1
|
Mohammad N, Talton L, Dalgan S, Hetzler Z, Steksova A, Wei Q. Ratiometric nonfluorescent CRISPR assay utilizing Cas12a-induced plasmid supercoil relaxation. Commun Chem 2024; 7:130. [PMID: 38851849 PMCID: PMC11162422 DOI: 10.1038/s42004-024-01214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Most CRISPR-based biosensors rely on labeled reporter molecules and expensive equipment for signal readout. A recent approach quantifies analyte concentration by sizing λ DNA reporters via gel electrophoresis, providing a simple solution for label-free detection. Here, we report an alternative strategy for label-free CRISPR-Cas12a, which relies on Cas12a trans-nicking induced supercoil relaxation of dsDNA plasmid reporters to generate a robust and ratiometric readout. The ratiometric CRISPR (rCRISPR) measures the relative percentage of supercoiled plasmid DNA to the relaxed circular DNA by gel electrophoresis for more accurate target concentration quantification. This simple method is two orders of magnitude more sensitive than the typical fluorescent reporter. This self-referenced strategy solves the potential application limitations of previously demonstrated DNA sizing-based CRISPR-Dx without compromising the sensitivity. Finally, we demonstrated the applicability of rCRISPR for detecting various model DNA targets such as HPV 16 and real AAV samples, highlighting its feasibility for point-of-care CRISPR-Dx applications.
Collapse
Affiliation(s)
- Noor Mohammad
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Logan Talton
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Selen Dalgan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Zach Hetzler
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Anastasiia Steksova
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
2
|
do Lago BV, Bezerra CS, Moreira DA, Parente TE, Portilho MM, Pessôa R, Sanabani SS, Villar LM. Genetic diversity of hepatitis B virus quasispecies in different biological compartments reveals distinct genotypes. Sci Rep 2023; 13:17023. [PMID: 37813888 PMCID: PMC10562391 DOI: 10.1038/s41598-023-43655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
The selection pressure imposed by the host immune system impacts hepatitis B virus (HBV) quasispecies variability. This study evaluates HBV genetic diversity in different biological fluids. Twenty paired serum, oral fluid, and DBS samples from chronic HBV carriers were analyzed using both Sanger and next generation sequencing (NGS). The mean HBV viral load in serum was 5.19 ± 4.3 log IU/mL (median 5.29, IQR 3.01-7.93). Genotype distribution was: HBV/A1 55% (11/20), A2 15% (3/20), D3 10% (2/20), F2 15% (3/20), and F4 5% (1/20). Genotype agreement between serum and oral fluid was 100% (genetic distances 0.0-0.006), while that between serum and DBS was 80% (genetic distances 0.0-0.115). Two individuals presented discordant genotypes in serum and DBS. Minor population analysis revealed a mixed population. All samples displayed mutations in polymerase and/or surface genes. Major population analysis of the polymerase pointed to positions H122 and M129 as the most polymorphic (≥ 75% variability), followed by V163 (55%) and I253 (50%). Neither Sanger nor NGS detected any antiviral primary resistance mutations in the major populations. Minor population analysis, however, demonstrated the rtM204I resistance mutation in all individuals, ranging from 2.8 to 7.5% in serum, 2.5 to 6.3% in oral fluid, and 3.6 to 7.2% in DBS. This study demonstrated that different fluids can be used to assess HBV diversity, nonetheless, genotypic differences according to biological compartments can be observed.
Collapse
Affiliation(s)
- Bárbara Vieira do Lago
- Laboratório de Hepatites Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Cristianne Sousa Bezerra
- Laboratório de Hepatites Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Educação, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Fortaleza, Ceará, Brazil
| | - Daniel Andrade Moreira
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Thiago Estevam Parente
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Rodrigo Pessôa
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation (LIM) 03, Clinics Hospital, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Livia Melo Villar
- Laboratório de Hepatites Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Cong S, Bai S, Bi Y, Wang Y, Jin S, He H. Construction of molecular typing in LIHC microenvironment based on lipid metabolism-related genes. Am J Cancer Res 2023; 13:2814-2840. [PMID: 37559997 PMCID: PMC10408469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 04/11/2023] [Indexed: 08/11/2023] Open
Abstract
Consensus on the stage of liver hepatocellular carcinoma (LIHC) in patients is difficult, which restricts the diagnosis and treatment of liver cancer. Molecular typing based on genes related to the lipid metabolism pathways can reflect deeper characteristics of liver cancer and complement the deficiency of the clinical staging system. In this study, we constructed and verified two cell subtypes: C1 and C2 in LIHC, based on six lipid metabolic pathway-associated genes identified in two independent external validation cohorts comprising single-cell RNA-sequencing technology (scRNA-Seq) data and bulk RNA-seq data downloaded from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database. The C2 subtype showed poorer prognosis, higher immune scores, and greater correlation with pathways associated with tumor progression as compared to the C1 subtype. Moreover, the sensitivity of many tested targeted drugs in C1 was relative to C2. Furthermore, Gene Set Enrichment Analysis (GSEA) revealed several significantly enriched oncological signatures and metabolic processes, which might help elucidate the underlying molecular mechanisms. At the same time, we identified there were significantly different metabolites in C1 and C2 subtypes using 11 LIHC tissue samples. In conclusion, we constructed two molecular subtypes based on the lipid metabolism-associated genes, which may provide valuable information to further study the pathogenesis and devise clinical management strategies for LIHC.
Collapse
Affiliation(s)
- Shan Cong
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, China
| | - Shanshan Bai
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, China
| | - Yanfang Bi
- Department of Nursing, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, China
| | - Yu Wang
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, China
| | - Shi Jin
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, China
| | - Hui He
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, China
| |
Collapse
|
4
|
Evolutional transition of HBV genome during the persistent infection determined by single-molecule real-time sequencing. Hepatol Commun 2023; 7:e0047. [PMID: 36848123 PMCID: PMC9974078 DOI: 10.1097/hc9.0000000000000047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Although HBV infection is a serious health issue worldwide, the landscape of HBV genome dynamics in the host has not yet been clarified. This study aimed to determine the continuous genome sequence of each HBV clone using a single-molecule real-time sequencing platform, and clarify the dynamics of structural abnormalities during persistent HBV infection without antiviral therapy. PATIENTS AND METHODS Twenty-five serum specimens were collected from 10 untreated HBV-infected patients. Continuous whole-genome sequencing of each clone was performed using a PacBio Sequel sequencer; the relationship between genomic variations and clinical information was analyzed. The diversity and phylogeny of the viral clones with structural variations were also analyzed. RESULTS The whole-genome sequences of 797,352 HBV clones were determined. The deletion was the most common structural abnormality and concentrated in the preS/S and C regions. Hepatitis B e antibody (anti-HBe)-negative samples or samples with high alanine aminotransferase levels have significantly diverse deletions than anti-HBe-positive samples or samples with low alanine aminotransferase levels. Phylogenetic analysis demonstrated that various defective and full-length clones evolve independently and form diverse viral populations. CONCLUSIONS Single-molecule real-time long-read sequencing revealed the dynamics of genomic quasispecies during the natural course of chronic HBV infections. Defective viral clones are prone to emerge under the condition of active hepatitis, and several types of defective variants can evolve independently of the viral clones with the full-length genome.
Collapse
|
5
|
Mohammad N, Katkam SS, Wei Q. A Sensitive and Nonoptical CRISPR Detection Mechanism by Sizing Double-Stranded λ DNA Reporter. Angew Chem Int Ed Engl 2022; 61:e202213920. [PMID: 36239984 PMCID: PMC10100359 DOI: 10.1002/anie.202213920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/12/2022]
Abstract
CRISPR-based biosensors often rely on colorimetric, fluorescent, or electrochemical signaling mechanism, which involves expensive reporters and/or sophisticated equipment. Here, we demonstrated a simple, inexpensive, nonoptical, and sensitive CRISPR-Cas12a-based sensing platform to detect ssDNA targets by sizing double-stranded λ DNA as novel report molecules. In this platform, the size reduction of λ DNA was quantified by gel electrophoresis analysis. We hypothesize that the massive trans-nuclease activity of Cas12a toward λ DNA is due to the presence of single-stranded looped structures along the λ DNA sequence. In addition, we observed a strong binding affinity between Cas12a and λ DNA, which further promotes the trans-cleavage activity and helps achieve sub-picomolar detection sensitivity, ≈100 times more sensitive than the fluorescent counterpart. The concept of utilizing the physical size change of λ DNA unlocks the possibility of using a variety of dsDNA as CRISPR reporters.
Collapse
Affiliation(s)
- Noor Mohammad
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC 27695USA
- Department of Chemical EngineeringBangladesh University of Engineering and Technology1000DhakaBangladesh
| | - Shrinivas S. Katkam
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC 27695USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC 27695USA
| |
Collapse
|
6
|
Mohammad N, Katkam SS, Wei Q. Recent Advances in Clustered Regularly Interspaced Short Palindromic Repeats-Based Biosensors for Point-of-Care Pathogen Detection. CRISPR J 2022; 5:500-516. [PMID: 35856644 DOI: 10.1089/crispr.2021.0146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Infectious pathogens are pressing concerns due to their heavy toll on global health and socioeconomic infrastructure. Rapid, sensitive, and specific pathogen detection methods are needed more than ever to control disease spreading. The fast evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics (CRISPR-Dx) has opened a new horizon in the field of molecular diagnostics. This review highlights recent efforts in configuring CRISPR technology as an efficient diagnostic tool for pathogen detection. It starts with a brief introduction of different CRISPR-Cas effectors and their working principles for disease diagnosis. It then focuses on the evolution of laboratory-based CRISPR technology toward a potential point-of-care test, including the development of new signaling mechanisms, elimination of preamplification and sample pretreatment steps, and miniaturization of CRISPR reactions on digital assay chips and lateral flow devices. In addition, promising examples of CRISPR-Dx for pathogen detection in various real samples, such as blood, saliva, nasal swab, plant, and food samples, are highlighted. Finally, the challenges and perspectives of future development of CRISPR-Dx for infectious disease monitoring are discussed.
Collapse
Affiliation(s)
- Noor Mohammad
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.,Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | | | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
7
|
Zhan Q, Chang L, Wu J, Zhang Z, Xu J, Yu Y, Feng Z, Zeng Z. T-Cell Receptor β Chain and B-Cell Receptor Repertoires in Chronic Hepatitis B Patients with Coexisting HBsAg and Anti-HBs. Pathogens 2022; 11:727. [DOI: https:/doi.org/10.3390/pathogens11070727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Antibodies in response to antigens are related to the immune repertoire of T- and B-cell receptors. However, some patients with chronic hepatitis B (CHB) have coexisting HBsAg and anti-HBsAg antibodies (anti-HBs) that cannot neutralize HBV. We attempted to investigate the repertoires that produce this response in CHB patients. The T-cell receptor β chain (TRB) and B-cell receptor (BCR) repertoires of peripheral blood genomic DNA were analyzed using MiXCR. T-cell receptor (TCR) cluster analysis was carried out by clusTCR, and motifs prediction was selected by Multiple Em for Motif Elicitation (MEME). A total of 76 subjects were enrolled, including 26 HBsAg and anti-HBs coexisting patients with CHB (DP group), 25 anti-HBs single-positive healthy people (SP group), and 25 CHB patients (CHB group). The clone length of BCR in 39, 90 was significantly different among these groups (p = 0.005, 0.036). The motif “CASSLG” in the DP group was significantly higher than SP and CHB groups and may relate to coexistence, and the motif “GAGPLT” was only shown in the SP group and may relate to anti-HB expression. These provide important insights into vaccine development and CHB treatment.
Collapse
|
8
|
T-Cell Receptor β Chain and B-Cell Receptor Repertoires in Chronic Hepatitis B Patients with Coexisting HBsAg and Anti-HBs. Pathogens 2022; 11:pathogens11070727. [PMID: 35889974 PMCID: PMC9318409 DOI: 10.3390/pathogens11070727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Antibodies in response to antigens are related to the immune repertoire of T- and B-cell receptors. However, some patients with chronic hepatitis B (CHB) have coexisting HBsAg and anti-HBsAg antibodies (anti-HBs) that cannot neutralize HBV. We attempted to investigate the repertoires that produce this response in CHB patients. The T-cell receptor β chain (TRB) and B-cell receptor (BCR) repertoires of peripheral blood genomic DNA were analyzed using MiXCR. T-cell receptor (TCR) cluster analysis was carried out by clusTCR, and motifs prediction was selected by Multiple Em for Motif Elicitation (MEME). A total of 76 subjects were enrolled, including 26 HBsAg and anti-HBs coexisting patients with CHB (DP group), 25 anti-HBs single-positive healthy people (SP group), and 25 CHB patients (CHB group). The clone length of BCR in 39, 90 was significantly different among these groups (p = 0.005, 0.036). The motif “CASSLG” in the DP group was significantly higher than SP and CHB groups and may relate to coexistence, and the motif “GAGPLT” was only shown in the SP group and may relate to anti-HB expression. These provide important insights into vaccine development and CHB treatment.
Collapse
|
9
|
Pley C, Lourenço J, McNaughton AL, Matthews PC. Spacer Domain in Hepatitis B Virus Polymerase: Plugging a Hole or Performing a Role? J Virol 2022; 96:e0005122. [PMID: 35412348 PMCID: PMC9093120 DOI: 10.1128/jvi.00051-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatitis B virus (HBV) polymerase is divided into terminal protein, spacer, reverse transcriptase, and RNase domains. Spacer has previously been considered dispensable, merely acting as a tether between other domains or providing plasticity to accommodate deletions and mutations. We explore evidence for the role of spacer sequence, structure, and function in HBV evolution and lineage, consider its associations with escape from drugs, vaccines, and immune responses, and review its potential impacts on disease outcomes.
Collapse
Affiliation(s)
- Caitlin Pley
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Anna L. McNaughton
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Nuffield Department of Medicine, University of Oxford Medawar Building, Oxford, United Kingdom
| | - Philippa C. Matthews
- Nuffield Department of Medicine, University of Oxford Medawar Building, Oxford, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
10
|
An J, Kim D, Oh B, Oh YJ, Song J, Park N, Kim HI, Kang HJ, Oh JH, Kim W, Lee E, Sung CO, Song GW, Kim DG, Yu E, Letouzé E, Zucman-Rossi J, Lee HC, Shim JH. Comprehensive characterization of viral integrations and genomic aberrations in HBV-infected intrahepatic cholangiocarcinomas. Hepatology 2022; 75:997-1011. [PMID: 34478159 DOI: 10.1002/hep.32135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/08/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Despite the epidemiological association between intrahepatic cholangiocarcinoma (iCCA) and HBV infection, little is known about the relevant oncogenic effects. We sought to identify the landscape and mechanism of HBV integration, along with the genomic architecture of HBV-infected iCCA (HBV-iCCA) tumors. APPROACH AND RESULTS We profiled a cohort of 108 HBV-iCCAs using whole-genome sequencing, deep sequencing, and RNA sequencing, together with preconstructed data sets of HBV-infected HCC (HBV-HCC; n = 167) and combined hepatocellular cholangiocarcinoma (HBV-cHCC/CCA; n = 59), and conventional (n = 154) and fluke-related iCCAs (n = 16). Platforms based on primary iCCA cell lines to evaluate the functional effects of chimeric transcripts were also used. We found that HBV had inserted at multiple sites in the iCCA genomes in 45 (41.7%) of the tumors. Recurrent viral integration breakpoints were found at nine different sites. The most common insertional hotspot (7 tumors) was in the TERT (telomerase reverse transcriptase) promoter, where insertions and mutations (11 tumors) were mutually exclusive, and were accompanied by promoter hyperactivity. Recurrent HBV integration events (5 tumors) were also detected in FAT2 (FAT atypical cadherin 2), and were associated with enrichment of epithelial-mesenchymal transition-related genes. A distinctive intergenic insertion (chr9p21.3), between DMRTA1 (DMRT like family A1) and LINC01239 (long intergenic non-protein coding RNA 1239), had oncogenic effects through activation of the mammalian target of rapamycin (mTOR)/4EBP/S6K pathway. Regarding the mutational profiles of primary liver cancers, the overall landscape of HBV-iCCA was closer to that of nonviral conventional iCCA, than to HBV-HCC and HBV-cHCC/CCA. CONCLUSIONS Our findings provide insight into the behavior of iCCAs driven by various pathogenic mechanisms involving HBV integration events and associated genomic aberrations. This knowledge should be of use in managing HBV carriers.
Collapse
Affiliation(s)
- Jihyun An
- Gastroenterology and HepatologyHanyang University College of MedicineGuri, GyeonggiRepublic of Korea
| | - Deokhoon Kim
- PathologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea.,Center for Cancer Genome DiscoveryAsan Institute for Life ScienceUniversity of Ulsan College of MedicineAsan Medical CenterSeoulRepublic of Korea
| | - Bora Oh
- Asan Institute for Life ScienceAsan Medical CenterSeoulRepublic of Korea
| | - Yoo-Jin Oh
- Asan Institute for Life ScienceAsan Medical CenterSeoulRepublic of Korea
| | - Jihyun Song
- Asan Institute for Life ScienceAsan Medical CenterSeoulRepublic of Korea
| | - Naomi Park
- Asan Institute for Life ScienceAsan Medical CenterSeoulRepublic of Korea
| | - Ha Il Kim
- GastroenterologyKyung Hee University Hospital at GangdongSeoulRepublic of Korea
| | - Hyo Jeong Kang
- PathologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Ji-Hye Oh
- Center for Cancer Genome DiscoveryAsan Institute for Life ScienceUniversity of Ulsan College of MedicineAsan Medical CenterSeoulRepublic of Korea.,Asan Institute for Life ScienceAsan Medical CenterSeoulRepublic of Korea
| | - Wonkyung Kim
- Center for Cancer Genome DiscoveryAsan Institute for Life ScienceUniversity of Ulsan College of MedicineAsan Medical CenterSeoulRepublic of Korea.,Asan Institute for Life ScienceAsan Medical CenterSeoulRepublic of Korea
| | - Eunjung Lee
- Medical ScienceAsan Medical Institute of Convergence Science and TechnologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Chang Ohk Sung
- PathologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea.,Center for Cancer Genome DiscoveryAsan Institute for Life ScienceUniversity of Ulsan College of MedicineAsan Medical CenterSeoulRepublic of Korea
| | - Gi-Won Song
- SurgeryAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea.,Asan Liver CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Dae-Ghon Kim
- Gastroenterology and HepatologyChonbuk National University Medical SchoolJeonjuJeonbukRepublic of Korea
| | - Eunsil Yu
- PathologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea.,Asan Liver CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Eric Letouzé
- Centre de Recherche des CordeliersSorbonne UniversitéINSERMUniversité de ParisParisFrance.,Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale Contre le CancerLabex OncoImmunologyParisFrance
| | - Jessica Zucman-Rossi
- Centre de Recherche des CordeliersSorbonne UniversitéINSERMUniversité de ParisParisFrance.,Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale Contre le CancerLabex OncoImmunologyParisFrance.,Hôpital Européen Georges PompidouParisFrance
| | - Han Chu Lee
- Asan Liver CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea.,GastroenterologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Ju Hyun Shim
- Asan Liver CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea.,GastroenterologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| |
Collapse
|
11
|
Yin L, Man S, Ye S, Liu G, Ma L. CRISPR-Cas based virus detection: Recent advances and perspectives. Biosens Bioelectron 2021; 193:113541. [PMID: 34418634 PMCID: PMC8349459 DOI: 10.1016/j.bios.2021.113541] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022]
Abstract
Viral infections are one of the most intimidating threats to human beings. One convincing example is the coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2. Rapid, sensitive, specific and field-deployable identification of causal viruses is critical for disease surveillance, control and treatment. The shortcomings of current methods create an impending need for developing novel biosensing platforms. CRISPR-Cas systems, especially CRISPR-Cas12a and CRISPR-Cas13a, characterized by their sensitivity, specificity, high base resolution and programmability upon nucleic acid recognition, have been repurposed for molecular diagnostics, surging a new path forward in biosensing. They, as the core of some robust diagnostic tools, are revolutionizing the way that virus can be detected. This review focuses on recent advances in virus detection with CRISPR-Cas systems especially CRISPR-Cas12a/Cas13a. We started with a short introduction to CRISPR-Cas systems and the properties of Cas12a and Cas13a effectors, and continued with reviewing the current advances of virus detection utilizing CRISPR-Cas systems. The significance and advantages of such methods were then discussed. Finally, the challenges and perspectives were proposed. We tried to provide readers with a concise profile of emerging and fast-expanding CRISPR-Cas based biosensing technology, and highlighted its potential applications in a range of scenarios with regard to virus detection.
Collapse
Affiliation(s)
- Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Shengying Ye
- Pharmacy Department, The 983(th)Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Tianjin, 300142, China.
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
12
|
Lee JH, Kim HS. Current laboratory tests for diagnosis of hepatitis B virus infection. Int J Clin Pract 2021; 75:e14812. [PMID: 34487586 DOI: 10.1111/ijcp.14812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) has a long history in human infectious diseases. HBV infection can progress chronically, leading to cancer. After introduction of a vaccine, the overall incidence rate of HBV infection has decreased, although it remains a health problem in many countries. PURPOSE The aim of this review was to summarise current diagnostic efforts for HBV infection and future HBV diagnosis perspectives. METHODS We reviewed and summarised current laboratory diagnosis related with HBV infection in clinical practice. RESULTS There have been various serologic- and molecular-based methods to diagnose acute or chronic HBV infection. Since intrahepatic covalently closed circular DNAs (cccDNAs) function as robust HBV replication templates, cure of chronic HBV infection is limited. Recently, new biomarkers such as hepatitis B virus core-related antigen (HBcrAg) and HBV RNA have emerged that appear to reflect intrahepatic cccDNA status. These new biomarkers should be validated before clinical usage. CONCLUSION An effective diagnostic approach and current updated knowledge of treatment response monitoring are important for HBV infection management. Brand new ultrasensitive and accurate immunologic methods may pave the way to manage HBV infection in parallel with immunotherapy era.
Collapse
Affiliation(s)
- Jong-Han Lee
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Hyon-Suk Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Garcia-Garcia S, Cortese MF, Rodríguez-Algarra F, Tabernero D, Rando-Segura A, Quer J, Buti M, Rodríguez-Frías F. Next-generation sequencing for the diagnosis of hepatitis B: current status and future prospects. Expert Rev Mol Diagn 2021; 21:381-396. [PMID: 33880971 DOI: 10.1080/14737159.2021.1913055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatitis B virus (HBV) causes a complex and persistent infection with a major impact on patients health. Viral-genome sequencing can provide valuable information for characterizing virus genotype, infection dynamics and drug and vaccine resistance. AREAS COVERED This article reviews the current literature to describe the next-generation sequencing progress that facilitated a more comprehensive study of HBV quasispecies in diagnosis and clinical monitoring. EXPERT OPINION HBV variability plays a key role in liver disease progression and treatment efficacy. Second-generation sequencing improved the sensitivity for detecting and quantifying mutations, mixed genotypes and viral recombination. Third-generation sequencing enables the analysis of the entire HBV genome, although the high error rate limits its use in clinical practice.
Collapse
Affiliation(s)
- Selene Garcia-Garcia
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
- Clinical Biochemistry Research Group, Vall d'Hebron Institut Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Francesca Cortese
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
- Clinical Biochemistry Research Group, Vall d'Hebron Institut Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Rodríguez-Algarra
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Tabernero
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas, Instituto De Salud Carlos III, Madrid Spain
| | - Ariadna Rando-Segura
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
| | - Josep Quer
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas, Instituto De Salud Carlos III, Madrid Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d'Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
| | - Maria Buti
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas, Instituto De Salud Carlos III, Madrid Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
| | - Francisco Rodríguez-Frías
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
- Clinical Biochemistry Research Group, Vall d'Hebron Institut Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas, Instituto De Salud Carlos III, Madrid Spain
| |
Collapse
|
14
|
Chen X, Zhou Q, Dong S, Wang S, Liu R, Wu X, Li S. Multiple Cross Displacement Amplification Linked with Nanoparticles-Based Lateral Flow Biosensor in Screening of Hepatitis B Virus in Clinical Application. Infect Drug Resist 2021; 14:1219-1229. [PMID: 33790592 PMCID: PMC8007573 DOI: 10.2147/idr.s297645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Background Hepatitis B virus (HBV) is a common pathogen that predominantly causes severe liver disease, and remains one of a huge challenge worldwide, especially in many resource-constrained areas. Developing a low-cost, sensitive, specific, and rapid approach for screening HBV is critical for its treatment and prevention. In the current study, a novel molecular detection approach, multiple cross displacement amplification (MCDA) coupled with polymer nanoparticle-based lateral flow biosensor (MCDA-LFB), was applied for detection of HBV in blood samples. Methods HBV standard substance and clinical donor serum samples were collected and used for the establishment and confirmation of the HBV-MCDA-LFB assay. A set of 10 MCDA primers was designed according to HBV-specific gene S. The HBV-MCDA-LFB assay conditions, including genomic template concentration, MCDA reaction temperature and time were optimized. The sensitivity and specificity of the HBV-MCDA -LFB assay were evaluated in this report. The HBV-MCDA-LFB assay was applied to detect the HBV agent from clinical samples. Results The HBV-MCDA primers based on the S gene were valid for establishment of MCDA assay. The HBV-MCDA reaction with optimized conditions could be carried out at a constant temperature 64°C for 35 min. The whole process, including sample preparation (5 min), genomic template extraction (~30 min), MCDA amplification (35 min), and LFB reading (~2 min), could be completed within 80 min. The sensitivity of this assay was 5 IU per reaction. The specificity was 100% for HBV-MCDA-LFB assay. Conclusion These results confirmed that the HBV-MCDA-LFB is a low-cost, sensitive, specific, simple, and rapid method for detecting HBV agents. This technique has great potential to develop a point-of-care testing (POCT) method in clinical practice, especially in endemic and resource-constrained regions.
Collapse
Affiliation(s)
- Xu Chen
- The Second Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China.,Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Qingxue Zhou
- Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, Zhejiang, 310008, People's Republic of China
| | - Shilei Dong
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Shuoshi Wang
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Rui Liu
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Xueli Wu
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Shijun Li
- Laboratory of Bacterial Infectious Disease of Experimental Centre, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, 550004, People's Republic of China
| |
Collapse
|
15
|
Jiang X, Chang L, Yan Y, Wang L. Paradoxical HBsAg and anti-HBs coexistence among Chronic HBV Infections: Causes and Consequences. Int J Biol Sci 2021; 17:1125-1137. [PMID: 33867835 PMCID: PMC8040313 DOI: 10.7150/ijbs.55724] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B surface antigen (HBsAg) and Hepatitis B surface antibody (anti-HBs) were reported simultaneously among Hepatitis B virus (HBV) infections. HBsAg is a specific indicator of acute or chronic HBV infections, while anti-HBs is a protective antibody reflecting the recovery and immunity of hosts. HBsAg and anti-HBs coexist during seroconversion and then form immune complex, which is rare detected in clinical cases. However, with the promotion of vaccination and the application of various antiviral drugs, along with the rapid development of medical technology, the coexistence of HBsAg and anti-HBs has become more prevalent. Mutations in the viral genomes, immune status and genetic factors of hosts may contribute to the coexistence. Novel HBsAg assays, with higher sensitivity and ability to detect mutations or immune complexes, can also yield HBsAg/anti-HBs coexistence. The discovery of coexistence has shattered the idea of traditional serological patterns and raised questions about the effectiveness of vaccines. Worth noting is that HBsAg/anti-HBs double positivity is strongly associated with progressive liver diseases, especially hepatocellular carcinoma. In conclusion, viral mutations, host factors, and methodology impacts can all lead to the coexistence of HBsAg and anti-HBs. This coexistence is not an indicator of improvement, as an increased risk of adverse clinical outcomes still exists.
Collapse
Affiliation(s)
- Xinyi Jiang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Le Chang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Ying Yan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|
16
|
Guvenir M, Arikan A. Hepatitis B Virus: From Diagnosis to Treatment. Pol J Microbiol 2020; 69:391-399. [PMID: 33574867 PMCID: PMC7812357 DOI: 10.33073/pjm-2020-044] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B infection is still a global concern progressing as acute-chronic hepatitis, severe liver failure, and death. The infection is most widely transmitted from the infected mother to a child, with infected blood and body fluids. Pregnant women, adolescents, and all adults at high risk of chronic infection are recommended to be screened for hepatitis B infection. The initial analysis includes serological tests that allow differentiation of acute and chronic hepatitis. Molecular assays performed provide detection and quantification of viral DNA, genotyping, drug resistance, and precore/core mutation analysis to confirm infection and monitor disease progression in chronic hepatitis B patients. All patients with chronic hepatitis B should be treated with antiviral medications and regularly monitored for efficient treatment. The current treatment is based on nucleos(t)ide analogs and pegylated interferons that save lives by decreasing liver cancer death, liver transplant, slow or reverse the progression of liver disease as well as the virus infectivity.
Collapse
Affiliation(s)
- Meryem Guvenir
- Near East University, Vocational School of Health Services, Nicosia, Northern Cyprus
| | - Ayse Arikan
- Near East University, Faculty of Medicine, Department of Medical Microbiology, Nicosia, Northern Cyprus
- Near East University, DESAM Institute, Nicosia, Northern Cyprus
| |
Collapse
|
17
|
Duraisamy GS, Bhosale D, Lipenská I, Huvarova I, Růžek D, Windisch MP, Miller AD. Advanced Therapeutics, Vaccinations, and Precision Medicine in the Treatment and Management of Chronic Hepatitis B Viral Infections; Where Are We and Where Are We Going? Viruses 2020; 12:v12090998. [PMID: 32906840 PMCID: PMC7552065 DOI: 10.3390/v12090998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The management of chronic hepatitis B virus (CHB) infection is an area of massive unmet clinical need worldwide. In spite of the development of powerful nucleoside/nucleotide analogue (NUC) drugs, and the widespread use of immune stimulators such as interferon-alpha (IFNα) or PEGylated interferon-alpha (PEG-IFNα), substantial improvements in CHB standards of care are still required. We believe that the future for CHB treatment now rests with advanced therapeutics, vaccination, and precision medicine, if all are to bring under control this most resilient of virus infections. In spite of a plethora of active drug treatments, anti-viral vaccinations and diagnostic techniques, the management of CHB infection remains unresolved. The reason for this is the very complexity of the virus replication cycle itself, giving rise to multiple potential targets for therapeutic intervention some of which remain very intractable indeed. Our review is focused on discussing the potential impact that advanced therapeutics, vaccinations and precision medicine could have on the future management of CHB infection. We demonstrate that advanced therapeutic approaches for the treatment of CHB, in the form of gene and immune therapies, together with modern vaccination strategies, are now emerging rapidly to tackle the limitations of current therapeutic approaches to CHB treatment in clinic. In addition, precision medicine approaches are now gathering pace too, starting with personalized medicine. On the basis of this, we argue that the time has now come to accelerate the design and creation of precision therapeutic approaches (PTAs) for CHB treatment that are based on advanced diagnostic tools and nanomedicine, and which could maximize CHB disease detection, treatment, and monitoring in ways that could genuinely eliminate CHB infection altogether.
Collapse
Affiliation(s)
- Ganesh Selvaraj Duraisamy
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
| | - Dattatry Bhosale
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
| | - Ivana Lipenská
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
| | - Ivana Huvarova
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
| | - Daniel Růžek
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 České Budějovice, Czech Republic
| | - Marc P. Windisch
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, Korea;
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon 305-350, Korea
| | - Andrew D. Miller
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Černá Pole, CZ-61300 Brno, Czech Republic
- KP Therapeutics (Europe) s.r.o., Purkyňova 649/127, CZ-61200 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
18
|
Lau KCK, Joshi SS, Mahoney DJ, Mason AL, van Marle G, Osiowy C, Coffin CS. Differences in HBV Replication, APOBEC3 Family Expression, and Inflammatory Cytokine Levels Between Wild-Type HBV and Pre-core (G1896A) or Basal Core Promoter (A1762T/G1764A) Mutants. Front Microbiol 2020; 11:1653. [PMID: 32760388 PMCID: PMC7372132 DOI: 10.3389/fmicb.2020.01653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Background Chronic hepatitis B virus (HBV) infection is the leading cause of hepatocellular carcinoma (HCC) world-wide. HBV variants, particularly the G1896A pre-core (PC) and A1762T/G1764A basal core promoter (BCP) mutations, are established risk factors for cirrhosis and HCC, but the molecular biological basis is unclear. We hypothesized that these variants result in differential HBV replication, APOBEC3 family expression, and cytokine/chemokine expression. Methods HepG2 cells were transfected with monomeric full-length containing wild-type, PC, or BCP HBV. Cells and supernatant were collected to analyze viral infection markers (i.e., HBsAg, HBeAg, HBV DNA, and RNA). Cellular APOBEC3 expression and activity was assessed by quantitative real-time (qRT)-PCR, immunoblot, differential DNA denaturation PCR, and sequencing. Cytokine/chemokines in the supernatant and in serum from 11 CHB carriers (4 non-cirrhotic; 7 cirrhotic and/or HCC) with predominantly wild-type, PC, or BCP variants were evaluated by Luminex. Results HBeAg expression was reduced in PC and BCP variants, and higher supernatant HBV DNA and HBV RNA levels were found with A1762T/G1764A vs. G1896A mutant (p < 0.05). Increased APOBEC3G protein levels in wild-type vs. mutant were not associated with HBV covalently closed circular DNA G-to-A hypermutations. Differences in cytokine/chemokine expression in culture supernatants, especially IL-13 were observed amongst the variants analyzed. Noticeable increases of numerous cytokines/chemokines, including IL-4 and IL-8, were observed in ex vivo serum collected from CHB carriers with PC mutant. Conclusion HBV sequence variation leads to differences in HBV protein production (HBeAg) and viral replication in addition to altered host innate antiviral restriction factor (APOBEC3) and cytokine/chemokine expression.
Collapse
Affiliation(s)
- Keith C K Lau
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calgary Liver Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shivali S Joshi
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calgary Liver Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Douglas J Mahoney
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew L Mason
- Department of Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Guido van Marle
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carla Osiowy
- Viral Hepatitis and Bloodborne Pathogens, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Carla S Coffin
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calgary Liver Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Trinks J, Marciano S, Esposito I, Franco A, Mascardi MF, Mendizabal M, Livellara B, Arrigo D, Calzetta P, Vujacich C, Giunta D, Gadano A, Flichman D. The genetic variability of hepatitis B virus subgenotype F1b precore/core gene is related to the outcome of the acute infection. Virus Res 2019; 277:197840. [PMID: 31846615 DOI: 10.1016/j.virusres.2019.197840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/03/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
AIM To assess the association of viral and host genetic variability with the outcome of acute infection with hepatitis B virus subgenotype F1b (HBV/F1b). METHODS The cohort consisted of 26 patients with acute HBV/F1b infection who exhibit different outcomes: spontaneous resolution (n = 10), progression to chronic hepatitis (n = 10) and acute liver failure (n = 6). HLA SNPs (rs3077, rs9277542, rs2856718 and rs7453920) were determined. The S gene and core promoter/precore/core region were direct sequenced, and this latter region was also ultra-deep sequenced. Mean number of mutations, mutation rate, Shannon entropy, positive selection sites and mutational patterns of quasispecies were compared between groups. RESULTS HLA SNPs were associated with spontaneous resolution or progression to chronic hepatitis, but not with the development of acute liver failure. The mean number of mutations in the S gene was similar among the three groups. Patients with spontaneous resolution had the lowest number of mutations, mutation rates and Shannon entropy values in the precore/core compared to the other two groups. Ten positive selection sites mapped on HLA-restricted epitopes were related to progression to chronic hepatitis and acute liver failure. Mutations T1753C, A1762T, G1764A, C1766T, T1768A G1896A, G2092T and T2107C were associated with acute liver failure and progression to chronic hepatitis. CONCLUSION Highly heterogeneous and complex HBV precore/core carrying specific point mutations, combined with the host HLA background, were associated with a worse clinical outcome of acute HBV/F1b infection.
Collapse
Affiliation(s)
- Julieta Trinks
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Instituto Universitario del Hospital Italiano (IUHI) - Hospital Italiano (HIBA), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Sebastián Marciano
- Sección de Hepatología, Servicio de Clínica Médica, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina; Departamento de Investigación, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Isabella Esposito
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Instituto Universitario del Hospital Italiano (IUHI) - Hospital Italiano (HIBA), Buenos Aires, Argentina
| | - Alejandra Franco
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Instituto Universitario del Hospital Italiano (IUHI) - Hospital Italiano (HIBA), Buenos Aires, Argentina
| | - Maria Florencia Mascardi
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Instituto Universitario del Hospital Italiano (IUHI) - Hospital Italiano (HIBA), Buenos Aires, Argentina
| | - Manuel Mendizabal
- Unidad de Hígado y Trasplante Hepático, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Beatriz Livellara
- Laboratorio Central, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Diego Arrigo
- Laboratorio Central, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Calzetta
- División de Gastroenterología, Hospital Juan A. Fernández, Buenos Aires, Argentina
| | - Claudia Vujacich
- Fundación Centro de Estudios Infectológicos (FUNCEI), Buenos Aires, Argentina
| | - Diego Giunta
- Departamento de Investigación, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina; Área de Investigación de Medicina Interna, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Adrián Gadano
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Instituto Universitario del Hospital Italiano (IUHI) - Hospital Italiano (HIBA), Buenos Aires, Argentina; Sección de Hepatología, Servicio de Clínica Médica, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina; Departamento de Investigación, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Diego Flichman
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
20
|
Wang X, Huang K, Zeng X, Liu Z, Liao X, Yang C, Yu T, Han C, Zhu G, Qin W, Peng T. Diagnostic and prognostic value of mRNA expression of phospholipase C β family genes in hepatitis B virus‑associated hepatocellular carcinoma. Oncol Rep 2019; 41:2855-2875. [PMID: 30896816 PMCID: PMC6448089 DOI: 10.3892/or.2019.7066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Four phospholipase C β (PLCB) isoforms, PLCB1, PLCB2, PLCB3 and PLCB4, have been previously investigated regarding their roles in the metabolism of inositol lipids and cancer. The present study aimed to explore the association between PLCB1-4 and hepatocellular carcinoma (HCC). Data from 212 patients with hepatitis B virus-associated HCC were used to analyze the diagnostic and prognostic significance of PLCB genes in. A nomogram predicted the survival probability. Gene set enrichment analysis explored gene ontology terms and the metabolic pathways associated with PLCB genes. Validation of the prognostic values of PLCB genes was performed using the Gene Expression Profiling Interactive Analysis website. PLCB1 and PLCB2 were revealed to have diagnostic value for HCC (0.869 and 0.836 area under the curve, respectively; both P≤0.05). The combination analysis of these genes had an advantage over each alone (0.905 PLCB1 and PLCB2, and 0.877 PLCB1 and PLCB3 area under the curve; P≤0.05). PLCB1 was associated with overall survival (OS) and recurrence-free survival (RFS; adjusted P=0.002 and P=0.001, respectively). A nomogram predicted survival probability of patients with HCC at 1, 3- and 5-years. Gene set enrichment analysis indicated that PLCB1 and PLCB2 are involved in the cell cycle, cell division and the PPAR signaling pathway, among other functions. Validation using GEPIA revealed that PLCB1 and PLCB2 were associated with OS and PLCB1 and PLCB4 were associated with RFS. PLCB1 and PLCB2 exhibited diagnostic value for HCC and their combination had an advantage over each individually. PLCB1 has OS and RFS prognostic value for patients with HCC.
Collapse
Affiliation(s)
- Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xianmin Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|