1
|
Wang Z, Yang S, Tong L, Li X, Mao W, Yuan H, Chen Y, Zhang S, Zhang H, Chen R. eIF6 deficiency regulates gut microbiota, decreases systemic inflammation, and alleviates atherosclerosis. mSystems 2024; 9:e0059524. [PMID: 39225466 PMCID: PMC11494895 DOI: 10.1128/msystems.00595-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
Altered composition of the gut microbiota affects immunity and metabolism. This study previously found that eIF6 gene knockdown changes the composition of the intestinal flora in the eIF6 gene knockdown mouse model. Lactobacillus acidophilus is significantly increased in the model. This study was designed to investigate the role of L. acidophilus in the pathogenesis of atherosclerosis. Transcriptomic data from 117 patients with coronary artery disease (CAD) and 79 healthy individuals were obtained. ApoE-/- and ApoE-/-/eIF6+/- mice on normal chow diet or a high-fat diet were treated for 16 weeks; eIF6 deficiency was evaluated atherosclerosis. ApoE-/- mice on normal chow diet or a high-fat diet were treated with L. acidophilus by daily oral gavage for 16 weeks. Moreover, one group was treated with lipopolysaccharide at 12 weeks. The levels of eIF6, RNASE3, and RSAD2 were notably higher in the patients with CAD than in the healthy individuals. eIF6 deficiency altered the composition of gut microbiota. eIF6 deficiency reduced the atherosclerotic lesion formation in ApoE-/-/eIF6+/- mice compared with the ApoE-/- mice. The microbial sequencing and metabolomics analysis demonstrated some beneficial bacterial (L. acidophilus, Ileibacterium, and Bifidobacterium) and metabolic levels significantly had deference in ApoE-/-/eIF6+/- mice compared with the ApoE-/- mice. Correlational studies indicated that L. acidophilus had close correlations with low-density lipoprotein cholesterol, lesion area, and necrotic area. L. acidophilus inhibited high-fat diet-induced inflammation and atherosclerotic lesion, increasing the expression of tight junction proteins (ZO-1 and claudin-1) and reducing the gut permeability. However, lipopolysaccharide reversed the protective effect of L. acidophilus against atherosclerosis. eIF6 deficiency protected against atherosclerosis by regulating the composition of gut microbiota and metabolites. L. acidophilus attenuated atherosclerotic lesions by reducing inflammation and increasing gut permeability.IMPORTANCEeIF6 deficiency modulates the gut microbiota and multiple metabolites in atherosclerotic ApoE-/- mice. L. acidophilus was reduced in the gut of atherosclerotic ApoE-/- mice, but administration of Lactobacillus acidophilus reversed intestinal barrier dysfunction and vascular inflammation. Our findings suggest that targeting individual species is a beneficial therapeutic strategy to prevent inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Shuai Yang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Linglin Tong
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Li
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weiyi Mao
- School of Basic Medical Sciences, Nanjing Medical University, Jiangsu, China
| | - Honghua Yuan
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shenyang Zhang
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - He Zhang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renjin Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Abdul-Rahman T, Lizano-Jubert I, Bliss ZSB, Garg N, Meale E, Roy P, Crino SA, Deepak BL, Miteu GD, Wireko AA, Qadeer A, Condurat A, Tanasa AD, Pyrpyris N, Sikora K, Horbas V, Sood A, Gupta R, Lavie CJ. RNA in cardiovascular disease: A new frontier of personalized medicine. Prog Cardiovasc Dis 2024; 85:93-102. [PMID: 38253161 DOI: 10.1016/j.pcad.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
Personalized medicine has witnessed remarkable progress with the emergence of RNA therapy, offering new possibilities for the treatment of various diseases, and in particular in the context of cardiovascular disease (CVD). The ability to target the human genome through RNA manipulation offers great potential not only in the treatment of cardiac pathologies but also in their diagnosis and prevention, notably in cases of hyperlipidemia and myocardial infarctions. While only a few RNA-based treatments have entered clinical trials or obtained approval from the US Food and Drug Administration, the growing body of research on this subject is promising. However, the development of RNA therapies faces several challenges that must be overcome. These include the efficient delivery of drugs into cells, the potential for immunogenic responses, and safety. Resolving these obstacles is crucial to advance the development of RNA therapies. This review explores the newest developments in medical studies, treatment plans, and results related to RNA therapies for heart disease. Furthermore, it discusses the exciting possibilities and difficulties in this innovative area of research.
Collapse
Affiliation(s)
| | | | | | - Neil Garg
- Rowan-Virtua School of osteopathic medicine, Stratford, NJ, USA
| | - Emily Meale
- Rowan-Virtua School of osteopathic medicine, Stratford, NJ, USA
| | - Poulami Roy
- Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | | | | | - Goshen David Miteu
- School of Biosciences, University of Nottingham, Nottingham, England, United Kingdom
| | | | - Abdul Qadeer
- Hospital Internal Medicine Department, Scottsdale Campus, Mayo Clinic, AZ, USA
| | | | | | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | | | | | - Aayushi Sood
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Rahul Gupta
- Lehigh Valley Heart and Vascular Institute, Lehigh Valley Health Network, Allentown, PA, USA.
| | - Carl J Lavie
- Department of Cardiology, Ochsner Clinic Foundation, New Orleans, LA, United States; The University of Queensland Medical School, Ochsner Clinical School, New Orleans, LA, United States
| |
Collapse
|
3
|
Jaatinen K, Shah P, Mazhari R, Hayden Z, Wargowsky R, Jepson T, Toma I, Perkins J, McCaffrey TA. RNAseq of INOCA patients identifies innate, invariant, and acquired immune changes: potential autoimmune microvascular dysfunction. Front Cardiovasc Med 2024; 11:1385457. [PMID: 38978787 PMCID: PMC11228317 DOI: 10.3389/fcvm.2024.1385457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024] Open
Abstract
Background Ischemia with non-obstructive coronary arteries (INOCA) is a major clinical entity that involves potentially 20%-30% of patients with chest pain. INOCA is typically attributed either to coronary microvascular disease and/or vasospasm, but is likely distinct from classical coronary artery disease (CAD). Objectives To gain insights into the etiology of INOCA and CAD, RNA sequencing of whole blood from patients undergoing both stress testing and elective invasive coronary angiography (ICA) was conducted. Methods Stress testing and ICA of 177 patients identified 40 patients (23%) with INOCA compared to 39 controls (stress-, ICA-). ICA+ patients divided into 38 stress- and 60 stress+. RNAseq was performed by Illumina with ribosomal RNA depletion. Transcriptome changes were analyzed by DeSeq2 and curated by manual and automated methods. Results Differentially expressed genes for INOCA were associated with elevated levels of transcripts related to mucosal-associated invariant T (MAIT) cells, plasmacytoid dendritic cells (pcDC), and memory B cells, and were associated with autoimmune diseases such as rheumatoid arthritis. Decreased transcripts were associated with neutrophils, but neutrophil transcripts, per se, were not less abundant in INOCA. CAD transcripts were more related to T cell functions. Conclusions Elevated transcripts related to pcDC, MAIT, and memory B cells suggest an autoimmune component to INOCA. Reduced neutrophil transcripts are likely attributed to chronic activation leading to increased translation and degradation. Thus, INOCA could result from stimulation of B cell, pcDC, invariant T cell, and neutrophil activation that compromises cardiac microvascular function.
Collapse
Affiliation(s)
- Kevin Jaatinen
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
| | - Palak Shah
- INOVA Heart and Vascular Institute, Fairfax, VA, United States
| | - Ramesh Mazhari
- Department of Medicine, Division of Cardiology, The George Washington University, Washington, DC, United States
| | - Zane Hayden
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
| | - Richard Wargowsky
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
| | - Tisha Jepson
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
- The St. Laurent Institute, Woburn, MA, United States
- True Bearing Diagnostics, Washington, DC, United States
| | - Ian Toma
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
- Department of Clinical Research and Leadership, The George Washington University, Washington, DC, United States
| | - John Perkins
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
| | - Timothy A. McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
- True Bearing Diagnostics, Washington, DC, United States
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, United States
| |
Collapse
|
4
|
Pan Y, Wang C, Zhou W, Shi Y, Meng X, Muhammad Y, Hammer RD, Jia B, Zheng H, Li DP, Liu Z, Hildebrandt G, Kang X. Inhibiting AGTR1 reduces AML burden and protects the heart from cardiotoxicity in mouse models. Sci Transl Med 2024; 16:eadl5931. [PMID: 38896605 PMCID: PMC11250918 DOI: 10.1126/scitranslmed.adl5931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Clinical treatment of acute myeloid leukemia (AML) largely relies on intensive chemotherapy. However, the application of chemotherapy is often hindered by cardiotoxicity. Patient sequence data revealed that angiotensin II receptor type 1 (AGTR1) is a shared target between AML and cardiovascular disease (CVD). We found that inhibiting AGTR1 sensitized AML to chemotherapy and protected the heart against chemotherapy-induced cardiotoxicity in a human AML cell-transplanted mouse model. These effects were regulated by the AGTR1-Notch1 axis in AML cells and cardiomyocytes from mice. In mouse cardiomyocytes, AGTR1 was hyperactivated by AML and chemotherapy. AML leukemogenesis increased the expression of the angiotensin-converting enzyme and led to increased production of angiotensin II, the ligand of AGTR1, in an MLL-AF9-driven AML mouse model. In this model, the AGTR1-Notch1 axis regulated a variety of genes involved with cell stemness and chemotherapy resistance. AML cell stemness was reduced after Agtr1a deletion in the mouse AML cell transplant model. Mechanistically, Agtr1a deletion decreased γ-secretase formation, which is required for transmembrane Notch1 cleavage and release of the Notch1 intracellular domain into the nucleus. Using multiomics, we identified AGTR1-Notch1 signaling downstream genes and found decreased binding between these gene sequences with Notch1 and chromatin enhancers, as well as increased binding with silencers. These findings describe an AML/CVD association that may be used to improve AML treatment.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Amyloid Precursor Protein Secretases/metabolism
- Cardiotoxicity/metabolism
- Cardiotoxicity/pathology
- Cell Line, Tumor
- Disease Models, Animal
- Heart/drug effects
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Yi Pan
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - Chen Wang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - WenXuan Zhou
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - Yao Shi
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - XiaDuo Meng
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
| | - Yasir Muhammad
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Richard D Hammer
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Bei Jia
- Division of Hematology/Oncology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Hong Zheng
- Division of Hematology/Oncology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Zhenguo Liu
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Gerhard Hildebrandt
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - XunLei Kang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center at MU Health Care, University of Missouri, Columbia, MO 65212, USA
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
5
|
Chen S, Li Z, Li H, Zeng X, Yuan H, Li Y. RNA Sequencing of Whole Blood in Premature Coronary Artery Disease: Identification of Novel Biomarkers and Involvement of T Cell Imbalance. J Cardiovasc Transl Res 2024; 17:638-647. [PMID: 38038868 DOI: 10.1007/s12265-023-10465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
Serum biomarkers were explored based on the peripheral blood gene expression profiles of premature coronary artery disease (PCAD). RNA sequencing (RNA-Seq) was used to detect PCAD-specific differentially expressed genes (DEGs). Quantitative real-time polymerase chain reaction (RT-PCR) was used to validate the most significant DEGs, and enzyme-linked immunosorbent assay (ELISA) was utilized to quantify the effect on corresponding serum proteins. Fifty-nine PCAD-specific DEGs were identified. Functional analysis showed positive regulation of T cell-mediated cytotoxicity, regulation of T cell-mediated immunity, and the regulation of alpha-beta T cell proliferation which were enriched in PCAD. RT-PCR validated the significant difference in the expression of BAG6, MUC5B, and APOA2 between PCAD and late-onset coronary artery disease (LCAD) patients. ELISA validation showed serum MUC5B increased dramatically in PCAD when compared to LCAD. Our study found T cells contribute to the occurrence of PCAD, and the inflammatory factor MUC5B may be a novel serum marker in PCAD patients.
Collapse
Affiliation(s)
- Si Chen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhan Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Haolong Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaoli Zeng
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hui Yuan
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, People's Republic of China.
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Javanshir E, Ebrahimi ZJ, Mirzohreh ST, Ghaffari S, Banisefid E, Alamdari NM, Roshanravan N. Disparity of gene expression in coronary artery disease: insights from MEIS1, HIRA, and Myocardin. Mol Biol Rep 2024; 51:712. [PMID: 38824221 DOI: 10.1007/s11033-024-09657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Coronary artery disease (CAD) in young adults can have devastating consequences. The cardiac developmental gene MEIS1 plays important roles in vascular networks and heart development. This gene effects on the regeneration capacity of the heart. Considering role of MEIS1 in cardiac tissue development and the progression of myocardial infarction this study investigated the expression levels of the MEIS1, HIRA, and Myocardin genes in premature CAD patients compared to healthy subjects and evaluated the relationships between these genes and possible inflammatory factors. METHODS AND RESULTS The study conducted a case-control design involving 35 CAD patients and 35 healthy individuals. Peripheral blood mononuclear cells (PBMCs) were collected, and gene expression analysis was performed using real-time PCR. Compared with control group, the number of PBMCs in the CAD group exhibited greater MEIS1 and HIRA gene expression, with fold changes of 2.45 and 3.6. The expression of MEIS1 exhibited a negative correlation with IL-10 (r= -0.312) expression and positive correlation with Interleukin (IL)-6 (r = 0.415) and tumor necrosis factor (TNF)-α (r = 0.534) gene expression. Moreover, there was an inverse correlation between the gene expression of HIRA and that of IL-10 (r= -0.326), and a positive correlation was revealed between the expression of this gene and that of the IL-6 (r = 0.453) and TNF-α (r = 0.572) genes. CONCLUSION This research demonstrated a disparity in expression levels of MEIS1, HIRA, and Myocardin, between CAD and healthy subjects. The results showed that, MEIS1 and HIRA play significant roles in regulating the synthesis of proinflammatory cytokines, namely, TNF-α and IL-6.
Collapse
Affiliation(s)
- Elnaz Javanshir
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Banisefid
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Neda Roshanravan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Pekayvaz K, Losert C, Knottenberg V, Gold C, van Blokland IV, Oelen R, Groot HE, Benjamins JW, Brambs S, Kaiser R, Gottschlich A, Hoffmann GV, Eivers L, Martinez-Navarro A, Bruns N, Stiller S, Akgöl S, Yue K, Polewka V, Escaig R, Joppich M, Janjic A, Popp O, Kobold S, Petzold T, Zimmer R, Enard W, Saar K, Mertins P, Huebner N, van der Harst P, Franke LH, van der Wijst MGP, Massberg S, Heinig M, Nicolai L, Stark K. Multiomic analyses uncover immunological signatures in acute and chronic coronary syndromes. Nat Med 2024; 30:1696-1710. [PMID: 38773340 PMCID: PMC11186793 DOI: 10.1038/s41591-024-02953-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 03/26/2024] [Indexed: 05/23/2024]
Abstract
Acute and chronic coronary syndromes (ACS and CCS) are leading causes of mortality. Inflammation is considered a key pathogenic driver of these diseases, but the underlying immune states and their clinical implications remain poorly understood. Multiomic factor analysis (MOFA) allows unsupervised data exploration across multiple data types, identifying major axes of variation and associating these with underlying molecular processes. We hypothesized that applying MOFA to multiomic data obtained from blood might uncover hidden sources of variance and provide pathophysiological insights linked to clinical needs. Here we compile a longitudinal multiomic dataset of the systemic immune landscape in both ACS and CCS (n = 62 patients in total, n = 15 women and n = 47 men) and validate this in an external cohort (n = 55 patients in total, n = 11 women and n = 44 men). MOFA reveals multicellular immune signatures characterized by distinct monocyte, natural killer and T cell substates and immune-communication pathways that explain a large proportion of inter-patient variance. We also identify specific factors that reflect disease state or associate with treatment outcome in ACS as measured using left ventricular ejection fraction. Hence, this study provides proof-of-concept evidence for the ability of MOFA to uncover multicellular immune programs in cardiovascular disease, opening new directions for mechanistic, biomarker and therapeutic studies.
Collapse
Grants
- Deutsche Forschungsgemeinschaft (German Research Foundation)
- Deutsches Zentrum fr Herz-Kreislaufforschung (Deutsches Zentrum fr Herz-Kreislaufforschung e.V.)
- Deutsche Herzstiftung e.V., Frankfurt a.M. Institutional Strategy LMUexcellent of LMU Munich Else-Krner-Fresenius Stiftung DFG Clinician Scientist Programme PRIME DZHK Sule B Antrag DZHK B 21-014 SE
- Was supported by the Helmholtz Association under the joint research school ;Munich School for Data Science MUDS
- DFG GO 3823/1-1, grant number: 510821390 Frderprogramm fr Forschung und Lehre der Medizinischen Fakultt der LMU the Bavarian Cancer Research Center (BZKF) Else Kroner-Fresenius-Stiftung
- Was supported by a grant from the Frderprogramm fur Forschung und Lehre (FFoLe) of the Ludwig Maximilian University (LMU) of Munich.
- DFG SFB 1123, Z02
- DFG EN 1093/2-1
- DFG KO5055-2-1 and KO5055/3-1 the Bavarian Cancer Research Center (BZKF) the international doctoral program i-Target: immunotargeting of cancer the Melanoma Research Alliance (grant number 409510), Marie Sklodowska-Curie Training Network for Optimizing Adoptive T Cell Therapy of Cancer (funded by the Horizon 2020 programme of the European Union; grant 955575), Else Kroner-Fresenius-Stiftung (IOLIN), German Cancer Aid (AvantCAR.de), the Wilhelm-Sander-Stiftung, Ernst Jung Stiftung, Institutional Strategy LMUexcellent of LMU Munich (within the framework of the German Excellence Initiative), the Go-Bio-Initiative, the m4-Award of the Bavarian Ministry for Economical Affairs, Bundesministerium fur Bildung und Forschung, European Research Council (Starting Grant 756017 and PoC Grant 101100460, by the SFB-TRR 338/1 2021452881907, Fritz-Bender Foundation, Deutsche Jose#x0301; Carreras Leuk#x00E4;mie Stiftung, Hector Foundation, the Bavarian Research Foundation, the Bruno and Helene J#x00F6;ster Foundation (360#x00B0; CAR)
- T.P. from the DFG (PE 2704/3-1)
- DFG SFB1243, A14 DFG EN 1093/2-1,
- DZHK Säule B Antrag DZHK B 21-014 SE
- DZHK Säule B Antrag DZHK B 21-014 SE DFG SFB-1470-B03 the Chan Zuckerberg Foundation ERC Advanced Grant under the European Union Horizon 2020 Research and Innovation Program (AdG788970)
- Deutsche Forschungsgemeinschaft (DFG) SFB 914, B02 and Z01 DFG SFB 1123, B06 DFG SFB1321, P10 DFG FOR 2033 ERC-2018-ADG German Centre for Cardiovascular Research (DZHK) MHA 1.4VD
- DZHK project 81Z0600106 Supported by the Chan Zuckerberg Foundation
- DZHK S#x00E4;ule B Antrag DZHK B 21-014 SE Deutsche Herzstiftung e.V., Frankfurt a.M. DFG SFB 1123, B06 DFG NI 2219/2-1 Corona Foundation German Centre for Cardiovascular Research (DZHK) Clinician Scientist Programme the Ernst und Berta Grimmke Stiftung the GTH Junior research grant
- DZHK partner site project Deutsche Forschungsgemeinschaft (DFG) SFB 914, B02 DFG SFB 1123, A07 DFG SFB 359, A03 ERC grant 947611
Collapse
Affiliation(s)
- Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Corinna Losert
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | | | - Christoph Gold
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Irene V van Blokland
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Roy Oelen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hilde E Groot
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Walter Benjamins
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sophia Brambs
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
| | - Rainer Kaiser
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Adrian Gottschlich
- Department of Medicine III, LMU University Hospital, Munich, Germany
- Division of Clinical Pharmacology, LMU University Hospital, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gordon Victor Hoffmann
- Division of Clinical Pharmacology, LMU University Hospital, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Luke Eivers
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
| | | | - Nils Bruns
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
| | - Susanne Stiller
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
| | - Sezer Akgöl
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
| | - Keyang Yue
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
| | - Vivien Polewka
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
| | - Raphael Escaig
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
| | - Markus Joppich
- Department of Informatics, Ludwig-Maximilian University, Munich, Germany
| | - Aleksandar Janjic
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilian University, Munich, Germany
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, LMU University Hospital, Member of the German Center for Lung Research (DZL), Munich, Germany
- German Cancer Consortium (DKTK), a partnership between DKFZ and LMU University Hospital, Partner Site Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Tobias Petzold
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf Zimmer
- Department of Informatics, Ludwig-Maximilian University, Munich, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilian University, Munich, Germany
| | - Kathrin Saar
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Norbert Huebner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lude H Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Monique G P van der Wijst
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Matthias Heinig
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany.
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
8
|
Nevado JB, Cutiongco-de la Paz EMC, Paz-Pacheco ET, Jasul GV, Aman AYCL, Deguit CDT, San Pedro JVB, Francisco MDG. Transcriptional profiles associated with coronary artery disease in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1323168. [PMID: 38706700 PMCID: PMC11066158 DOI: 10.3389/fendo.2024.1323168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/25/2024] [Indexed: 05/07/2024] Open
Abstract
Background Coronary artery disease (CAD) is a common complication of Type 2 diabetes mellitus (T2DM). Understanding the pathogenesis of this complication is essential in both diagnosis and management. Thus, this study aimed to characterize the presence of CAD in T2DM using molecular markers and pathway analyses. Methods The study is a sex- and age-frequency matched case-control design comparing 23 unrelated adult Filipinos with T2DM-CAD to 23 controls (DM with CAD). Healthy controls served as a reference. Total RNA from peripheral blood mononuclear cells (PBMCs) underwent whole transcriptomic profiling using the Illumina HumanHT-12 v4.0 expression beadchip. Differential gene expression with gene ontogeny analyses was performed, with supporting correlational analyses using weighted correlation network analysis (WGCNA). Results The study observed that 458 genes were differentially expressed between T2DM with and without CAD (FDR<0.05). The 5 top genes the transcription factor 3 (TCF3), allograft inflammatory factor 1 (AIF1), nuclear factor, interleukin 3 regulated (NFIL3), paired immunoglobulin-like type 2 receptor alpha (PILRA), and cytoskeleton-associated protein 4 (CKAP4) with AUCs >89%. Pathway analyses show differences in innate immunity activity, which centers on the myelocytic (neutrophilic/monocytic) theme. SNP-module analyses point to a possible causal dysfunction in innate immunity that triggers the CAD injury in T2DM. Conclusion The study findings indicate the involvement of innate immunity in the development of T2DM-CAD, and potential immunity markers can reflect the occurrence of this injury. Further studies can verify the mechanistic hypothesis and use of the markers.
Collapse
Affiliation(s)
- Jose B. Nevado
- Institute of Human Genetics, National Institutes of Health-University of the Philippines Manila, Manila, Philippines
| | - Eva Maria C. Cutiongco-de la Paz
- Institute of Human Genetics, National Institutes of Health-University of the Philippines Manila, Manila, Philippines
- Philippine Genome Center, University of the Philippines System, Diliman, Quezon City, Philippines
| | - Elizabeth T. Paz-Pacheco
- Division of Endocrinology, Department of Medicine, University of the Philippines-Philippine General Hospital Medical Center, Manila, Philippines
| | - Gabriel V. Jasul
- Division of Endocrinology, Department of Medicine, University of the Philippines-Philippine General Hospital Medical Center, Manila, Philippines
| | - Aimee Yvonne Criselle L. Aman
- Institute of Human Genetics, National Institutes of Health-University of the Philippines Manila, Manila, Philippines
| | - Christian Deo T. Deguit
- Institute of Human Genetics, National Institutes of Health-University of the Philippines Manila, Manila, Philippines
| | - Jana Victoria B. San Pedro
- Institute of Human Genetics, National Institutes of Health-University of the Philippines Manila, Manila, Philippines
| | - Mark David G. Francisco
- Division of Endocrinology, Department of Medicine, University of the Philippines-Philippine General Hospital Medical Center, Manila, Philippines
| |
Collapse
|
9
|
Nguyen LT, Pollock CA, Saad S. Extraction of high quality and high yield RNA from frozen EDTA blood. Sci Rep 2024; 14:8628. [PMID: 38622175 PMCID: PMC11018810 DOI: 10.1038/s41598-024-58576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Peripheral blood RNA profiling, which can reveal systemic changes in gene expression and immune responses to disease onset and progression, is a powerful tool for diagnosis and biomarker discovery. This technique usually requires high quality RNA, which is only obtainable from fresh blood, or frozen blood that has been collected in special RNA-stabilisation systems. The current study aimed to develop a novel protocol to extract high quality RNA from frozen blood that had been collected in the conventional EDTA tubes. We determined that thawing EDTA blood in the presence of cell lysis/RNA stabilisation buffers (Paxgene or Nucleospin) significantly improved RNA quality (RIN) from below 5 to above 7, which to date has not been shown possible. The EDTA-Nucleospin protocol resulted in 5 times higher yield than the EDTA-Paxgene-PreAnalytix method. The average RIN and mRNA expression levels of five different genes including 18 s, ACTB, MCP1, TNFa and TXNIP using this protocol were also indifferent to those from Paxgene blood, suggesting similar RNA quality and blood transcriptome. Moreover, the protocol allows DNA to be extracted simultaneously. In conclusion, we have developed a practical and efficient protocol to extract high quality, high yield RNA from frozen EDTA blood.
Collapse
Affiliation(s)
- Long T Nguyen
- Renal Medicine, Kolling Institute, University of Sydney, Camperdown, Australia.
| | - Carol A Pollock
- Renal Medicine, Kolling Institute, University of Sydney, Camperdown, Australia
| | - Sonia Saad
- Renal Medicine, Kolling Institute, University of Sydney, Camperdown, Australia
| |
Collapse
|
10
|
McCaffrey TA, Toma I, Yang Z, Katz R, Reiner J, Mazhari R, Shah P, Falk Z, Wargowsky R, Goldman J, Jones D, Shtokalo D, Antonets D, Jepson T, Fetisova A, Jaatinen K, Ree N, Ri M. RNAseq profiling of blood from patients with coronary artery disease: Signature of a T cell imbalance. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 4:100033. [PMID: 37303712 PMCID: PMC10256136 DOI: 10.1016/j.jmccpl.2023.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Background Cardiovascular disease had a global prevalence of 523 million cases and 18.6 million deaths in 2019. The current standard for diagnosing coronary artery disease (CAD) is coronary angiography either by invasive catheterization (ICA) or computed tomography (CTA). Prior studies employed single-molecule, amplification-independent RNA sequencing of whole blood to identify an RNA signature in patients with angiographically confirmed CAD. The present studies employed Illumina RNAseq and network co-expression analysis to identify systematic changes underlying CAD. Methods Whole blood RNA was depleted of ribosomal RNA (rRNA) and analyzed by Illumina total RNA sequencing (RNAseq) to identify transcripts associated with CAD in 177 patients presenting for elective invasive coronary catheterization. The resulting transcript counts were compared between groups to identify differentially expressed genes (DEGs) and to identify patterns of changes through whole genome co-expression network analysis (WGCNA). Results The correlation between Illumina amplified RNAseq and the prior SeqLL unamplified RNAseq was quite strong (r = 0.87), but there was only 9 % overlap in the DEGs identified. Consistent with the prior RNAseq, the majority (93 %) of DEGs were down-regulated ~1.7-fold in patients with moderate to severe CAD (>20 % stenosis). DEGs were predominantly related to T cells, consistent with known reductions in Tregs in CAD. Network analysis did not identify pre-existing modules with a strong association with CAD, but patterns of T cell dysregulation were evident. DEGs were enriched for transcripts associated with ciliary and synaptic transcripts, consistent with changes in the immune synapse of developing T cells. Conclusions These studies confirm and extend a novel mRNA signature of a Treg-like defect in CAD. The pattern of changes is consistent with stress-related changes in the maturation of T and Treg cells, possibly due to changes in the immune synapse.
Collapse
Affiliation(s)
- Timothy A. McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- True Bearing Diagnostics, 2450 Virginia Avenue, Washington, DC 20037, United States of America
| | - Ian Toma
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- Department of Clinical Research and Leadership, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- True Bearing Diagnostics, 2450 Virginia Avenue, Washington, DC 20037, United States of America
| | - Zhaoqing Yang
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Richard Katz
- Department of Medicine, Division of Cardiology, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Jonathan Reiner
- Department of Medicine, Division of Cardiology, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Ramesh Mazhari
- Department of Medicine, Division of Cardiology, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Palak Shah
- INOVA Heart and Vascular Institute, 3300 Gallows Road, Fairfax, VA 22042, United States of America
| | - Zachary Falk
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Richard Wargowsky
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Jennifer Goldman
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Dan Jones
- SeqLL, Inc., 3 Federal Street, Billerica, MA 01821, United States of America
| | - Dmitry Shtokalo
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- A.P. Ershov Institute of Informatics Systems SB RAS, 6, Acad. Lavrentyeva Ave, Novosibirsk 630090, Russia
| | - Denis Antonets
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
| | - Tisha Jepson
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- True Bearing Diagnostics, 2450 Virginia Avenue, Washington, DC 20037, United States of America
| | - Anastasia Fetisova
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Kevin Jaatinen
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Natalia Ree
- Center for Mitochondrial Functional Genomics, Institute of Living Systems, Immanuel Kant Baltic Federal University, Kalingrad 236040, Russia
| | - Maxim Ri
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- A.P. Ershov Institute of Informatics Systems SB RAS, 6, Acad. Lavrentyeva Ave, Novosibirsk 630090, Russia
| |
Collapse
|
11
|
Abdallah HY, Fareed A, Abdelmaogood AKK, Allam S, Abdelgawad M, Deen LATE. Introducing Circulating Vasculature-Related Transcripts as Biomarkers in Coronary Artery Disease. Mol Diagn Ther 2023; 27:243-259. [PMID: 36538237 PMCID: PMC10008268 DOI: 10.1007/s40291-022-00622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Atherosclerotic plaque is considered the hallmark of atherosclerotic lesions in coronary atherosclerosis (CAS), the primary pathogenesis in coronary artery disease (CAD), which develops and progresses through a complex interplay between immune cells, vascular cells, and endothelial shear stresses. Early diagnosis of CAS is critical for avoiding plaque rupture and sudden death. Therefore, identifying new CAD biomarkers linked to vessel wall functions, such as RNA molecules with their distinct signature, is a promising development for these patients. With this rationale, the present study investigated the expression level of the vascular-related RNA transcripts (lncRNA ANRIL, miRNA-126-5p, CDK4, CDK6, TGF-β, E-cadherin, and TNF-α) implicated in the cellular vascular function, proliferation, and inflammatory processes. METHODS A case-control study design with a total of 180 subjects classified participants into two groups; CAD and control groups. The relative expression levels of the seven transcripts under study-selected using online bioinformatics tools and current literature-were assessed in the plasma of all study participants using RT-qPCR. Their predictive significance testing, scoring of disease prioritization, enrichment analysis, and the miRNA-mRNA regulatory network was investigated. RESULTS The relative expression levels of all seven of the circulating vascular-related transcripts under study were statistically significant between CAD patients and controls. Receiver operating characteristic (ROC) analysis results indicated the statistical significance of all the transcripts under study with CDK4 showing the highest area under the curve (AUC) equivalent to 0.91, followed by E-cadherin (0.90), miRNA-126-5p (0.83), ANRIL (0.82), TNF-α (0.63), TGF-β (0.62), and CDK6 (0.59), in descending order. A strong association was detected between most of the transcripts studied in CAD patients with a significant Spearman's correlation coefficient with a two-tailed significance of p < 0.001. Network analysis revealed a strong relationship between the five circulating vasculature transcripts studied and their target miRNAs and miR-126-5p, but not for ANRIL. CONCLUSION The seven circulating vascular-related RNA transcripts under study could serve as potential CAD biomarkers, reflecting the cellular vascular function, proliferation, and inflammatory processes in CAD patients. Therefore, blood transcriptome analysis opens new frontiers for the non-invasive diagnosis of CAD.
Collapse
Affiliation(s)
- Hoda Y Abdallah
- Medical Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt. .,Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Ahmed Fareed
- Department of Cardiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Asmaa K K Abdelmaogood
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Sahar Allam
- Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mai Abdelgawad
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Loaa A Tag El Deen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
12
|
Meltzer AC, Wargowsky RS, Moran S, Jordan T, Toma I, Jepson T, Shu S, Ma Y, McCaffrey TA. Diagnostic accuracy of novel mRNA blood biomarkers of infection to predict outcomes in emergency department patients with undifferentiated abdominal pain. Sci Rep 2023; 13:2297. [PMID: 36759691 PMCID: PMC9909648 DOI: 10.1038/s41598-023-29385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Abdominal pain represents greater than 20% of US Emergency Department (ED) visits due to a wide range of illnesses. There are currently no reliable blood biomarkers to predict serious outcomes in patients with abdominal pain. Our previous studies have identified three mRNA transcripts related to innate immune activation: alkaline phosphatase (ALPL), interleukin-8 receptor-β (IL8RB), and defensin-1 (DEFA1) as promising candidates to detect an intra-abdominal infection. The objective of this study was to evaluate the accuracy of these mRNA biomarkers to predict likely infection, hospitalization and surgery in Emergency Department patients with undifferentiated abdominal pain. We prospectively enrolled Emergency Department patients with undifferentiated abdominal pain who received an abdominal CT scan as part of their evaluation. Clinical outcomes were abstracted from the CT scan and medical records. mRNA biomarker levels were calculated independent of the clinical outcomes and their accuracy was assessed to predict infectious diagnoses, surgery and hospital admission. 89 patients were enrolled; 21 underwent surgery; 47 underwent hospital admission; and, no deaths were observed within 30 days. In identifying which cases were likely infectious, mRNA biomarkers' AUC values were: ALPL, 0.83; DEFA1 0.51; IL8RB, 0.74; and ALPL + IL8RB, 0.79. In predicting which Emergency Department patients would receive surgery, the AUC values were: ALPL, 0.75; DEFA1, 0.58; IL8RB, 0.75; and ALPL + IL8RB, 0.76. In predicting hospital admission, the AUC values were: ALPL, 0.78; DEFA1, 0.52; IL8RB, 0.74; and, ALPL + IL8RB, 0.77. For predicting surgery, ALPL + IL8RB's positive likelihood ratio (LR) was 3.97; negative LR (NLR) was 0.70. For predicting hospital admission, the same marker's positive LR was 2.80 with an NLR of 0.45. Where the primary cause for admission was a potentially infectious disorder, 33 of 34 cases (97%) had positive RNA scores. In a pragmatic, prospective diagnostic accuracy trial in Emergency Department patients with undifferentiated abdominal pain, mRNA biomarkers showed good accuracy to identify patients with potential infection, as well as those needing surgery or hospital admission.
Collapse
Affiliation(s)
- Andrew C Meltzer
- Department of Emergency Medicine, School of Medicine and Health Sciences, The George Washington University Medical Center, Washington, DC, 20037, USA.
| | - Richard S Wargowsky
- Division of Genomic Medicine, Department of Medicine, The George Washington University Medical Center, Washington, DC, 20037, USA
| | - Seamus Moran
- Department of Emergency Medicine, School of Medicine and Health Sciences, The George Washington University Medical Center, Washington, DC, 20037, USA
| | - Tristan Jordan
- Department of Emergency Medicine, School of Medicine and Health Sciences, The George Washington University Medical Center, Washington, DC, 20037, USA
| | - Ian Toma
- Division of Genomic Medicine, Department of Medicine, The George Washington University Medical Center, Washington, DC, 20037, USA.,True Bearing Diagnostics, Washington, DC, 20037, USA
| | - Tisha Jepson
- Division of Genomic Medicine, Department of Medicine, The George Washington University Medical Center, Washington, DC, 20037, USA.,True Bearing Diagnostics, Washington, DC, 20037, USA
| | - Shiyu Shu
- Department of Biostatistics, The George Washington University Milken School of Public Health, Washington, DC, 20037, USA
| | - Yan Ma
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Timothy A McCaffrey
- Division of Genomic Medicine, Department of Medicine, The George Washington University Medical Center, Washington, DC, 20037, USA.,True Bearing Diagnostics, Washington, DC, 20037, USA
| |
Collapse
|
13
|
Liu WP, Li P, Zhan X, Qu LH, Xiong T, Hou FX, Wang JK, Wei N, Liu FQ. Identification of molecular subtypes of coronary artery disease based on ferroptosis- and necroptosis-related genes. Front Genet 2022; 13:870222. [PMID: 36204316 PMCID: PMC9531137 DOI: 10.3389/fgene.2022.870222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: Coronary artery disease (CAD) is a heterogeneous disorder with high morbidity, mortality, and healthcare costs, representing a major burden on public health. Here, we aimed to improve our understanding of the genetic drivers of ferroptosis and necroptosis and the clustering of gene expression in CAD in order to develop novel personalized therapies to slow disease progression.Methods: CAD datasets were obtained from the Gene Expression Omnibus. The identification of ferroptosis- and necroptosis-related differentially expressed genes (DEGs) and the consensus clustering method including the classification algorithm used km and distance used spearman were performed to differentiate individuals with CAD into two clusters (cluster A and cluster B) based expression matrix of DEGs. Next, we identified four subgroup-specific genes of significant difference between cluster A and B and again divided individuals with CAD into gene cluster A and gene cluster B with same methods. Additionally, we compared differences in clinical information between the subtypes separately. Finally, principal component analysis algorithms were constructed to calculate the cluster-specific gene score for each sample for quantification of the two clusters.Results: In total, 25 ferroptosis- and necroptosis-related DEGs were screened. The genes in cluster A were mostly related to the neutrophil pathway, whereas those in cluster B were mostly related to the B-cell receptor signaling pathway. Moreover, the subgroup-specific gene scores and CAD indices were higher in cluster A and gene cluster A than in cluster B and gene cluster B. We also identified and validated two genes showing upregulation between clusters A and B in a validation dataset.Conclusion: High expression of CBS and TLR4 was related to more severe disease in patients with CAD, whereas LONP1 and HSPB1 expression was associated with delayed CAD progression. The identification of genetic subgroups of patients with CAD may improve clinician knowledge of disease pathogenesis and facilitate the development of methods for disease diagnosis, classification, and prognosis.
Collapse
Affiliation(s)
- Wen-Pan Liu
- Cardiovascular Department, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Department of Cardiothoracic Surgery, The First People’s Hospital of Kunming City and Ganmei Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Peng Li
- Department of Surgery, Nanzhao County People’s Hospital, Nanyang, Henan, China
| | - Xu Zhan
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lai-Hao Qu
- Department of Cardiothoracic Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tao Xiong
- Department of Cardiothoracic Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fang-Xia Hou
- Cardiovascular Department, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Jun-Kui Wang
- Cardiovascular Department, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Na Wei
- Cardiovascular Department, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- *Correspondence: Na Wei, ; Fu-Qiang Liu,
| | - Fu-Qiang Liu
- Cardiovascular Department, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- *Correspondence: Na Wei, ; Fu-Qiang Liu,
| |
Collapse
|
14
|
Dong C, Yang Y, Wang Y, Hu X, Wang Q, Gao F, Sun S, Liu Q, Li L, Liu J, Tang Y, Zhang S, Wu C, Zhu H. Gut Microbiota Combined with Metabolites Reveals Unique Features of Acute Myocardial Infarction Patients Different from Stable Coronary Artery Disease. J Adv Res 2022; 46:101-112. [PMID: 35750287 PMCID: PMC10105070 DOI: 10.1016/j.jare.2022.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION Acute myocardial infarction (AMI) accounts for the majority of deaths caused by coronary artery disease (CAD). Early warning of AMI, especially for patients with stable coronary artery disease (sCAD), is urgently needed. Our previous study showed that alterations in the gut microbiota were correlated with CAD severity. OBJECTIVES Herein, we tried to discover accurate and convenient biomarkers for AMI by combination of gut microbiota and fecal/blood/urinary metabolomics. METHODS We recruited 190 volunteers including 93 sCAD patients, 49 AMI patients, and 48 subjects with normal coronary artery (NCA), and measured their blood biochemical parameters, 16S rRNA-based gut microbiota and NMR-based fecal/blood/urinary metabolites. We further selected 20 subjects from each group and analyzed their gut microbiota by whole-metagenome shotgun sequencing. RESULTS Multi-omic analyses revealed that AMI patients exhibited specific changes in gut microbiota and serum/urinary/fecal metabolites as compared to subjects with sCAD or NCA. Fourteen bacterial genera and 30 metabolites (11 in feces, 10 in blood, 9 in urine) were closely related to AMI phenotypes and could accurately distinguish AMI patients from sCAD patients. Some species belonging to Alistipes, Streptococcus, Ruminococcus, Lactobacillus and Faecalibacterium were effective to distinguish AMI from sCAD and their predictive ability was confirmed in an independent cohort of CAD patients. We further selected nine indicators including 4 bacterial genera, 3 fecal and 2 urinary metabolites as a noninvasive biomarker set which can distinguish AMI from sCAD with an AUC of 0.932. CONCLUSION Combination of gut microbiota and fecal/urinary metabolites provided a set of potential useful and noninvasive predictive biomarker for AMI from sCAD.
Collapse
Affiliation(s)
- Chaoran Dong
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yanan Yang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yinghong Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiaomin Hu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| | - Qingchun Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Feng Gao
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shanshan Sun
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qifeng Liu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Lei Li
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jianxun Liu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yida Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| | - Chongming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
15
|
Andreini D, Melotti E, Vavassori C, Chiesa M, Piacentini L, Conte E, Mushtaq S, Manzoni M, Cipriani E, Ravagnani PM, Bartorelli AL, Colombo GI. Whole-Blood Transcriptional Profiles Enable Early Prediction of the Presence of Coronary Atherosclerosis and High-Risk Plaque Features at Coronary CT Angiography. Biomedicines 2022; 10:biomedicines10061309. [PMID: 35740331 PMCID: PMC9219643 DOI: 10.3390/biomedicines10061309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022] Open
Abstract
Existing tools to estimate cardiovascular (CV) risk have sub-optimal predictive capacities. In this setting, non-invasive imaging techniques and omics biomarkers could improve risk-prediction models for CV events. This study aimed to identify gene expression patterns in whole blood that could differentiate patients with severe coronary atherosclerosis from subjects with a complete absence of detectable coronary artery disease and to assess associations of gene expression patterns with plaque features in coronary CT angiography (CCTA). Patients undergoing CCTA for suspected coronary artery disease (CAD) were enrolled. Coronary stenosis was quantified and CCTA plaque features were assessed. The whole-blood transcriptome was analyzed with RNA sequencing. We detected highly significant differences in the circulating transcriptome between patients with high-degree coronary stenosis (≥70%) in the CCTA and subjects with an absence of coronary plaque. Notably, regression analysis revealed expression signatures associated with the Leaman score, the segment involved score, the segment stenosis score, and plaque volume with density <150 HU at CCTA. This pilot study shows that patients with significant coronary stenosis are characterized by whole-blood transcriptome profiles that may discriminate them from patients without CAD. Furthermore, our results suggest that whole-blood transcriptional profiles may predict plaque characteristics.
Collapse
Affiliation(s)
- Daniele Andreini
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.M.); (C.V.); (M.C.); (L.P.); (E.C.); (S.M.); (M.M.); (E.C.); (P.M.R.); (A.L.B.)
- Department of Biomedical and Clinical Science “Luigi Sacco”, University of Milan, 20121 Milan, Italy
- Correspondence: (D.A.); (G.I.C.); Tel.: +39-0258002577 (D.A.); +39-0258002464 (G.I.C.)
| | - Eleonora Melotti
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.M.); (C.V.); (M.C.); (L.P.); (E.C.); (S.M.); (M.M.); (E.C.); (P.M.R.); (A.L.B.)
| | - Chiara Vavassori
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.M.); (C.V.); (M.C.); (L.P.); (E.C.); (S.M.); (M.M.); (E.C.); (P.M.R.); (A.L.B.)
- Department of Clinical Sciences and Community Health, University of Milan, 20121 Milan, Italy
| | - Mattia Chiesa
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.M.); (C.V.); (M.C.); (L.P.); (E.C.); (S.M.); (M.M.); (E.C.); (P.M.R.); (A.L.B.)
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133 Milan, Italy
| | - Luca Piacentini
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.M.); (C.V.); (M.C.); (L.P.); (E.C.); (S.M.); (M.M.); (E.C.); (P.M.R.); (A.L.B.)
| | - Edoardo Conte
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.M.); (C.V.); (M.C.); (L.P.); (E.C.); (S.M.); (M.M.); (E.C.); (P.M.R.); (A.L.B.)
- Department of Biomedical Sciences for Health, University of Milan, 20121 Milan, Italy
| | - Saima Mushtaq
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.M.); (C.V.); (M.C.); (L.P.); (E.C.); (S.M.); (M.M.); (E.C.); (P.M.R.); (A.L.B.)
| | - Martina Manzoni
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.M.); (C.V.); (M.C.); (L.P.); (E.C.); (S.M.); (M.M.); (E.C.); (P.M.R.); (A.L.B.)
| | - Eleonora Cipriani
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.M.); (C.V.); (M.C.); (L.P.); (E.C.); (S.M.); (M.M.); (E.C.); (P.M.R.); (A.L.B.)
| | - Paolo M. Ravagnani
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.M.); (C.V.); (M.C.); (L.P.); (E.C.); (S.M.); (M.M.); (E.C.); (P.M.R.); (A.L.B.)
| | - Antonio L. Bartorelli
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.M.); (C.V.); (M.C.); (L.P.); (E.C.); (S.M.); (M.M.); (E.C.); (P.M.R.); (A.L.B.)
- Department of Biomedical and Clinical Science “Luigi Sacco”, University of Milan, 20121 Milan, Italy
| | - Gualtiero I. Colombo
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.M.); (C.V.); (M.C.); (L.P.); (E.C.); (S.M.); (M.M.); (E.C.); (P.M.R.); (A.L.B.)
- Correspondence: (D.A.); (G.I.C.); Tel.: +39-0258002577 (D.A.); +39-0258002464 (G.I.C.)
| |
Collapse
|
16
|
Wargodsky R, Dela Cruz P, LaFleur J, Yamane D, Kim JS, Benjenk I, Heinz E, Irondi OO, Farrar K, Toma I, Jordan T, Goldman J, McCaffrey TA. RNA Sequencing in COVID-19 patients identifies neutrophil activation biomarkers as a promising diagnostic platform for infections. PLoS One 2022; 17:e0261679. [PMID: 35081105 PMCID: PMC8791486 DOI: 10.1371/journal.pone.0261679] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
Infection with the SARS-CoV2 virus can vary from asymptomatic, or flu-like with moderate disease, up to critically severe. Severe disease, termed COVID-19, involves acute respiratory deterioration that is frequently fatal. To understand the highly variable presentation, and identify biomarkers for disease severity, blood RNA from COVID-19 patient in an intensive care unit was analyzed by whole transcriptome RNA sequencing. Both SARS-CoV2 infection and the severity of COVID-19 syndrome were associated with up to 25-fold increased expression of neutrophil-related transcripts, such as neutrophil defensin 1 (DEFA1), and 3-5-fold reductions in T cell related transcripts such as the T cell receptor (TCR). The DEFA1 RNA level detected SARS-CoV2 viremia with 95.5% sensitivity, when viremia was measured by ddPCR of whole blood RNA. Purified CD15+ neutrophils from COVID-19 patients were increased in abundance and showed striking increases in nuclear DNA staining by DAPI. Concurrently, they showed >10-fold higher elastase activity than normal controls, and correcting for their increased abundance, still showed 5-fold higher elastase activity per cell. Despite higher CD15+ neutrophil elastase activity, elastase activity was extremely low in plasma from the same patients. Collectively, the data supports the model that increased neutrophil and decreased T cell activity is associated with increased COVID-19 severity, and suggests that blood DEFA1 RNA levels and neutrophil elastase activity, both involved in neutrophil extracellular traps (NETs), may be informative biomarkers of host immune activity after viral infection.
Collapse
Affiliation(s)
- Richard Wargodsky
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Philip Dela Cruz
- Department Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - John LaFleur
- Department of Emergency Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - David Yamane
- Department Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, United States of America
- Department of Emergency Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Justin Sungmin Kim
- Department Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Ivy Benjenk
- Department Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Eric Heinz
- Department Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Obinna Ome Irondi
- Department Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Katherine Farrar
- Department Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Ian Toma
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, United States of America
- Department of Clinical Research and Leadership The George Washington University Medical Center, Washington, DC, United States of America
- True Bearing Diagnostics, Washington, DC, United States of America
| | - Tristan Jordan
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Jennifer Goldman
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Timothy A. McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, United States of America
- Department of Clinical Research and Leadership The George Washington University Medical Center, Washington, DC, United States of America
- True Bearing Diagnostics, Washington, DC, United States of America
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| |
Collapse
|