1
|
Han Y, Zhou H, Liu C, Wang W, Qin Y, Chen M. SARS-CoV-2 N protein coordinates viral particle assembly through multiple domains. J Virol 2024; 98:e0103624. [PMID: 39412257 PMCID: PMC11575404 DOI: 10.1128/jvi.01036-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 11/20/2024] Open
Abstract
Increasing evidence suggests that mutations in the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may enhance viral replication by modulating the assembly process. However, the mechanisms governing the selective packaging of viral genomic RNA by the N protein, along with the assembly and budding processes, remain poorly understood. Utilizing a virus-like particles (VLPs) system, we have identified that the C-terminal domain (CTD) of the N protein is essential for its interaction with the membrane (M) protein during budding, crucial for binding and packaging genomic RNA. Notably, the isolated CTD lacks M protein interaction capacity and budding ability. Yet, upon fusion with the N-terminal domain (NTD) or the linker region (LKR), the resulting NTD/CTD and LKR/CTD acquire RNA-dependent interactions with the M protein and acquire budding capabilities. Furthermore, the presence of the C-tail is vital for efficient genomic RNA encapsidation by the N protein, possibly regulated by interactions with the M protein. Remarkably, the NTD of the N protein appears dispensable for virus particle assembly, offering the virus adaptive advantages. The emergence of N* (NΔN209) in the SARS-CoV-2 B.1.1 lineage corroborates our findings and hints at the potential evolution of a more streamlined N protein by the SARS-CoV-2 virus to facilitate the assembly process. Comparable observations have been noted with the N proteins of SARS-CoV and HCoV-OC43 viruses. In essence, these findings propose that β-coronaviruses may augment their replication by fine-tuning the assembly process.IMPORTANCEAs a highly transmissible zoonotic virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve. Adaptive mutations in the nucleocapsid (N) protein highlight the critical role of N protein-based assembly in the virus's replication and evolutionary dynamics. However, the precise molecular mechanisms of N protein-mediated viral assembly remain inadequately understood. Our study elucidates the intricate interactions between the N protein, membrane (M) protein, and genomic RNA, revealing a C-terminal domain (CTD)-based assembly mechanism common among β-coronaviruses. The appearance of the N* variant within the SARS-CoV-2 B.1.1 lineage supports our conclusion that the N-terminal domain (NTD) of the N protein is not essential for viral assembly. This work not only enhances our understanding of coronavirus assembly mechanisms but also provides new insights for developing antiviral drugs targeting these conserved processes.
Collapse
Affiliation(s)
- Yuewen Han
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haiwu Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Cong Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiwei Wang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yali Qin
- School of Life Sciences, Hubei University, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- School of Life Sciences, Hubei University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
2
|
Zhang Y, Wu F, Han Y, Wu Y, Huang L, Huang Y, Yan D, Jiang X, Ma J, Xu W. Unraveling the assembly mechanism of SADS-CoV virus nucleocapsid protein: insights from RNA binding, dimerization, and epitope diversity profiling. J Virol 2024; 98:e0092624. [PMID: 39082816 PMCID: PMC11334509 DOI: 10.1128/jvi.00926-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
The swine acute diarrhea syndrome coronavirus (SADS-CoV) has caused significant disruptions in porcine breeding and raised concerns about potential human infection. The nucleocapsid (N) protein of SADS-CoV plays a vital role in viral assembly and replication, but its structure and functions remain poorly understood. This study utilized biochemistry, X-ray crystallography, and immunization techniques to investigate the N protein's structure and function in SADS-CoV. Our findings revealed distinct domains within the N protein, including an RNA-binding domain, two disordered domains, and a dimerization domain. Through biochemical assays, we confirmed that the N-terminal domain functions as an RNA-binding domain, and the C-terminal domain is involved in dimerization, with the crystal structure analysis providing visual evidence of dimer formation. Immunization experiments demonstrated that the disordered domain 2 elicited a significant antibody response. These identified domains and their interactions are crucial for viral assembly. This comprehensive understanding of the N protein in SADS-CoV enhances our knowledge of its assembly and replication mechanisms, enabling the development of targeted interventions and therapeutic strategies. IMPORTANCE SADS-CoV is a porcine coronavirus that originated from a bat HKU2-related coronavirus. It causes devastating swine diseases and poses a high risk of spillover to humans. The coronavirus N protein, as the most abundant viral protein in infected cells, likely plays a key role in viral assembly and replication. However, the structure and function of this protein remain unclear. Therefore, this study employed a combination of biochemistry and X-ray crystallography to uncover distinct structural domains in the N protein, including RNA-binding domains, two disordered domains, and dimerization domains. Additionally, we made the novel discovery that the disordered domain elicited a significant antibody response. These findings provide new insights into the structure and functions of the SADS-CoV N protein, which have important implications for future studies on SADS-CoV diagnosis, as well as the development of vaccines and anti-viral drugs.
Collapse
Affiliation(s)
- Ying Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fang Wu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Yongyue Han
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yuzhe Wu
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Liqiu Huang
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yuanwei Huang
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Di Yan
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiwen Jiang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Wang S, Ran W, Sun L, Fan Q, Zhao Y, Wang B, Yang J, He Y, Wu Y, Wang Y, Chen L, Chuchuay A, You Y, Zhu X, Wang X, Chen Y, Wang Y, Chen YQ, Yuan Y, Zhao J, Mao Y. Sequential glycosylations at the multibasic cleavage site of SARS-CoV-2 spike protein regulate viral activity. Nat Commun 2024; 15:4162. [PMID: 38755139 PMCID: PMC11099032 DOI: 10.1038/s41467-024-48503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
The multibasic furin cleavage site at the S1/S2 boundary of the spike protein is a hallmark of SARS-CoV-2 and plays a crucial role in viral infection. However, the mechanism underlying furin activation and its regulation remain poorly understood. Here, we show that GalNAc-T3 and T7 jointly initiate clustered O-glycosylations in the furin cleavage site of the SARS-CoV-2 spike protein, which inhibit furin processing, suppress the incorporation of the spike protein into virus-like-particles and affect viral infection. Mechanistic analysis reveals that the assembly of the spike protein into virus-like particles relies on interactions between the furin-cleaved spike protein and the membrane protein of SARS-CoV-2, suggesting a possible mechanism for furin activation. Interestingly, mutations in the spike protein of the alpha and delta variants of the virus confer resistance against glycosylation by GalNAc-T3 and T7. In the omicron variant, additional mutations reverse this resistance, making the spike protein susceptible to glycosylation in vitro and sensitive to GalNAc-T3 and T7 expression in human lung cells. Our findings highlight the role of glycosylation as a defense mechanism employed by host cells against SARS-CoV-2 and shed light on the evolutionary interplay between the host and the virus.
Collapse
Affiliation(s)
- Shengjun Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Wei Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingyu Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qingchi Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanqi Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Foshan Institute for Food and Drug Control, Foshan, China
| | - Bowen Wang
- College of Life Science, Northwest University, Xi'an, China
| | - Jinghong Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqi He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Luoyi Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Arpaporn Chuchuay
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuyu You
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinhai Zhu
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yanqiu Yuan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.
| | - Yang Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, China.
| |
Collapse
|
4
|
Desmarets L, Danneels A, Burlaud-Gaillard J, Blanchard E, Dubuisson J, Belouzard S. The KxGxYR and DxE motifs in the C-tail of the Middle East respiratory syndrome coronavirus membrane protein are crucial for infectious virus assembly. Cell Mol Life Sci 2023; 80:353. [PMID: 37940699 PMCID: PMC10632273 DOI: 10.1007/s00018-023-05008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/21/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
The coronavirus' (CoV) membrane (M) protein is the driving force during assembly, but this process remains poorly characterized. Previously, we described two motifs in the C-tail of the Middle East respiratory syndrome CoV (MERS-CoV) M protein involved in its endoplasmic reticulum (ER) exit (211DxE213) and trans-Golgi network (TGN) retention (199KxGxYR204). Here, their function in virus assembly was investigated by two different virus-like particle (VLP) assays and by mutating both motifs in an infectious MERS-CoV cDNA clone. It was shown that the 199KxGxYR204 motif was essential for VLP and infectious virus assembly. Moreover, the mislocalization of the M protein induced by mutation of this motif prevented M-E interaction. Hampering the ER export of M by mutating its 211DxE213 motif still allowed the formation of nucleocapsid-empty VLPs, but prevented the formation of fully assembled VLPs and infectious particles. Taken together, these data show that the MERS-CoV assembly process highly depends on the correct intracellular trafficking of its M protein, and hence that not only specific protein-protein interacting motifs but also correct subcellular localization of the M protein in infected cells is essential for virus formation and should be taken into consideration when studying the assembly process.
Collapse
Affiliation(s)
- Lowiese Desmarets
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Adeline Danneels
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Julien Burlaud-Gaillard
- INSERM U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Emmanuelle Blanchard
- INSERM U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Jean Dubuisson
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Sandrine Belouzard
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France.
| |
Collapse
|
5
|
Terasaki K, Narayanan K, Makino S. Identification of a 1.4-kb-Long Sequence Located in the nsp12 and nsp13 Coding Regions of SARS-CoV-2 Genomic RNA That Mediates Efficient Viral RNA Packaging. J Virol 2023:e0065923. [PMID: 37367225 PMCID: PMC10373556 DOI: 10.1128/jvi.00659-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
The specific packaging of the viral RNA genome into virus particles is an essential step in the replication cycle of coronaviruses (CoVs). Using a single-cycle, replicable severe acute respiratory syndrome CoV-2 (SARS-CoV-2) mutant, we demonstrated the preferential packaging of the SARS-CoV-2 genomic RNA into purified virus particles. Furthermore, based on the sequence of an efficiently packaged defective interfering RNA of SARS-CoV, a closely related CoV, that was generated after serial passages of SARS-CoV in cell culture, we designed a series of replication-competent SARS-CoV-2 minigenome RNAs to identify the specific viral RNA region that is important for SARS-CoV-2 RNA packaging into virus particles. We showed that a 1.4-kb-long sequence, derived from the nsp12 and nsp13 coding regions of the SARS-CoV-2 genomic RNA, is required for the efficient packaging of SARS-CoV-2 minigenome RNA into SARS-CoV-2 particles. In addition, we also showed that the presence of possibly the entire 1.4-kb-long sequence is important for the efficient packaging of SARS-CoV-2 RNA. Our findings highlight the differences between the RNA packaging sequence identified in SARS-CoV-2, a Sarbecovirus, and the packaging signal of mouse hepatitis virus (MHV), an Embecovirus, which is a 95-nt-long sequence located at the nsp15 coding region of MHV genomic RNA. Collectively, our data imply that both the location and the sequence/structural features of the RNA element(s) that drives the selective and efficient packaging of viral genomic RNA are not conserved among the subgenera Embecovirus and Sarbecovirus within the Betacoronavirus genus. IMPORTANCE Elucidating the mechanism of SARS-CoV-2 RNA packaging into virus particles is important for the rational design of antiviral drugs that inhibit this vital step in the replication cycle of CoVs. However, our knowledge about the RNA packaging mechanism in SARS-CoV-2, including the identification of the viral RNA region important for SARS-CoV-2 RNA packaging, is limited, primarily due to the logistical challenges of handing SARS-CoV-2 in biosafety level 3 (BSL3) facilities. Our study, using a single-cycle, replicable SARS-CoV-2 mutant, which can be handled in a BSL2 lab, demonstrated the preferential packaging of full-length SARS-CoV-2 genomic RNA into virus particles and identified a specific 1.4-kb-long RNA region in SARS-CoV-2 genomic RNA that is required for the efficient packaging of SARS-CoV-2 RNA into virus particles. The information generated in our study could be valuable for clarifying the mechanisms of SARS-CoV-2 RNA packaging and for the development of targeted therapeutics against SARS-CoV-2 and other related CoVs.
Collapse
Affiliation(s)
- Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Krishna Narayanan
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
6
|
Gullberg RC, Frydman J. Novel Mode of nanoLuciferase Packaging in SARS-CoV-2 Virions and VLPs Provides Versatile Reporters for Virus Production. Viruses 2023; 15:1335. [PMID: 37376634 DOI: 10.3390/v15061335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
SARS-CoV-2 is a positive-strand RNA virus in the Coronaviridae family that is responsible for morbidity and mortality worldwide. To better understand the molecular pathways leading to SARS-CoV-2 virus assembly, we examined a virus-like particle (VLP) system co-expressing all structural proteins together with an mRNA reporter encoding nanoLuciferase (herein nLuc). Surprisingly, the 19 kDa nLuc protein itself was encapsidated into VLPs, providing a better reporter than nLuc mRNA itself. Strikingly, infecting nLuc-expressing cells with the SARS-CoV-2, NL63 or OC43 coronaviruses yielded virions containing packaged nLuc that served to report viral production. In contrast, infection with the flaviviruses, dengue or Zika, did not lead to nLuc packaging and secretion. A panel of reporter protein variants revealed that the packaging is size-limited and requires cytoplasmic expression, indicating that the large virion of coronaviruses can encaspidate a small cytoplasmic reporter protein. Our findings open the way for powerful new approaches to measure coronavirus particle production, egress and viral entry mechanisms.
Collapse
Affiliation(s)
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Ahmed MR, Du Z. Molecular Interaction of Nonsense-Mediated mRNA Decay with Viruses. Viruses 2023; 15:v15040816. [PMID: 37112798 PMCID: PMC10141005 DOI: 10.3390/v15040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
The virus–host interaction is dynamic and evolutionary. Viruses have to fight with hosts to establish successful infection. Eukaryotic hosts are equipped with multiple defenses against incoming viruses. One of the host antiviral defenses is the nonsense-mediated mRNA decay (NMD), an evolutionarily conserved mechanism for RNA quality control in eukaryotic cells. NMD ensures the accuracy of mRNA translation by removing the abnormal mRNAs harboring pre-matured stop codons. Many RNA viruses have a genome that contains internal stop codon(s) (iTC). Akin to the premature termination codon in aberrant RNA transcripts, the presence of iTC would activate NMD to degrade iTC-containing viral genomes. A couple of viruses have been reported to be sensitive to the NMD-mediated antiviral defense, while some viruses have evolved with specific cis-acting RNA features or trans-acting viral proteins to overcome or escape from NMD. Recently, increasing light has been shed on the NMD–virus interaction. This review summarizes the current scenario of NMD-mediated viral RNA degradation and classifies various molecular means by which viruses compromise the NMD-mediated antiviral defense for better infection in their hosts.
Collapse
Affiliation(s)
| | - Zhiyou Du
- Correspondence: ; Tel.: +86-571-86843195
| |
Collapse
|
8
|
Chechetkin VR, Lobzin VV. Evolving ribonucleocapsid assembly/packaging signals in the genomes of the human and animal coronaviruses: targeting, transmission and evolution. J Biomol Struct Dyn 2022; 40:11239-11263. [PMID: 34338591 DOI: 10.1080/07391102.2021.1958061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A world-wide COVID-19 pandemic intensified strongly the studies of molecular mechanisms related to the coronaviruses. The origin of coronaviruses and the risks of human-to-human, animal-to-human and human-to-animal transmission of coronaviral infections can be understood only on a broader evolutionary level by detailed comparative studies. In this paper, we studied ribonucleocapsid assembly-packaging signals (RNAPS) in the genomes of all seven known pathogenic human coronaviruses, SARS-CoV, SARS-CoV-2, MERS-CoV, HCoV-OC43, HCoV-HKU1, HCoV-229E and HCoV-NL63 and compared them with RNAPS in the genomes of the related animal coronaviruses including SARS-Bat-CoV, MERS-Camel-CoV, MHV, Bat-CoV MOP1, TGEV and one of camel alphacoronaviruses. RNAPS in the genomes of coronaviruses were evolved due to weakly specific interactions between genomic RNA and N proteins in helical nucleocapsids. Combining transitional genome mapping and Jaccard correlation coefficients allows us to perform the analysis directly in terms of underlying motifs distributed over the genome. In all coronaviruses, RNAPS were distributed quasi-periodically over the genome with the period about 54 nt biased to 57 nt and to 51 nt for the genomes longer and shorter than that of SARS-CoV, respectively. The comparison with the experimentally verified packaging signals for MERS-CoV, MHV and TGEV proved that the distribution of particular motifs is strongly correlated with the packaging signals. We also found that many motifs were highly conserved in both characters and positioning on the genomes throughout the lineages that make them promising therapeutic targets. The mechanisms of encapsidation can affect the recombination and co-infection as well.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vladimir R Chechetkin
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Vasily V Lobzin
- School of Physics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Discovery and structural characterization of chicoric acid as a SARS-CoV-2 nucleocapsid protein ligand and RNA binding disruptor. Sci Rep 2022; 12:18500. [PMID: 36323732 PMCID: PMC9628480 DOI: 10.1038/s41598-022-22576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/17/2022] [Indexed: 01/06/2023] Open
Abstract
The nucleocapsid (N) protein plays critical roles in coronavirus genome transcription and packaging, representing a key target for the development of novel antivirals, and for which structural information on ligand binding is scarce. We used a novel fluorescence polarization assay to identify small molecules that disrupt the binding of the N protein to a target RNA derived from the SARS-CoV-2 genome packaging signal. Several phenolic compounds, including L-chicoric acid (CA), were identified as high-affinity N-protein ligands. The binding of CA to the N protein was confirmed by isothermal titration calorimetry, 1H-STD and 15N-HSQC NMR, and by the crystal structure of CA bound to the N protein C-terminal domain (CTD), further revealing a new modulatory site in the SARS-CoV-2 N protein. Moreover, CA reduced SARS-CoV-2 replication in cell cultures. These data thus open venues for the development of new antivirals targeting the N protein, an essential and yet underexplored coronavirus target.
Collapse
|
10
|
Zhou Y, Sotcheff SL, Routh AL. Next-generation sequencing: A new avenue to understand viral RNA-protein interactions. J Biol Chem 2022; 298:101924. [PMID: 35413291 PMCID: PMC8994257 DOI: 10.1016/j.jbc.2022.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/25/2022] Open
Abstract
The genomes of RNA viruses present an astonishing source of both sequence and structural diversity. From intracellular viral RNA-host interfaces to interactions between the RNA genome and structural proteins in virus particles themselves, almost the entire viral lifecycle is accompanied by a myriad of RNA-protein interactions that are required to fulfill their replicative potential. It is therefore important to characterize such rich and dynamic collections of viral RNA-protein interactions to understand virus evolution and their adaptation to their hosts and environment. Recent advances in next-generation sequencing technologies have allowed the characterization of viral RNA-protein interactions, including both transient and conserved interactions, where molecular and structural approaches have fallen short. In this review, we will provide a methodological overview of the high-throughput techniques used to study viral RNA-protein interactions, their biochemical mechanisms, and how they evolved from classical methods as well as one another. We will discuss how different techniques have fueled virus research to characterize how viral RNA and proteins interact, both locally and on a global scale. Finally, we will present examples on how these techniques influence the studies of clinically important pathogens such as HIV-1 and SARS-CoV-2.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA.
| | - Stephanea L Sotcheff
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA; Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
11
|
Kim J, Kim M, Kim D, Park S, Kang M, Baek K, Choi JK, Maharjan S, Akauliya M, Lee Y, Kwon HJ. Targeting the Interaction Between Spike Protein and Nucleocapsid Protein for Suppression and Detection of Human Coronavirus OC43. Front Immunol 2022; 13:835333. [PMID: 35359936 PMCID: PMC8960273 DOI: 10.3389/fimmu.2022.835333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/18/2022] [Indexed: 01/09/2023] Open
Abstract
Human coronavirus OC43 (HCoV-OC43) is the coronavirus most associated with "common colds", infections of the upper respiratory tract. Previously, we reported that direct interactions of nucleocapsid (N) protein and C-terminal domain of Spike protein (Spike CD) are essential for replication of SARS-CoV-2 and MERS-CoV. Thus, we developed a novel ELISA-based strategy targeting these specific interactions to detect SARS-CoV-2 and MERS-CoV. Here, we investigated whether the same principles apply to HCoV-OC43. We discovered that the S protein of HCoV-OC43 interacts with N protein and that cell penetrating Spike CD peptide inhibits virus protein expression and replication of HCoV-OC43. The interaction between HCoV-OC43 S and N proteins were recapitulated with a recombinant HCoV-OC43 Spike CD fusion protein and a recombinant HCoV-OC43 N fusion protein in vitro. By producing an anti-HCoV-OC43 N protein-specific monoclonal antibody, we established a virus detection system based on the interaction between recombinant Spike CD and N protein of HCoV-OC43. We suggest that the interaction between Spike CD and N protein is conserved in coronaviruses and therefore could be a target for therapeutics against both novel coronavirus and its variants.
Collapse
Affiliation(s)
- Jinsoo Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Minyoung Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, South Korea
| | - Mijeong Kang
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Kyeongbin Baek
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Jun-Kyu Choi
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, South Korea
| | - Sony Maharjan
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Madhav Akauliya
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, South Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
12
|
Lu W, Zhao Z, Huang YW, Wang B. Review: A systematic review of virus-like particles of coronavirus: Assembly, generation, chimerism and their application in basic research and in the clinic. Int J Biol Macromol 2022; 200:487-497. [PMID: 35065135 PMCID: PMC8769907 DOI: 10.1016/j.ijbiomac.2022.01.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Virus-like particles (VLPs) are nano-scale particles that are morphologically similar to a live virus but which lack a genetic component. Since the pandemic spread of COVID-19, much focus has been placed on coronavirus (CoV)-related VLPs. CoVs contain four structural proteins, though the minimum requirement for VLP formation differs among virus species. CoV VLPs are commonly produced in mammalian and insect cell systems, sometimes in the form of chimeric VLPs that enable surface display of CoV epitopes. VLPs are an ideal model for virological research and have been applied as vaccines and diagnostic reagents to aid in clinical disease control. This review summarizes and updates the research progress on the characteristics of VLPs from different known CoVs, mainly focusing on assembly, in vitro expression systems for VLP generation, VLP chimerism, protein-based nanoparticles and their applications in basic research and clinical settings, which may aid in development of novel VLP vaccines against emerging coronavirus diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Wan Lu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhuangzhuang Zhao
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yao-Wei Huang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Bin Wang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Tariq H, Batool S, Asif S, Ali M, Abbasi BH. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front Microbiol 2022; 12:790121. [PMID: 35046918 PMCID: PMC8761975 DOI: 10.3389/fmicb.2021.790121] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are nanostructures that possess diverse applications in therapeutics, immunization, and diagnostics. With the recent advancements in biomedical engineering technologies, commercially available VLP-based vaccines are being extensively used to combat infectious diseases, whereas many more are in different stages of development in clinical studies. Because of their desired characteristics in terms of efficacy, safety, and diversity, VLP-based approaches might become more recurrent in the years to come. However, some production and fabrication challenges must be addressed before VLP-based approaches can be widely used in therapeutics. This review offers insight into the recent VLP-based vaccines development, with an emphasis on their characteristics, expression systems, and potential applicability as ideal candidates to combat emerging virulent pathogens. Finally, the potential of VLP-based vaccine as viable and efficient immunizing agents to induce immunity against virulent infectious agents, including, SARS-CoV-2 and protein nanoparticle-based vaccines has been elaborated. Thus, VLP vaccines may serve as an effective alternative to conventional vaccine strategies in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sannia Batool
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saaim Asif
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mohammad Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | | |
Collapse
|
14
|
Jia Z, Liu C, Chen Y, Jiang H, Wang Z, Yao J, Yang J, Zhu J, Zhang B, Yuchi Z. Crystal structures of the SARS-CoV-2 nucleocapsid protein C-terminal domain and development of nucleocapsid-targeting nanobodies. FEBS J 2021; 289:3813-3825. [PMID: 34665939 PMCID: PMC8646419 DOI: 10.1111/febs.16239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
The ongoing outbreak of COVID-19 caused by SARS-CoV-2 has resulted in a serious public health threat globally. Nucleocapsid protein is a major structural protein of SARS-CoV-2 that plays important roles in the viral RNA packing, replication, assembly, and infection. Here, we report two crystal structures of nucleocapsid protein C-terminal domain (CTD) at resolutions of 2.0 Å and 3.1 Å, respectively. These two structures, crystallized under different conditions, contain 2 and 12 CTDs in asymmetric unit, respectively. Interestingly, despite different crystal packing, both structures show a similar dimeric form as the smallest unit, consistent with its solution form measured by the size-exclusion chromatography, suggesting an important role of CTD in the dimerization of nucleocapsid proteins. By analyzing the surface charge distribution, we identified a stretch of positively charged residues between Lys257 and Arg262 that are involved in RNA-binding. Through screening a single-domain antibodies (sdAbs) library, we identified four sdAbs targeting different regions of nucleocapsid protein with high affinities that have future potential to be used in viral detection and therapeutic purposes.
Collapse
Affiliation(s)
- Zhenghu Jia
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China.,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China.,International Research Center for precision medicine, Beroni Group Limited, Sydney, Australia
| | - Chen Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Yuewen Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Heng Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Zijing Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Jialu Yao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Jie Yang
- International Research Center for precision medicine, Beroni Group Limited, Sydney, Australia
| | - Jiaxing Zhu
- International Research Center for precision medicine, Beroni Group Limited, Sydney, Australia
| | - Boqing Zhang
- International Research Center for precision medicine, Beroni Group Limited, Sydney, Australia
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| |
Collapse
|
15
|
RNA Structures and Their Role in Selective Genome Packaging. Viruses 2021; 13:v13091788. [PMID: 34578369 PMCID: PMC8472981 DOI: 10.3390/v13091788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
To generate infectious viral particles, viruses must specifically select their genomic RNA from milieu that contains a complex mixture of cellular or non-genomic viral RNAs. In this review, we focus on the role of viral encoded RNA structures in genome packaging. We first discuss how packaging signals are constructed from local and long-range base pairings within viral genomes, as well as inter-molecular interactions between viral and host RNAs. Then, how genome packaging is regulated by the biophysical properties of RNA. Finally, we examine the impact of RNA packaging signals on viral evolution.
Collapse
|
16
|
Yao S, Narayanan A, Majowicz SA, Jose J, Archetti M. A synthetic defective interfering SARS-CoV-2. PeerJ 2021; 9:e11686. [PMID: 34249513 PMCID: PMC8255065 DOI: 10.7717/peerj.11686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Viruses thrive by exploiting the cells they infect, but in order to replicate and infect other cells they must produce viral proteins. As a result, viruses are also susceptible to exploitation by defective versions of themselves that do not produce such proteins. A defective viral genome with deletions in protein-coding genes could still replicate in cells coinfected with full-length viruses. Such a defective genome could even replicate faster due to its shorter size, interfering with the replication of the virus. We have created a synthetic defective interfering version of SARS-CoV-2, the virus causing the Covid-19 pandemic, assembling parts of the viral genome that do not code for any functional protein but enable the genome to be replicated and packaged. This synthetic defective genome replicates three times faster than SARS-CoV-2 in coinfected cells, and interferes with it, reducing the viral load of infected cells by half in 24 hours. The synthetic genome is transmitted as efficiently as the full-length genome, suggesting the location of the putative packaging signal of SARS-CoV-2. A version of such a synthetic construct could be used as a self-promoting antiviral therapy: by enabling replication of the synthetic genome, the virus would promote its own demise.
Collapse
Affiliation(s)
- Shun Yao
- Department of Biology, Pennsylvania State University, University Park, United States of America
| | - Anoop Narayanan
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, United States of America
| | - Sydney A Majowicz
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, United States of America
| | - Joyce Jose
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, United States of America.,The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, United States of America
| | - Marco Archetti
- Department of Biology, Pennsylvania State University, University Park, United States of America.,The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, United States of America
| |
Collapse
|
17
|
Chang CK, Lin SM, Satange R, Lin SC, Sun SC, Wu HY, Kehn-Hall K, Hou MH. Targeting protein-protein interaction interfaces in COVID-19 drug discovery. Comput Struct Biotechnol J 2021; 19:2246-2255. [PMID: 33936565 PMCID: PMC8064971 DOI: 10.1016/j.csbj.2021.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
To date, the COVID-19 pandemic has claimed over 1 million human lives, infected another 50 million individuals and wreaked havoc on the global economy. The crisis has spurred the ongoing development of drugs targeting its etiological agent, the SARS-CoV-2. Targeting relevant protein-protein interaction interfaces (PPIIs) is a viable paradigm for the design of antiviral drugs and enriches the targetable chemical space by providing alternative targets for drug discovery. In this review, we will provide a comprehensive overview of the theory, methods and applications of PPII-targeted drug development towards COVID-19 based on recent literature. We will also highlight novel developments, such as the successful use of non-native protein-protein interactions as targets for antiviral drug screening. We hope that this review may serve as an entry point for those interested in applying PPIIs towards COVID-19 drug discovery and speed up drug development against the pandemic.
Collapse
Affiliation(s)
- Chung-Ke Chang
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shan-Meng Lin
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Roshan Satange
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan.,Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Shih-Chao Lin
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Sin-Cih Sun
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Hung-Yi Wu
- Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Virginia 24061, United States
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan.,Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
18
|
Benzigar MR, Bhattacharjee R, Baharfar M, Liu G. Current methods for diagnosis of human coronaviruses: pros and cons. Anal Bioanal Chem 2021; 413:2311-2330. [PMID: 33219449 PMCID: PMC7679240 DOI: 10.1007/s00216-020-03046-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
The current global fight against coronavirus disease (COVID-19) to flatten the transmission curve is put forth by the World Health Organization (WHO) as there is no immediate diagnosis or cure for COVID-19 so far. In order to stop the spread, researchers worldwide are working around the clock aiming to develop reliable tools for early diagnosis of severe acute respiratory syndrome (SARS-CoV-2) understanding the infection path and mechanisms. Currently, nucleic acid-based molecular diagnosis (real-time reverse transcription polymerase chain reaction (RT-PCR) test) is considered the gold standard for early diagnosis of SARS-CoV-2. Antibody-based serology detection is ineffective for the purpose of early diagnosis, but a potential tool for serosurveys, providing people with immune certificates for clearance from COVID-19 infection. Meanwhile, there are various blooming methods developed these days. In this review, we summarise different types of coronavirus discovered which can be transmitted between human beings. Methods used for diagnosis of the discovered human coronavirus (SARS, MERS, COVID-19) including nucleic acid detection, gene sequencing, antibody detection, antigen detection, and clinical diagnosis are presented. Their merits, demerits and prospects are discussed which can help the researchers to develop new generation of advanced diagnostic tools for accurate and effective control of human coronavirus transmission in the communities and hospitals.
Collapse
Affiliation(s)
- Mercy R Benzigar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ripon Bhattacharjee
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mahroo Baharfar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
19
|
Park BK, Kim J, Park S, Kim D, Kim M, Baek K, Bae JY, Park MS, Kim WK, Lee Y, Kwon HJ. MERS-CoV and SARS-CoV-2 replication can be inhibited by targeting the interaction between the viral spike protein and the nucleocapsid protein. Theranostics 2021; 11:3853-3867. [PMID: 33664866 PMCID: PMC7914343 DOI: 10.7150/thno.55647] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The molecular interactions between viral proteins form the basis of virus production and can be used to develop strategies against virus infection. The interactions of the envelope proteins and the viral RNA-binding nucleocapsid (N) protein are essential for the assembly of coronaviruses including the Middle East respiratory syndrome coronavirus (MERS-CoV). Methods: Using co-immunoprecipitation, immunostaining, and proteomics analysis, we identified a protein interacting with the spike (S) protein in the cells infected with MERS-CoV or SARS-CoV-2. To confirm the interaction, synthetic peptides corresponding to the C-terminal domain of the S protein (Spike CD) were produced and their effect on the interaction was investigated in vitro. In vivo effect of the Spike CD peptides after cell penetration was further investigated using viral plaque formation assay. Phylogeographic analyses were conducted to deduce homology of Spike CDs and N proteins. Results: We identified a direct interaction between the S protein and the N protein of MERS-CoV that takes place during virus assembly in infected cells. Spike CD peptides of MERS-CoV inhibited the interaction between the S and N proteins in vitro. Furthermore, cell penetration by the synthetic Spike CD peptides inhibited viral plaque formation in MERS-CoV-infected cells. Phylogeographic analyses of Spike CDs and N proteins showed high homology among betacoronavirus lineage C strains. To determine if Spike CD peptides can inhibit the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we used the same strategy and found that the SARS-CoV-2 Spike CD peptide inhibited virus replication in SARS-CoV-2-infected cells. Conclusions: We suggest that the interaction between the S protein and the N protein can be targeted to design new therapeutics against emerging coronaviruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Byoung Kwon Park
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jinsoo Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Minyoung Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyeongbin Baek
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul 02841, Republic of Korea
| | - Won-Keun Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyung-Joo Kwon
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
20
|
Ko K, Nagashima S, E. B, Ouoba S, Akita T, Sugiyama A, Ohisa M, Sakaguchi T, Tahara H, Ohge H, Ohdan H, Kubo T, Kishita E, Kuwabara M, Takahashi K, Tanaka J. Molecular characterization and the mutation pattern of SARS-CoV-2 during first and second wave outbreaks in Hiroshima, Japan. PLoS One 2021; 16:e0246383. [PMID: 33544733 PMCID: PMC7864667 DOI: 10.1371/journal.pone.0246383] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In this study, we performed molecular characterization of SARS-CoV-2 strains in Hiroshima and its mutation pattern between the first and second waves of the outbreak. METHOD A total of 55 nasal swab samples from the first wave in Hiroshima and 13 from the second wave were examined quantitatively by RT-qPCR and qualitatively by nested PCR using specific primers. Four samples from each wave underwent next-generation sequencing and phylogenetic tree analysis including controls and all sequences retrieved in Japan from GISAID and GenBank. Subsequently, mutations were examined. RESULTS Viral load ranged 7.85 × 101-1.42 × 108 copies/ml. Of 68 samples, one was Asian type-O, 65 were European type-GR, and 2 were undetectable. Phylogenetic tree analysis indicated that Japan was infected with various Asian strains (L, S, V, O) from January through April. By second week of March, European strains (G, GH, GR) had appeared, and GR strains became predominant after mid-March. The first case in Hiroshima was classified as Asian strain O, and the rest were GR strains. Then, second wave of GR strains appeared independently with 11-15 base mutations. Comparing the first- and second-wave GR strains, mutation rate was 1.17-1.36 × 10-3 base substitutions per site per year; in addition, amino acid changes occurred at S1361P and P3371S in ORF1a, A314V in ORF1b, and P151L in N. All seven GR strains were D614G variants with R202K and G203R mutations in N. A single-nucleotide insertion in ORF8 that causes a defect in ORF8 protein was found in one isolate (S66) from the second wave. CONCLUSION Our findings reveal the evolutionary hierarchy of SARS-CoV-2 in Japan. The predominant D614G variants and a new form of ORF8 deletion in Hiroshima provide the clue for role of viral factor in local outbreaks of SARS-CoV-2.
Collapse
Affiliation(s)
- Ko Ko
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shintaro Nagashima
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Bunthen E.
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Payment Certification Agency, Ministry of Health, Phnom Penh, Cambodia
| | - Serge Ouoba
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Unité de Recherche Clinique de Nanoro (URCN), Nanoro, Burkina Faso
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Aya Sugiyama
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masayuki Ohisa
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsuhiko Kubo
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eisaku Kishita
- Hiroshima Prefecture Health and Welfare Bureau, Hiroshima, Japan
| | - Masao Kuwabara
- Hiroshima Prefectural Center for Disease Control and Prevention, Hiroshima, Japan
| | - Kazuaki Takahashi
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
21
|
Vilar S, Isom DG. One Year of SARS-CoV-2: How Much Has the Virus Changed? BIOLOGY 2021; 10:91. [PMID: 33530355 PMCID: PMC7911924 DOI: 10.3390/biology10020091] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide crisis with profound effects on both public health and the economy. In order to combat the COVID-19 pandemic, research groups have shared viral genome sequence data through the Global Initiative on Sharing All Influenza Data (GISAID). Over the past year, ≈290,000 full SARS-CoV-2 proteome sequences have been deposited in the GISAID. Here, we used these sequences to assess the rate of nonsynonymous mutants over the entire viral proteome. Our analysis shows that SARS-CoV-2 proteins are mutating at substantially different rates, with most of the viral proteins exhibiting little mutational variability. As anticipated, our calculations capture previously reported mutations that arose in the first months of the pandemic, such as D614G (Spike), P323L (NSP12), and R203K/G204R (Nucleocapsid), but they also identify more recent mutations, such as A222V and L18F (Spike) and A220V (Nucleocapsid), among others. Our comprehensive temporal and geographical analyses show two distinct periods with different proteome mutation rates: December 2019 to July 2020 and August to December 2020. Notably, some mutation rates differ by geography, primarily during the latter half of 2020 in Europe. Furthermore, our structure-based molecular analysis provides an exhaustive assessment of SARS-CoV-2 mutation rates in the context of the current set of 3D structures available for SARS-CoV-2 proteins. This emerging sequence-to-structure insight is beginning to illuminate the site-specific mutational (in)tolerance of SARS-CoV-2 proteins as the virus continues to spread around the globe.
Collapse
Affiliation(s)
- Santiago Vilar
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Daniel G. Isom
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- Institute for Data Science and Computing, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
22
|
Yang M, He S, Chen X, Huang Z, Zhou Z, Zhou Z, Chen Q, Chen S, Kang S. Structural Insight Into the SARS-CoV-2 Nucleocapsid Protein C-Terminal Domain Reveals a Novel Recognition Mechanism for Viral Transcriptional Regulatory Sequences. Front Chem 2021; 8:624765. [PMID: 33511102 PMCID: PMC7835709 DOI: 10.3389/fchem.2020.624765] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused massive disruptions to society and the economy, and the transcriptional regulatory mechanisms behind the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are poorly understood. Herein, we determined the crystal structure of the SARS-CoV-2 nucleocapsid protein C-terminal domain (CTD) at a resolution of 2.0 Å, and demonstrated that the CTD has a comparable distinct electrostatic potential surface to equivalent domains of other reported CoVs, suggesting that the CTD has novel roles in viral RNA binding and transcriptional regulation. Further in vitro biochemical assays demonstrated that the viral genomic intergenic transcriptional regulatory sequences (TRSs) interact with the SARS-CoV-2 nucleocapsid protein CTD with a flanking region. The unpaired adeno dinucleotide in the TRS stem-loop structure is a major determining factor for their interactions. Taken together, these results suggested that the nucleocapsid protein CTD is responsible for the discontinuous viral transcription mechanism by recognizing the different patterns of viral TRS during transcription.
Collapse
Affiliation(s)
- Mei Yang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Suhua He
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiaoxue Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhaoxia Huang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Ziliang Zhou
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhechong Zhou
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Qiuyue Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Shoudeng Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Sisi Kang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Molecular Imaging Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
23
|
Iserman C, Roden CA, Boerneke MA, Sealfon RSG, McLaughlin GA, Jungreis I, Fritch EJ, Hou YJ, Ekena J, Weidmann CA, Theesfeld CL, Kellis M, Troyanskaya OG, Baric RS, Sheahan TP, Weeks KM, Gladfelter AS. Genomic RNA Elements Drive Phase Separation of the SARS-CoV-2 Nucleocapsid. Mol Cell 2020; 80:1078-1091.e6. [PMID: 33290746 PMCID: PMC7691212 DOI: 10.1016/j.molcel.2020.11.041] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/28/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
We report that the SARS-CoV-2 nucleocapsid protein (N-protein) undergoes liquid-liquid phase separation (LLPS) with viral RNA. N-protein condenses with specific RNA genomic elements under physiological buffer conditions and condensation is enhanced at human body temperatures (33°C and 37°C) and reduced at room temperature (22°C). RNA sequence and structure in specific genomic regions regulate N-protein condensation while other genomic regions promote condensate dissolution, potentially preventing aggregation of the large genome. At low concentrations, N-protein preferentially crosslinks to specific regions characterized by single-stranded RNA flanked by structured elements and these features specify the location, number, and strength of N-protein binding sites (valency). Liquid-like N-protein condensates form in mammalian cells in a concentration-dependent manner and can be altered by small molecules. Condensation of N-protein is RNA sequence and structure specific, sensitive to human body temperature, and manipulatable with small molecules, and therefore presents a screenable process for identifying antiviral compounds effective against SARS-CoV-2.
Collapse
Affiliation(s)
- Christiane Iserman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christine A Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark A Boerneke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Grace A McLaughlin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ethan J Fritch
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joanne Ekena
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chase A Weidmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chandra L Theesfeld
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Olga G Troyanskaya
- Center for Computational Biology, Flatiron Institute, New York, NY, USA; Department of Computer Science, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
24
|
Das C, Paul SS, Saha A, Singh T, Saha A, Im J, Biswas G. Silver-Based Nanomaterials as Therapeutic Agents Against Coronaviruses: A Review. Int J Nanomedicine 2020; 15:9301-9315. [PMID: 33262589 PMCID: PMC7695609 DOI: 10.2147/ijn.s280976] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Since the identification of the first human coronavirus in the 1960s, a total of six coronaviruses that are known to affect humans have been identified: 229E, OC43, severe acute respiratory syndrome coronavirus (SARS-CoV), NL63, HKU1, and Middle East respiratory syndrome coronavirus (MERS-CoV). Presently, the human world is affected by a novel version of the coronavirus family known as SARS-CoV-2, which has an extremely high contagion rate. Although the infection fatality rate (IFR) of this rapidly spreading virus is not high (ranging from 0.00% to 1.54% across 51 different locations), the increasing number of infections and deaths has created a worldwide pandemic situation. To provide therapy to severely infected patients, instant therapeutic support is urgently needed and the repurposing of already approved drugs is presently in progress. In this regard, the development of nanoparticles as effective transporters for therapeutic drugs or as alternative medicines is highly encouraged and currently needed. The size range of the viruses is within 60-140 nm, which is slightly larger than the diameters of nanoparticles, making nanomaterials efficacious tools with antiviral properties. Silver-based nanomaterials (AgNMs) demonstrate antimicrobial and disinfectant effects mostly by generating reactive oxygen species (ROS) and are presently considered as a versatile tool for the treatment of COVID-19 patients. Other metal-based nanoparticles have been primarily reported as delivery agents or surface modifying agents, vaccine adjuvant against coronavirus. The present review summarizes and discusses the possible effectiveness of various surface-modified AgNMs against animal coronaviruses and presents a concept for AgNM-based therapeutic treatment of SARS-CoV-2 in the near future.
Collapse
Affiliation(s)
- Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal736101, India
| | - Subha Sankar Paul
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore637551, Singapore
| | - Arighna Saha
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal736101, India
| | - Tejinder Singh
- Department of Electronic Materials and Devices Engineering, Soonchunhyang University, Asan31538, Republic of Korea
| | - Abhijit Saha
- Chemistry Department, UGC-DAE Consortium for Scientific Research, Kolkata700106, India
| | - Jungkyun Im
- Department of Electronic Materials and Devices Engineering, Soonchunhyang University, Asan31538, Republic of Korea
- Department of Chemical Engineering, Soonchunhyang University, Asan31538, Republic of Korea
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal736101, India
| |
Collapse
|
25
|
Hadi J, Dunowska M, Wu S, Brightwell G. Control Measures for SARS-CoV-2: A Review on Light-Based Inactivation of Single-Stranded RNA Viruses. Pathogens 2020; 9:E737. [PMID: 32911671 PMCID: PMC7558314 DOI: 10.3390/pathogens9090737] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 is a single-stranded RNA virus classified in the family Coronaviridae. In this review, we summarize the literature on light-based (UV, blue, and red lights) sanitization methods for the inactivation of ssRNA viruses in different matrixes (air, liquid, and solid). The rate of inactivation of ssRNA viruses in liquid was higher than in air, whereas inactivation on solid surfaces varied with the type of surface. The efficacy of light-based inactivation was reduced by the presence of absorptive materials. Several technologies can be used to deliver light, including mercury lamp (conventional UV), excimer lamp (UV), pulsed-light, and light-emitting diode (LED). Pulsed-light technologies could inactivate viruses more quickly than conventional UV-C lamps. Large-scale use of germicidal LED is dependent on future improvements in their energy efficiency. Blue light possesses virucidal potential in the presence of exogenous photosensitizers, although femtosecond laser (ultrashort pulses) can be used to circumvent the need for photosensitizers. Red light can be combined with methylene blue for application in medical settings, especially for sanitization of blood products. Future modelling studies are required to establish clearer parameters for assessing susceptibility of viruses to light-based inactivation. There is considerable scope for improvement in the current germicidal light-based technologies and practices.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Magdalena Dunowska
- School of Veterinary Science, Massey University Manawatu (Turitea) Tennent Drive, Palmerston North 4474, New Zealand;
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
- New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea) Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
26
|
Comparative genome analysis of novel coronavirus (SARS-CoV-2) from different geographical locations and the effect of mutations on major target proteins: An in silico insight. PLoS One 2020; 15:e0238344. [PMID: 32881907 PMCID: PMC7470274 DOI: 10.1371/journal.pone.0238344] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
A novel severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) causing COVID-19 pandemic in humans, recently emerged and has exported in more than 200 countries as a result of rapid spread. In this study, we have made an attempt to investigate the SARS-CoV-2 genome reported from 13 different countries, identification of mutations in major coronavirus proteins of these different SARS-CoV-2 genomes and compared with SARS-CoV. These thirteen complete genome sequences of SARS-CoV-2 showed high identity (>99%) to each other, while they shared 82% identity with SARS-CoV. Here, we performed a very systematic mutational analysis of SARS-CoV-2 genomes from different geographical locations, which enabled us to identify numerous unique features of this viral genome. This includes several important country-specific unique mutations in the major proteins of SARS-CoV-2 namely, replicase polyprotein, spike glycoprotein, envelope protein and nucleocapsid protein. Indian strain showed mutation in spike glycoprotein at R408I and in replicase polyprotein at I671T, P2144S and A2798V,. While the spike protein of Spain & South Korea carried F797C and S221W mutation, respectively. Likewise, several important country specific mutations were analyzed. The effect of mutations of these major proteins were also investigated using various in silico approaches. Main protease (Mpro), the therapeutic target protein of SARS with maximum reported inhibitors, was thoroughly investigated and the effect of mutation on the binding affinity and structural dynamics of Mpro was studied. It was found that the R60C mutation in Mpro affects the protein dynamics, thereby, affecting the binding of inhibitor within its active site. The implications of mutation on structural characteristics were determined. The information provided in this manuscript holds great potential in further scientific research towards the design of potential vaccine candidates/small molecular inhibitor against COVID19.
Collapse
|
27
|
Kumar V. Emerging Human Coronavirus Infections (SARS, MERS, and COVID-19): Where They Are Leading Us. Int Rev Immunol 2020; 40:5-53. [PMID: 32744465 DOI: 10.1080/08830185.2020.1800688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coronavirus infections are responsible for mild, moderate, and severe infections in birds and mammals. These were first isolated in humans as causal microorganisms responsible for common cold. The 2002-2003 SARS epidemic caused by SARS-CoV and 2012 MERS epidemic (64 countries affected) caused by MERS-CoV showed their acute and fatal side. These two CoV infections killed thousands of patients infected worldwide. However, WHO has still reported the MERS case in December 2019 in middle-eastern country (Saudi Arabia), indicating the MERS epidemic has not ended completely yet. Although we have not yet understood completely these two CoV epidemics, a third most dangerous and severe CoV infection has been originated in the Wuhan city, Hubei district of China in December 2019. This CoV infection called COVID-19 or SARS-CoV2 infection has now spread to 210 countries and territories around the world. COVID-19 has now been declared a pandemic by the World Health Organization (WHO). It has infected more than 16.69 million people with more than 663,540 deaths across the world. Thus the current manuscript aims to describe all three (SARS, MERS, and COVID-19) in terms of their causal organisms (SARS-CoV, MERS-CoV, and SARS-CoV2), similarities and differences in their clinical symptoms, outcomes, immunology, and immunopathogenesis, and possible future therapeutic approaches.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
Bhowmik D, Nandi R, Jagadeesan R, Kumar N, Prakash A, Kumar D. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. INFECTION GENETICS AND EVOLUTION 2020; 84:104451. [PMID: 32640381 PMCID: PMC7335633 DOI: 10.1016/j.meegid.2020.104451] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
WHO has declared the outbreak of COVID-19 as a public health emergency of international concern. The ever-growing new cases have called for an urgent emergency for specific anti-COVID-19 drugs. Three structural proteins (Membrane, Envelope and Nucleocapsid protein) play an essential role in the assembly and formation of the infectious virion particles. Thus, the present study was designed to identify potential drug candidates from the unique collection of 548 anti-viral compounds (natural and synthetic anti-viral), which target SARS-CoV-2 structural proteins. High-end molecular docking analysis was performed to characterize the binding affinity of the selected drugs-the ligand, with the SARS-CoV-2 structural proteins, while high-level Simulation studies analyzed the stability of drug-protein interactions. The present study identified rutin, a bioflavonoid and the antibiotic, doxycycline, as the most potent inhibitor of SARS-CoV-2 envelope protein. Caffeic acid and ferulic acid were found to inhibit SARS-CoV-2 membrane protein while the anti-viral agent's simeprevir and grazoprevir showed a high binding affinity for nucleocapsid protein. All these compounds not only showed excellent pharmacokinetic properties, absorption, metabolism, minimal toxicity and bioavailability but were also remain stabilized at the active site of proteins during the MD simulation. Thus, the identified lead compounds may act as potential molecules for the development of effective drugs against SARS-CoV-2 by inhibiting the envelope formation, virion assembly and viral pathogenesis.
Collapse
Affiliation(s)
- Deep Bhowmik
- Department of Microbiology, Assam University, Silchar 788011, Assam, India
| | - Rajat Nandi
- Department of Microbiology, Assam University, Silchar 788011, Assam, India
| | - Rahul Jagadeesan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai 600025, India
| | - Niranjan Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon 122413, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
29
|
Abstract
Aim: The aim of this study was to computationally predict conserved RNA sequences and structures known as cis-acting RNA elements (CREs) in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome. Materials & methods: Bioinformatics tools were used to analyze and predict CREs by obtaining viral sequences from available databases. Results: Computational analysis revealed the presence of RNA stem-loop structures within the 3′ end of the ORF1ab region analogous to previously identified SARS-CoV genomic packaging signals. Alignment-based RNA secondary structure predictions of the 5′ end of the SARS-CoV-2 genome also identified conserved CREs. Conclusion: These CREs may be potential vaccine and/or antiviral therapeutic targets; however, further studies are warranted to confirm their roles in the SARS-CoV-2 life cycle.
Collapse
Affiliation(s)
- Bader Y Alhatlani
- Department of Medical Applied Sciences, Unayzah Community College, Qassim University, Unayzah, Saudi Arabia
| |
Collapse
|
30
|
Chang CY, Liu HM, Chang MF, Chang SC. Middle East Respiratory Syndrome Coronavirus Nucleocapsid Protein Suppresses Type I and Type III Interferon Induction by Targeting RIG-I Signaling. J Virol 2020; 94:e00099-20. [PMID: 32295922 PMCID: PMC7307178 DOI: 10.1128/jvi.00099-20] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022] Open
Abstract
Type I and type III interferons (IFNs) are the frontline of antiviral defense mechanisms that trigger hundreds of downstream antiviral genes. In this study, we observed that MERS-CoV nucleocapsid (N) protein suppresses type I and type III IFN gene expression. The N protein suppresses Sendai virus-induced IFN-β and IFN-λ1 by reducing their promoter activity and mRNA levels, as well as downstream IFN-stimulated genes (ISGs). Retinoic acid-inducible gene I (RIG-I) is known to recognize viral RNA and induce IFN expression through tripartite motif-containing protein 25 (TRIM25)-mediated ubiquitination of RIG-I caspase activation and recruitment domains (CARDs). We discovered that MERS-CoV N protein suppresses RIG-I-CARD-induced, but not MDA5-CARD-induced, IFN-β and IFN-λ1 promoter activity. By interacting with TRIM25, N protein impedes RIG-I ubiquitination and activation and inhibits the phosphorylation of transcription factors IFN-regulatory factor 3 (IRF3) and NF-κB that are known to be important for IFN gene activation. By employing a recombinant Sindbis virus-EGFP replication system, we showed that viral N protein downregulated the production of not only IFN mRNA but also bioactive IFN proteins. Taken together, MERS-CoV N protein functions as an IFN antagonist. It suppresses RIG-I-induced type I and type III IFN production by interfering with TRIM25-mediated RIG-I ubiquitination. Our study sheds light on the pathogenic mechanism of how MERS-CoV causes disease.IMPORTANCE MERS-CoV causes death of about 35% of patients. Published studies showed that some coronaviruses are capable of suppressing interferon (IFN) expression in the early phase of infection and MERS-CoV proteins can modulate host immune response. In this study, we demonstrated that MERS-CoV nucleocapsid (N) protein suppresses the production of both type I and type III IFNs via sequestering TRIM25, an E3 ubiquitin ligase that is essential for activating the RIG-I signaling pathway. Ectopic expression of TRIM25 rescues the suppressive effect of the N protein. In addition, the C-terminal domain of the viral N protein plays a pivotal role in the suppression of IFN-β promoter activity. Our findings reveal how MERS-CoV evades innate immunity and provide insights into the interplay between host immune response and viral pathogenicity.
Collapse
Affiliation(s)
- Chi-You Chang
- Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Helene Minyi Liu
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Fu Chang
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shin C Chang
- Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
31
|
Iserman C, Roden C, Boerneke M, Sealfon R, McLaughlin G, Jungreis I, Park C, Boppana A, Fritch E, Hou YJ, Theesfeld C, Troyanskaya OG, Baric RS, Sheahan TP, Weeks K, Gladfelter AS. Specific viral RNA drives the SARS CoV-2 nucleocapsid to phase separate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.11.147199. [PMID: 32587965 PMCID: PMC7310621 DOI: 10.1101/2020.06.11.147199] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A mechanistic understanding of the SARS-CoV-2 viral replication cycle is essential to develop new therapies for the COVID-19 global health crisis. In this study, we show that the SARS-CoV-2 nucleocapsid protein (N-protein) undergoes liquid-liquid phase separation (LLPS) with the viral genome, and propose a model of viral packaging through LLPS. N-protein condenses with specific RNA sequences in the first 1000 nts (5'-End) under physiological conditions and is enhanced at human upper airway temperatures. N-protein condensates exclude non-packaged RNA sequences. We comprehensively map sites bound by N-protein in the 5'-End and find preferences for single-stranded RNA flanked by stable structured elements. Liquid-like N-protein condensates form in mammalian cells in a concentration-dependent manner and can be altered by small molecules. Condensation of N-protein is sequence and structure specific, sensitive to human body temperature, and manipulatable with small molecules thus presenting screenable processes for identifying antiviral compounds effective against SARS-CoV-2.
Collapse
Affiliation(s)
- Christiane Iserman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christine Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark Boerneke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel Sealfon
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Grace McLaughlin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Chris Park
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Avinash Boppana
- Department of Computer Science, Princeton University, Princeton, NJ USA
| | - Ethan Fritch
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chandra Theesfeld
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| | - Olga G Troyanskaya
- Flatiron Institute, Simons Foundation, New York, NY, USA
- Department of Computer Science, Princeton University, Princeton, NJ USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kevin Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Identification of a Novel Linear B-Cell Epitope on the Nucleocapsid Protein of Porcine Deltacoronavirus. Int J Mol Sci 2020; 21:ijms21020648. [PMID: 31963776 PMCID: PMC7013544 DOI: 10.3390/ijms21020648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/11/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV), first identified in 2012, is a swine enteropathogen now found in many countries. The nucleocapsid (N) protein, a core component of PDCoV, is essential for virus replication and is a significant candidate in the development of diagnostics for PDCoV. In this study, monoclonal antibodies (mAbs) were generated and tested for reactivity with three truncations of the full protein (N1, N2, N3) that contained partial overlaps; of the five monoclonals chosen tested, each reacted with only the N3 truncation. The antibody designated 4E88 had highest binding affinity with the N protein and was chosen for in-depth examination. The 4E88 epitope was located to amino acids 308-AKPKQQKKPKK-318 by testing the 4E88 monoclonal for reactivity with a series of N3 truncations, then the minimal epitope, 309-KPKQQKKPK-317 (designated EP-4E88), was pinpointed by testing the 4E88 monoclonal for reactivity with a series of synthetic peptides of this region. Homology analysis showed that the EP-4E88 sequence is highly conserved among PDCoV strains, and also shares high similarity with sparrow coronavirus (HKU17), Asian leopard cat coronavirus (ALCCoV), quail coronavirus (UAE-HKU30), and sparrow deltacoronavirus (SpDCoV). Of note, the PDCoV EP-4E88 sequence shared very low similarity (<22.2%) with other porcine coronaviruses (PEDV, TGEV, PRCV, SADS-CoV, PHEV), demonstrating that it is an epitope that can be used for distinguishing PDCoV and other porcine coronavirus. 3D structural analysis revealed that amino acids of EP-4E88 were in close proximity and may be exposed on the surface of the N protein.
Collapse
|
33
|
Characterization and Pathogenicity of the Porcine Deltacoronavirus Isolated in Southwest China. Viruses 2019; 11:v11111074. [PMID: 31752115 PMCID: PMC6893596 DOI: 10.3390/v11111074] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a newly emerging enteric pathogen in swine that causes diarrhea in neonatal piglets and creates an additional economic burden on porcine industries in Asia and North America. In this study, a PDCoV isolate, CHN-SC2015, was isolated from Sichuan Province in southwest China. The isolate was characterized by a cytopathic effect, immunofluorescence, and electron microscopy. CHN-SC2015 titers in LLC-PK cells ranged from 104.31 to 108.22 TCID50/mL during the first 30 passages. During serial passage, 11 nucleotide mutations occurred in the S gene, resulting in nine amino acid changes. A whole genome sequencing analysis demonstrated that CHN-SC2015 shares 97.5%-99.1% identity with 59 reference strains in GenBank. Furthermore, CHN-SC2015 contained 6-nt deletion and 9-nt insertion in the ORF1ab gene, 3-nt deletion in the S gene and 11-nt deletion in its 3'UTR compared with other reference strains available in GenBank. A phylogenetic analysis showed that CHN-SC2015 is more closely related to other PDCoV strains in China than to the strains from Southeast Asia, USA, Japan, and South Korea, indicating the diversity of genetic relationships and regional and epidemic characteristics among these strains. A recombination analysis indicated that CHN-SC2015 experienced recombination events between SHJS/SL/2016 and TT-1115. In vivo infection demonstrated that CHN-SC2015 is highly pathogenic to sucking piglets, causing diarrhea, vomiting, dehydration, and death. Virus was shed daily in the feces of infected piglets and upon necropsy, was found distributed in the gastrointestinal tract and in multiple organs. CHN-SC2015 is the first systematically characterized strain from southwest China hitherto reported. Our results enrich the body of information on the epidemiology, pathogenicity and molecular evolution associated with PDCoV.
Collapse
|
34
|
Sungsuwan S, Jongkaewwattana A, Jaru-Ampornpan P. Nucleocapsid proteins from other swine enteric coronaviruses differentially modulate PEDV replication. Virology 2019; 540:45-56. [PMID: 31756532 PMCID: PMC7112109 DOI: 10.1016/j.virol.2019.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV) and porcine deltacoronavirus (PDCoV) share tropism for swine intestinal epithelial cells. Whether mixing of viral components during co-infection alters pathogenic outcomes or viral replication is not known. In this study, we investigated how different coronavirus nucleocapsid (CoV N) proteins interact and affect PEDV replication. We found that PDCoV N and TGEV N can competitively interact with PEDV N. However, the presence of PDCoV or TGEV N led to very different outcomes on PEDV replication. While PDCoV N significantly suppresses PEDV replication, overexpression of TGEV N, like that of PEDV N, increases production of PEDV RNA and virions. Despite partial interchangeability in nucleocapsid oligomerization and viral RNA synthesis, endogenous PEDV N cannot be replaced in the production of infectious PEDV particles. Results from this study give insights into functional compatibilities and evolutionary relationship between CoV viral proteins during viral co-infection and co-evolution. PDCoV N and TGEV N interact with PEDV N in a competitive, RNA-dependent manner. PEDV replication in cell culture is enhanced by overexpression of TGEV or PEDV N but strongly suppressed by that of PDCoV N. Both TGEV and PDCoV N can partially rescue viral RNA and protein synthesis functions of PEDV N, albeit to different degrees. Neither TGEV nor PDCoV N can completely replace PEDV N in the production of PEDV infectious virions.
Collapse
Affiliation(s)
- Suttipun Sungsuwan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Peera Jaru-Ampornpan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
35
|
Hepatitis C Virus NS3 Protein Plays a Dual Role in WRN-Mediated Repair of Nonhomologous End Joining. J Virol 2019; 93:JVI.01273-19. [PMID: 31462559 DOI: 10.1128/jvi.01273-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) NS3 protein possesses protease and helicase activities and is considered an oncoprotein in virus-derived hepatocellular carcinoma. The NS3-associated oncogenesis has been studied but not fully understood. In this study, we have identified novel interactions of the NS3 protein with DNA repair factors, Werner syndrome protein (WRN) and Ku70, in both an HCV subgenomic replicon system and Huh7 cells expressing NS3. HCV NS3 protein inhibits WRN-mediated DNA repair and reduces the repair efficiency of nonhomologous end joining. It interferes with Ku70 recruitment to the double-strand break sites and alters the nuclear distribution of WRN-Ku repair complex. In addition, WRN is a substrate of the NS3/4A protease; the level of WRN protein is regulated by both the proteasome degradation pathway and HCV NS3/4A protease activity. The dual role of HCV NS3 and NS3/4A proteins in regulating the function and expression level of the WRN protein intensifies the effect of impairment on DNA repair. This may lead to an accumulation of DNA mutations and genome instability and, eventually, tumor development.IMPORTANCE HCV infection is a worldwide problem of public health and a major contributor to hepatocellular carcinoma. The single-stranded RNA virus with RNA-dependent RNA polymerase experiences a high error rate and develops strategies to escape the immune system and hepatocarcinogenesis. Studies have revealed the involvement of HCV proteins in the impairment of DNA repair. The present study aimed to further elucidate mechanisms by which the viral NS3 protein impairs the repair of DNA damage. Our results clearly indicate that HCV NS3/4A protease targets WRN for degradation, and, at the same time, diminishes the repair efficiency of nonhomologous end joining by interfering with the recruitment of Ku protein to the DNA double-strand break sites. The study describes a novel mechanism by which the NS3 protein influences DNA repair and provides new insight into the molecular mechanism of HCV pathogenesis.
Collapse
|
36
|
An in vivo cell-based assay for investigating the specific interaction between the SARS-CoV N-protein and its viral RNA packaging sequence. Biochem Biophys Res Commun 2019; 520:499-506. [PMID: 31594639 PMCID: PMC7092827 DOI: 10.1016/j.bbrc.2019.09.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 01/25/2023]
Abstract
The SARS-CoV nucleocapsid (N) protein serves multiple functions in viral replication, transcription, and assembly of the viral genome complex. Coronaviruses specifically package genomic RNA into assembled virions, and in SARS-CoV, it is reported that this process is driven by an interaction between the N-protein and a packaging signal encoded within the viral RNA. While recent studies have uncovered the sequence of this packaging signal, little is known about the specific interaction between the N-protein and the packaging signal sequence, and the mechanisms by which this interaction drives viral genome packaging. In this study, we developed a novel in vivo cell-based assay for examining this interaction between the N-protein and packaging signal RNA for SARS-CoV, as well as other viruses within the coronaviridae family. Our results demonstrate that the N-protein specifically recognizes the SARS-CoV packaging signal with greater affinity compared to signals from other coronaviruses or non-coronavirus species. We also use deletion mapping to identify a 151-nt region within the packaging signal sequence that is critical for N-protein-RNA binding, and conversely, we show that both the N-terminal and C-terminal domains of the N protein are necessary for recognizing the packaging RNA. These results describe, for the first time, in vivo evidence for an interaction between the SARS-CoV N-protein and its packaging signal RNA, and demonstrate the feasibility of using this cell-based assay to further probe viral RNA-protein interactions in future studies.
Collapse
|
37
|
Abstract
RNA viruses carry out selective packaging of their genomes in a variety of ways, many involving a genomic packaging signal. The first coronavirus packaging signal was discovered nearly thirty years ago, but how it functions remains incompletely understood. This review addresses the current state of knowledge of coronavirus genome packaging, which has mainly been studied in two prototype species, mouse hepatitis virus and transmissible gastroenteritis virus. Despite the progress that has been made in the mapping and characterization of some packaging signals, there is conflicting evidence as to whether the viral nucleocapsid protein or the membrane protein plays the primary role in packaging signal recognition. The different models for the mechanism of genomic RNA packaging that have been prompted by these competing views are described. Also discussed is the recent exciting discovery that selective coronavirus genome packaging is critical for in vivo evasion of the host innate immune response. Selective incorporation of the coronavirus genome into virions is mediated by a cis-acting RNA packaging signal. Packaging signals vary across different coronavirus genera and lineages. Different lines of evidence attribute packaging signal recognition to either the nucleocapsid or the membrane protein. Selective coronavirus genome packaging plays a role in evasion of host innate immunity.
Collapse
Affiliation(s)
- Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, United States.
| |
Collapse
|
38
|
Nguyen THV, Lichière J, Canard B, Papageorgiou N, Attoumani S, Ferron F, Coutard B. Structure and oligomerization state of the C-terminal region of the Middle East respiratory syndrome coronavirus nucleoprotein. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:8-15. [PMID: 30644840 PMCID: PMC7159728 DOI: 10.1107/s2059798318014948] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a human pathogen responsible for a severe respiratory illness that emerged in 2012. Structural information about the proteins that constitute the viral particle is scarce. In order to contribute to a better understanding of the nucleoprotein (N) in charge of RNA genome encapsidation, the structure of the C-terminal domain of N from MERS-CoV obtained using single-crystal X-ray diffraction is reported here at 1.97 Å resolution. The molecule is present as a dimer in the crystal structure and this oligomerization state is confirmed in solution, as measured by additional methods including small-angle X-ray scattering measurements. Comparisons with the structures of the C-terminal domains of N from other coronaviruses reveals a high degree of structural conservation despite low sequence conservation, and differences in electrostatic potential at the surface of the protein.
Collapse
Affiliation(s)
| | - Julie Lichière
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseilles, France
| | - Bruno Canard
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseilles, France
| | | | - Sarah Attoumani
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseilles, France
| | - François Ferron
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseilles, France
| | - Bruno Coutard
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseilles, France
| |
Collapse
|
39
|
Veit S, Jany S, Fux R, Sutter G, Volz A. CD8+ T Cells Responding to the Middle East Respiratory Syndrome Coronavirus Nucleocapsid Protein Delivered by Vaccinia Virus MVA in Mice. Viruses 2018; 10:v10120718. [PMID: 30558354 PMCID: PMC6316859 DOI: 10.3390/v10120718] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/09/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV), a novel infectious agent causing severe respiratory disease and death in humans, was first described in 2012. Antibodies directed against the MERS-CoV spike (S) protein are thought to play a major role in controlling MERS-CoV infection and in mediating vaccine-induced protective immunity. In contrast, relatively little is known about the role of T cell responses and the antigenic targets of MERS-CoV that are recognized by CD8+ T cells. In this study, the highly conserved MERS-CoV nucleocapsid (N) protein served as a target immunogen to elicit MERS-CoV-specific cellular immune responses. Modified Vaccinia virus Ankara (MVA), a safety-tested strain of vaccinia virus for preclinical and clinical vaccine research, was used for generating MVA-MERS-N expressing recombinant N protein. Overlapping peptides spanning the whole MERS-CoV N polypeptide were used to identify major histocompatibility complex class I/II-restricted T cell responses in BALB/c mice immunized with MVA-MERS-N. We have identified a H2-d restricted decamer peptide epitope in the MERS-N protein with CD8+ T cell antigenicity. The identification of this epitope, and the availability of the MVA-MERS-N candidate vaccine, will help to evaluate MERS-N-specific immune responses and the potential immune correlates of vaccine-mediated protection in the appropriate murine models of MERS-CoV infection.
Collapse
Affiliation(s)
- Svenja Veit
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany.
| | - Sylvia Jany
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany.
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany.
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany.
- German Center for Infection Research (DZIF), partner site Munich, 80539 Munich, Germany.
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany.
- German Center for Infection Research (DZIF), partner site Munich, 80539 Munich, Germany.
| |
Collapse
|
40
|
Overexpression of the nucleocapsid protein of Middle East respiratory syndrome coronavirus up-regulates CXCL10. Biosci Rep 2018; 38:BSR20181059. [PMID: 30242057 PMCID: PMC6200698 DOI: 10.1042/bsr20181059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 11/17/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) causes respiratory diseases in humans and has a high mortality rate. During infection, MERS-CoV regulates several host cellular processes including antiviral response genes. In order to determine if the nucleocapsid protein of MERS-CoV (MERS-N) plays a role in viral-host interactions, a murine monoclonal antibody was generated so as to allow detection of the protein in infected cells as well as in overexpression system. Then, MERS-N was stably overexpressed in A549 cells, and a PCR array containing 84 genes was used to screen for genes transcriptionally regulated by it. Several up-regulated antiviral genes, namely TNF, IL6, IL8, and CXCL10, were selected for independent validation in transiently transfected 293FT cells. Out of these, the overexpression of MERS-N was found to up-regulate CXCL10 at both transcriptional and translational levels. Interestingly, CXCL10 has been reported to be up-regulated in MERS-CoV infected airway epithelial cells and lung fibroblast cells, as well as monocyte-derived macrophages and dendritic cells. High secretions and persistent increase of CXCL10 in MERS-CoV patients have been also associated with severity of disease. To our knowledge, this is the first report showing that the MERS-N protein is one of the contributing factors for CXCL10 up-regulation during infection. In addition, our results showed that a fragment consisting of residues 196-413 in MERS-N is sufficient to up-regulate CXCL10, while the N-terminal domain and serine-arginine (SR)-rich motif of MERS-N do not play a role in this up-regulation.
Collapse
|