, inflammation, CCKR and integrin signaling, and gonadotropin-releasing hormone receptor pathways were also outlined. Further than confirming proteomic data previously obtained on AC intracystic fluid, these results offer a preliminary overview of the AC whole tissue protein phenotype, adding new hints towards the comprehension of this still obscure pediatric brain tumor.
Collapse
|
30
|
Hoyt CT, Domingo-Fernández D, Aldisi R, Xu L, Kolpeja K, Spalek S, Wollert E, Bachman J, Gyori BM, Greene P, Hofmann-Apitius M. Re-curation and rational enrichment of knowledge graphs in Biological Expression Language. Database (Oxford) 2019; 2019:baz068. [PMID: 31225582 PMCID: PMC6587072 DOI: 10.1093/database/baz068] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 12/23/2022]
Abstract
The rapid accumulation of new biomedical literature not only causes curated knowledge graphs (KGs) to become outdated and incomplete, but also makes manual curation an impractical and unsustainable solution. Automated or semi-automated workflows are necessary to assist in prioritizing and curating the literature to update and enrich KGs. We have developed two workflows: one for re-curating a given KG to assure its syntactic and semantic quality and another for rationally enriching it by manually revising automatically extracted relations for nodes with low information density. We applied these workflows to the KGs encoded in Biological Expression Language from the NeuroMMSig database using content that was pre-extracted from MEDLINE abstracts and PubMed Central full-text articles using text mining output integrated by INDRA. We have made this workflow freely available at https://github.com/bel-enrichment/bel-enrichment.
Collapse
Affiliation(s)
- Charles Tapley Hoyt
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Rana Aldisi
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Lingling Xu
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Kristian Kolpeja
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Sandra Spalek
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Esther Wollert
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - John Bachman
- Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA
| | - Benjamin M Gyori
- Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA
| | - Patrick Greene
- Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
31
|
Prasad K, Rao R, Augustine D, Sowmya SV, Haragannavar V, Sagar P, Sreedhar P. Pathway based prognostic gene expression profile of buccal and gingivo-buccal oral squamous cell carcinoma in smokeless tobacco chewers. Head Neck 2018; 41:388-397. [PMID: 30536474 DOI: 10.1002/hed.25494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/14/2018] [Accepted: 08/31/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The objective was to study comprehensive mRNA expression profiles of buccal mucosa oral squamous cell carcinoma (OSCC-BM) and gingivo-buccal OSCC (OSCC-GB) in smokeless tobacco chewers to understand the biological behavior of OSCC at these specific sites and identify diagnostic and prognostic markers. METHODS High throughput RNA sequencing transcriptome of fresh buccal mucosa (4 samples) and gingivo-buccal (4 samples) OSCC with normal oral mucosa (3 samples) was performed on Illumina NextSeq500 paired end sequencing with 75x2bp. RESULTS In the comparison between OSCC and normal, there were 402 differentially expressed genes (DEGs); between OSCC-BM and normal, there were 467 DEGs; and between OSCC-GB and normal oral tissue, there were 608 DEGs. Pathway-based analysis of gene expression was done. The inflammation mediated by chemokine and cytokine signaling pathway had the maximum gene hits. CONCLUSIONS FZD2 and its interactions with the cadherins have a role in invasion and metastasis. immunosurveillance is evident in OSCC-GB with the downregulation of CADM1.
Collapse
Affiliation(s)
- Kavitha Prasad
- MDS, Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Roopa Rao
- MDS, Department of Oral and Maxillofacial Pathology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Dominic Augustine
- MDS, Department of Oral and Maxillofacial Pathology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Samudrala Venkatesiah Sowmya
- MDS, Department of Oral and Maxillofacial Pathology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Vanishri Haragannavar
- MDS, Department of Oral and Maxillofacial Pathology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Parimala Sagar
- MDS, Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Prathibha Sreedhar
- MDS, Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
32
|
Nikolaou S, Qiu S, Fiorentino F, Rasheed S, Tekkis P, Kontovounisios C. The prognostic and therapeutic role of hormones in colorectal cancer: a review. Mol Biol Rep 2018; 46:1477-1486. [PMID: 30535551 DOI: 10.1007/s11033-018-4528-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the commonest cancers in Western society with a poor prognosis in patients with advanced disease. Targeted therapy is of increasing interest and already, targeted hormone treatment for breast and prostate cancer has improved survival. The aim of this literature review is to summarise the role of hormones in CRC prognosis and treatment. A literature review of all human and animal in vivo and in vitro studies in the last 20 years, which assessed the role of hormones in CRC treatment or prognosis, was carried out. The hormones described in this review have been subdivided according to their secretion origin. Most of the studies are based on in vitro or animal models. The main findings point to adipokines, insulin and the insulin growth factor axis as key players in the link between obesity, type 2 diabetes mellitus and a subset of CRC. Gut-derived hormones, especially uroguanylin and guanylin are being increasingly investigated as therapeutic targets, with promising results. Using hormones as prognostic and therapeutic markers in CRC is still in the preliminary stages for only a fraction of the hormones affecting the GIT. In light of the increasing interest in tailoring treatment strategies, hormones are an important area of focus in the future of CRC management.
Collapse
Affiliation(s)
- Stella Nikolaou
- Department of Colorectal Surgery, Chelsea & Westminster Hospital, London, UK. .,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK. .,Department of Surgery and Cancer, Imperial College, London, UK. .,Department of Surgery and Cancer, Imperial College London, Royal Marsden Hospital, Fulham Road & Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK.
| | - Shengyang Qiu
- Department of Colorectal Surgery, Chelsea & Westminster Hospital, London, UK.,Department of Surgery and Cancer, Imperial College, London, UK
| | | | - Shahnawaz Rasheed
- Department of Colorectal Surgery, Chelsea & Westminster Hospital, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College, London, UK
| | - Paris Tekkis
- Department of Colorectal Surgery, Chelsea & Westminster Hospital, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College, London, UK
| | - Christos Kontovounisios
- Department of Colorectal Surgery, Chelsea & Westminster Hospital, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College, London, UK
| |
Collapse
|
33
|
Winiarczyk M, Kaarniranta K, Winiarczyk S, Adaszek Ł, Winiarczyk D, Mackiewicz J. Tear film proteome in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2018; 256:1127-1139. [PMID: 29696386 PMCID: PMC5956098 DOI: 10.1007/s00417-018-3984-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/18/2018] [Accepted: 04/09/2018] [Indexed: 01/05/2023] Open
Abstract
Purpose Age-related macular degeneration (AMD) is the main reason for blindness in elderly people in the developed countries. Current screening protocols have limitations in detecting the early signs of retinal degeneration. Therefore, it would be desirable to find novel biomarkers for early detection of AMD. Development of novel biomarkers would help in the prevention, diagnostics, and treatment of AMD. Proteomic analysis of tear film has shown promise in this research area. If an optimal set of biomarkers could be obtained from accessible body fluids, it would represent a reliable way to monitor disease progression and response to novel therapies. Methods Tear films were collected on Schirmer strips from a total of 22 patients (8 with wet AMD, 6 with dry AMD, and 8 control individuals). 2D electrophoresis was used to separate tear film proteins prior to their identification with matrix-assisted laser desorption/ionization time of flight spectrometer (MALDI-TOF/TOF) and matching with functional databases. Results A total of 342 proteins were identified. Most of them were previously described in various proteomic studies concerning AMD. Shootin-1, histatin-3, fidgetin-like protein 1, SRC kinase signaling inhibitor, Graves disease carrier protein, actin cytoplasmic 1, prolactin-inducible protein 1, and protein S100-A7A were upregulated in the tear film samples isolated from AMD patients and were not previously linked with this disease in any proteomic analysis. Conclusion The upregulated proteins supplement our current knowledge of AMD pathogenesis, providing evidence that certain specific proteins are expressed into the tear film in AMD. As far we are aware, this is the first study to have undertaken a comprehensive in-depth analysis of the human tear film proteome in AMD patients. Electronic supplementary material The online version of this article (10.1007/s00417-018-3984-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mateusz Winiarczyk
- Department of Vitreoretinal Surgery, Medical University of Lublin, Lublin, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Stanisław Winiarczyk
- Department of Epizootiology, University of Life Sciences of Lublin, Lublin, Poland
| | - Łukasz Adaszek
- Department of Epizootiology, University of Life Sciences of Lublin, Lublin, Poland
| | - Dagmara Winiarczyk
- Department of Epizootiology, University of Life Sciences of Lublin, Lublin, Poland
| | - Jerzy Mackiewicz
- Department of Vitreoretinal Surgery, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
34
|
van der Kwast RV, van Ingen E, Parma L, Peters HA, Quax PH, Nossent AY. Adenosine-to-Inosine Editing of MicroRNA-487b Alters Target Gene Selection After Ischemia and Promotes Neovascularization. Circ Res 2018; 122:444-456. [DOI: 10.1161/circresaha.117.312345] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 12/20/2022]
Abstract
Rationale:
Adenosine-to-inosine editing of microRNAs has the potential to cause a shift in target site selection. 2′-O-ribose-methylation of adenosine residues, however, has been shown to inhibit adenosine-to-inosine editing.
Objective:
To investigate whether angiomiR miR487b is subject to adenosine-to-inosine editing or 2′-O-ribose-methylation during neovascularization.
Methods and Results:
Complementary DNA was prepared from C57BL/6-mice subjected to hindlimb ischemia. Using Sanger sequencing and endonuclease digestion, we identified and validated adenosine-to-inosine editing of the miR487b seed sequence. In the gastrocnemius muscle, pri-miR487b editing increased from 6.7±0.4% before to 11.7±1.6% (
P
=0.02) 1 day after ischemia. Edited pri-miR487b is processed into a novel microRNA, edited miR487b, which is also upregulated after ischemia. We confirmed editing of miR487b in multiple human primary vascular cell types. Short interfering RNA–mediated knockdown demonstrated that editing is adenosine deaminase acting on RNA 1 and 2 dependent. Using reverse-transcription at low dNTP concentrations followed by quantitative-PCR, we found that the same adenosine residue is methylated in mice and human primary cells. In the murine gastrocnemius, the estimated methylation fraction increased from 32.8±14% before to 53.6±12% 1 day after ischemia. Short interfering RNA knockdown confirmed that methylation is fibrillarin dependent. Although we could not confirm that methylation directly inhibits editing, we do show that adenosine deaminase acting on RNA 1 and 2 and fibrillarin negatively influence each other’s expression. Using multiple luciferase reporter gene assays, we could demonstrate that editing results in a complete switch of target site selection. In human primary cells, we confirmed the shift in miR487b targeting after editing, resulting in a edited miR487b targetome that is enriched for multiple proangiogenic pathways. Furthermore, overexpression of edited miR487b, but not wild-type miR487b, stimulates angiogenesis in both in vitro and ex vivo assays.
Conclusions:
MiR487b is edited in the seed sequence in mice and humans, resulting in a novel, proangiogenic microRNA with a unique targetome. The rate of miR487b editing, as well as 2′-O-ribose-methylation, is increased in murine muscle tissue during postischemic neovascularization. Our findings suggest miR487b editing plays an intricate role in postischemic neovascularization.
Collapse
Affiliation(s)
- Reginald V.C.T. van der Kwast
- From the Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, The Netherlands
| | - Eva van Ingen
- From the Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, The Netherlands
| | - Laura Parma
- From the Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, The Netherlands
| | - Hendrika A.B. Peters
- From the Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, The Netherlands
| | - Paul H.A. Quax
- From the Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, The Netherlands
| | - A. Yaël Nossent
- From the Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, The Netherlands
| |
Collapse
|
35
|
He Q, Gao H, Gao M, Qi S, Yang K, Zhang Y, Wang J. Immunogenicity and safety of a novel tetanus toxoid-conjugated anti-gastrin vaccine in BALB/c mice. Vaccine 2018; 36:847-852. [PMID: 29306507 DOI: 10.1016/j.vaccine.2017.12.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/10/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
Abstract
The objective of this study is to determine the immunogenicity and safety of our novel anti-gastrin vaccine that is composed of the common amino-terminal portions of human carboxy-amidated gastrin-17 (G17) and glycine-extended gastrin-17 (gly-G17) as well as the common carboxy-terminal portion of the gastrin precursor progastrin (in a 50:50 mixture) all covalently linked to tetanus toxoid (TT) via peptide spacers. The vaccine, or immunogen, was injected intramuscularly into the legs of BALB/c mice, which produced high serum titres of specific IgG antibodies and IFN-γ in their spleen cells, identifiable by enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunospot assay (ELISPOT), respectively. TT as the protein carrier effectively enhanced the antigenic epitopes' humoural and cellular immune responses, unlike the antigenic epitopes alone or the immunogen's adjuvant emulsion system (AES), all of which failed to provoke any obvious immune response. Notably, the animals' body weights increased significantly after immunization (P < .01), while their haematology and serum biochemistry were all generally normal, and the gross anatomy of their main organs (e.g., heart, liver, spleen, lung, kidney) showed no obvious histopathological changes.
Collapse
Affiliation(s)
- Qing He
- Biotechnology Center, Department of Pharmacy, Fourth Military Medical University, Xian, China; National Institutes for Food and Drug Control, Beijing, China
| | - Hua Gao
- National Institutes for Food and Drug Control, Beijing, China
| | | | | | - Kun Yang
- Biotechnology Center, Department of Pharmacy, Fourth Military Medical University, Xian, China
| | - Yingqi Zhang
- Biotechnology Center, Department of Pharmacy, Fourth Military Medical University, Xian, China
| | - Junzhi Wang
- Biotechnology Center, Department of Pharmacy, Fourth Military Medical University, Xian, China; National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
36
|
Feist PE, Loughran EA, Stack MS, Hummon AB. Quantitative proteomic analysis of murine white adipose tissue for peritoneal cancer metastasis. Anal Bioanal Chem 2017; 410:1583-1594. [PMID: 29282499 DOI: 10.1007/s00216-017-0813-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 12/15/2022]
Abstract
Cancer metastasis risk increases in older individuals, but the mechanisms for this risk increase are unclear. Many peritoneal cancers, including ovarian cancer, preferentially metastasize to peritoneal fat depots. However, there is a dearth of studies exploring aged peritoneal adipose tissue in the context of cancer. Because adipose tissue produces signals which influence several diseases including cancer, proteomics of adipose tissue in aged and young mice may provide insight into metastatic mechanisms. We analyzed mesenteric, omental, and uterine adipose tissue groups from the peritoneal cavities of young and aged C57BL/6J mouse cohorts with a low-fraction SDS-PAGE gelLC-MS/MS method. We identified 2308 protein groups and quantified 2167 groups, among which several protein groups showed twofold or greater abundance differences between the aged and young cohorts. Cancer-related gene products previously identified as significant in another age-related study were found altered in this study. Several gene products known to suppress proliferation and cellular invasion were found downregulated in the aged cohort, including R-Ras, Arid1a, and heat shock protein β1. In addition, multiple protein groups were identified within single cohorts, including the proteins Cd11a, Stat3, and Ptk2b. These data suggest that adipose tissue is a strong candidate for analysis to identify possible contributors to cancer metastasis in older subjects. The results of this study, the first of its kind using uterine adipose tissue, contribute to the understanding of the role of adipose tissue in age-related alteration of oncogenic pathways, which may help elucidate the mechanisms of increased metastatic tumor burden in the aged. Graphical abstract We analyzed mesenteric, omental, and uterine adipose tissue groups from the peritoneal cavities of young and aged C57BL/6J mouse cohorts with a low-fraction SDS-PAGE gelLC-MS/MS method. These fat depots are preferential sites for many peritoneal cancers. The results of this study, the first of its kind using uterine adipose tissue, contribute to the understanding of the role of adipose tissue in age-related alteration of oncogenic pathways, which may help elucidate the mechanisms of increased metastatic tumor burden in the aged.
Collapse
Affiliation(s)
- Peter E Feist
- Integrated Biomedical Sciences Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 140B McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Elizabeth A Loughran
- Integrated Biomedical Sciences Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 140B McCourtney Hall, Notre Dame, IN, 46556, USA
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 140B McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 140B McCourtney Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
37
|
Singh V, Ostaszewski M, Kalliolias GD, Chiocchia G, Olaso R, Petit-Teixeira E, Helikar T, Niarakis A. Computational Systems Biology Approach for the Study of Rheumatoid Arthritis: From a Molecular Map to a Dynamical Model. GENOMICS AND COMPUTATIONAL BIOLOGY 2017; 4:e100050. [PMID: 29951575 PMCID: PMC6016388 DOI: 10.18547/gcb.2018.vol4.iss1.e100050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this work we present a systematic effort to summarize current biological pathway knowledge concerning Rheumatoid Arthritis (RA). We are constructing a detailed molecular map based on exhaustive literature scanning, strict curation criteria, re-evaluation of previously published attempts and most importantly experts' advice. The RA map will be web-published in the coming months in the form of an interactive map, using the MINERVA platform, allowing for easy access, navigation and search of all molecular pathways implicated in RA, serving thus, as an on line knowledgebase for the disease. Moreover the map could be used as a template for Omics data visualization offering a first insight about the pathways affected in different experimental datasets. The second goal of the project is a dynamical study focused on synovial fibroblasts' behavior under different initial conditions specific to RA, as recent studies have shown that synovial fibroblasts play a crucial role in driving the persistent, destructive characteristics of the disease. Leaning on the RA knowledgebase and using the web platform Cell Collective, we are currently building a Boolean large scale dynamical model for the study of RA fibroblasts' activation.
Collapse
Affiliation(s)
- Vidisha Singh
- GenHotel EA3886, Univ Evry, Université Paris-Saclay, 91025, Evry, France
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, Esch-sur-Alzette, Luxembourg
| | - George D. Kalliolias
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, USA; Department of Medicine, Weill Cornell Medical College, New York City, USA
| | - Gilles Chiocchia
- Faculty of Health Sciences Simone Veil, INSERM U1173, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), CEA, Evry, France
| | | | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Anna Niarakis
- GenHotel EA3886, Univ Evry, Université Paris-Saclay, 91025, Evry, France
| |
Collapse
|
38
|
Khan M, Huang T, Lin CY, Wu J, Fan BM, Bian ZX. Exploiting cancer's phenotypic guise against itself: targeting ectopically expressed peptide G-protein coupled receptors for lung cancer therapy. Oncotarget 2017; 8:104615-104637. [PMID: 29262666 PMCID: PMC5732832 DOI: 10.18632/oncotarget.18403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023] Open
Abstract
Lung cancer, claiming millions of lives annually, has the highest mortality rate worldwide. This advocates the development of novel cancer therapies that are highly toxic for cancer cells but negligibly toxic for healthy cells. One of the effective treatments is targeting overexpressed surface receptors of cancer cells with receptor-specific drugs. The receptors-in-focus in the current review are the G-protein coupled receptors (GPCRs), which are often overexpressed in various types of tumors. The peptide subfamily of GPCRs is the pivot of the current article owing to the high affinity and specificity to and of their cognate peptide ligands, and the proven efficacy of peptide-based therapeutics. The article summarizes various ectopically expressed peptide GPCRs in lung cancer, namely, Cholecystokinin-B/Gastrin receptor, the Bombesin receptor family, Bradykinin B1 and B2 receptors, Arginine vasopressin receptors 1a, 1b and 2, and the Somatostatin receptor type 2. The autocrine growth and pro-proliferative pathways they mediate, and the distinct tumor-inhibitory effects of somatostatin receptors are then discussed. The next section covers how these pathways may be influenced or 'corrected' through therapeutics (involving agonists and antagonists) targeting the overexpressed peptide GPCRs. The review proceeds on to Nano-scaled delivery platforms, which enclose chemotherapeutic agents and are decorated with peptide ligands on their external surface, as an effective means of targeting cancer cells. We conclude that targeting these overexpressed peptide GPCRs is potentially evolving as a highly promising form of lung cancer therapy.
Collapse
Affiliation(s)
- Mahjabin Khan
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| | - Tao Huang
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| | - Cheng-Yuan Lin
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, P.R. China
| | - Jiang Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Bao-Min Fan
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, P.R. China
| | - Zhao-Xiang Bian
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| |
Collapse
|
39
|
Thamsermsang O, Akarasereenont P, Laohapand T, Panich U. IL-1β-induced modulation of gene expression profile in human dermal fibroblasts: the effects of Thai herbal Sahatsatara formula, piperine and gallic acid possessing antioxidant properties. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:32. [PMID: 28068976 PMCID: PMC5223377 DOI: 10.1186/s12906-016-1515-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 12/14/2016] [Indexed: 01/04/2023]
Abstract
Background Pain is the main symptom of most musculoskeletal disorders and can be caused by inflammation in association with oxidative stress. Thai herbal Sahatsatara formula (STF), a polyherbal formula, has been traditionally used for relieving muscle pain and limb numbness. This study aimed to investigate biologically active compounds of STF and its pharmacological effects related to antioxidant and anti-inflammatory activities. Methods The identification of possibly active compounds of STF was performed by high performance liquid chromatography (HPLC). Moreover, this study also assessed the free radical scavenging activities of STF and its components using DPPH radical scavenging assay and their inhibitory effects on IL-1β-induced intracellular reactive oxygen species (ROS) formation in primary human dermal fibroblasts (NHDFs) using DCFDA-flow cytometry analysis. Modulation of human gene expression by STF and its active compounds was investigated by microarray analyzed through Gene Ontology (GO) classification and pathway enrichment analysis. Results HPLC analysis has revealed the presence of gallic acid (GA) and piperine (PP) as the major compounds in STF extracts. Our finding discovered that STF and its active compounds (GA and PP) yielded free radical scavenging activities and abilities to inhibit IL-1β-induced cellular ROS formation in NHDFs. Furthermore, microarray analysis demonstrated that a total of 84 genes (54 upregulated and 30 downregulated) were significantly affected by IL-1β involved in inflammatory cytokines, chemokines, transcription factors, cell adhesion molecules and other immunomodulators participating in NF-κB signaling. The significantly upregulated genes in IL-1β-treated in NHDFs participate in interleukin and cholecystokinin (CCRK) signaling pathways. The GO analysis of the target genes showed that all test compounds including indomethacin, STF and its active compounds, can downregulate the genes involved in NF-кB signaling pathway in IL-1β-treated NHDFs compared to the cells treated with IL-1β alone. Conclusions STF and its active compounds possessing antioxidant actions can modulate the effects of IL-1β-mediated alteration of gene expression profiles associated with inflammatory signaling in NHDFs. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1515-0) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Kun Z, Hanqing G, Hailing T, Yuan Y, Jun Z, Lingxia Z, Kun H, Xin Z. Gastrin Enhances Autophagy and Promotes Gastric Carcinoma Proliferation via Inducing AMPKα. Oncol Res 2017; 25:1399-1407. [PMID: 28059052 PMCID: PMC7841241 DOI: 10.3727/096504016x14823648620870] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer (GC) is one of the most frequent epithelial malignancies worldwide. The gastrointestinal (GI) peptide gastrin is an important regulator of the secretion and release of gastric acid from stomach parietal cells, and it also plays a vital role in the development and progression of GC. The aim of the current study was to investigate the role and underlying mechanism of gastrin and autophagy in regulating GC tumorigenesis. Gastrin-17 amide (G-17) was applied in the GC cell lines SGC7901 and MGC-803. The results showed that G-17 maintained the high viability of SGC7901 and MGC-803. The expression of autophagy marker proteins LC3II and Beclin1 was significantly increased, while the autophagy substrate p62 was obviously decreased in the gastrin group compared with the control group. Moreover, G-17 strengthened the expressions of AMPKα, Ras, Raf, MEK, and ERK1/2. Additionally, administration of AMPKα siRNA counteracted the effect of gastrin in SGC7901 cells. Finally, in an in vivo study of the tumor growth and survival rate of rats, the levels of AMPKα/Ras/Raf/MEK/ERK were significantly increased in the gastrin group and decreased following AMPKα shRNA injection. In conclusion, these findings indicate that gastrin plays a tumorigenic role by promoting autophagy in GC and may provide a novel therapeutic target for GC treatment.
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The present review summarizes the past year's literature, both clinical and basic science, regarding neuroendocrine and intracellular regulation of gastric acid secretion and proper use of antisecretory medications. RECENT FINDINGS Gastric acid kills microorganisms, modulates the gut microbiome, assists in digestion of protein, and facilitates absorption of iron, calcium, and vitamin B12. The main stimulants of acid secretion are gastrin, released from antral G cells; histamine, released from oxyntic enterochromaffin-like cells; and acetylcholine, released from antral and oxyntic intramural neurons. Other stimulants include ghrelin, motilin, and hydrogen sulfide. The main inhibitor of acid secretion is somatostatin, released from oxyntic and antral D cells. Glucagon-like peptide-1 also inhibits acid secretion. Proton pump inhibitors (PPIs) reduce acid secretion and, as a result, decrease somatostatin and thus stimulate gastrin secretion. Although considered well tolerated drugs, concerns have been raised this past year regarding associations between PPI use and kidney disease, dementia, and myocardial infarction; the quality of evidence, however, is very low. SUMMARY Our understanding of the physiology of gastric secretion and proper use of PPIs continues to advance. Such knowledge is crucial for improved management of acid-peptic disorders.
Collapse
|
42
|
Nutritional habits, lifestyle, and genetic predisposition in cardiovascular and metabolic traits in Turkish population. Nutrition 2015; 32:693-701. [PMID: 26856649 DOI: 10.1016/j.nut.2015.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/25/2015] [Accepted: 12/17/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Cardiovascular and metabolic traits (CMT) are influenced by complex interactive processes including diet, lifestyle, and genetic predisposition. The present study investigated the interactions of these risk factors in relation to CMTs in the Turkish population. METHODS We applied bootstrap agglomerative hierarchical clustering and Bayesian network learning algorithms to identify the causative relationships among genes involved in different biological mechanisms (i.e., lipid metabolism, hormone metabolism, cellular detoxification, aging, and energy metabolism), lifestyle (i.e., physical activity, smoking behavior, and metropolitan residency), anthropometric traits (i.e., body mass index, body fat ratio, and waist-to-hip ratio), and dietary habits (i.e., daily intakes of macro- and micronutrients) in relation to CMTs (i.e., health conditions and blood parameters). RESULTS We identified significant correlations between dietary habits (soybean and vitamin B12 intakes) and different cardiometabolic diseases that were confirmed by the Bayesian network-learning algorithm. Genetic factors contributed to these disease risks also through the pleiotropy of some genetic variants (i.e., F5 rs6025 and MTR rs180508). However, we also observed that certain genetic associations are indirect since they are due to the causative relationships among the CMTs (e.g., APOC3 rs5128 is associated with low-density lipoproteins cholesterol and, by extension, total cholesterol). CONCLUSIONS Our study applied a novel approach to integrate various sources of information and dissect the complex interactive processes related to CMTs. Our data indicated that complex causative networks are present: causative relationships exist among CMTs and are affected by genetic factors (with pleiotropic and non-pleiotropic effects) and dietary habits.
Collapse
|