1
|
Lin WH, Sheu SM, Wu CF, Huang WC, Hsu LJ, Yu KC, Cheng HC, Kao CY, Wu JJ, Wang MC, Teng CH. O-antigen of uropathogenic Escherichia coli is required for induction of neutrophil extracellular traps. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00233-0. [PMID: 39725572 DOI: 10.1016/j.jmii.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/02/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Urinary tract infections (UTIs) are prevalent bacterial infection, with uropathogenic Escherichia coli (UPEC) as the primary causative agent. The outer membrane of UPEC contains a lipopolysaccharide (LPS), which plays crucial roles in the host's immune response to infection. Neutrophils use neutrophil extracellular traps (NETs) are mechanism by which neutrophils defend against bacterial infections. However, the exact mechanism by which a bacterial LPS induces NET formation is not well understood. Therefore, the objective of this study is to identify the possible mechanism of LPS-mediated NETs and dissect the LPS domains of UPEC that predominantly modulate NET formation and NET-mediated killing. METHODS To investigate the mechanism of bacterial LPS-induced NET formation, we constructed UPEC CFT073 mutants that had rfaD, rfaL and the wzzE deleted with individual LPS biosynthetic genes including the inner core synthase, O-antigen ligase and O-antigen polymerase, respectively. Subsequently, we evaluated the NET/reactive oxygen species (ROS)/IL-1β induction abilities and assessed the activation of toll-like receptor 4 (TLR4)/JNK signaling by CFT073 and its mutants. RESULTS The results showed that the O-antigen of CFT073 LPS is essential for inducing NET formation through TLR4/JNK/NOX pathways. Inhibition of either pathway significantly decreased the production of ROS, induction of NETs, and secretion of IL-1β. CONCLUSION Our results demonstrate that CFT073 LPS is essential for inducing ROS-dependent NETs and IL-1β secretion from neutrophils. This study also provides evidence for the crucial roles of O-antigen in the immune response to UPEC infection, as well as its potential as a therapeutic target for the treatment of UTIs.
Collapse
Affiliation(s)
- Wei-Hung Lin
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shew-Meei Sheu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City, Taiwan
| | - Ching-Fang Wu
- Division of Nephrology, Department of Internal Medicine, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Chieh Yu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ching Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Mediati DG, Blair TA, Costas A, Monahan LG, Söderström B, Charles IG, Duggin IG. Genetic requirements for uropathogenic E. coli proliferation in the bladder cell infection cycle. mSystems 2024; 9:e0038724. [PMID: 39287381 PMCID: PMC11495030 DOI: 10.1128/msystems.00387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) requires an adaptable physiology to survive the wide range of environments experienced in the host, including gut and urinary tract surfaces. To identify UPEC genes required during intracellular infection, we developed a transposon-directed insertion-site sequencing approach for cellular infection models and searched for genes in a library of ~20,000 UTI89 transposon-insertion mutants that are specifically required at the distinct stages of infection of cultured bladder epithelial cells. Some of the bacterial functional requirements apparent in host bladder cell growth overlapped with those for M9-glycerol, notably nutrient utilization, polysaccharide and macromolecule precursor biosynthesis, and cell envelope stress tolerance. Two genes implicated in the intracellular bladder cell infection stage were confirmed through independent gene deletion studies: neuC (sialic acid capsule biosynthesis) and hisF (histidine biosynthesis). Distinct sets of UPEC genes were also implicated in bacterial dispersal, where UPEC erupts from bladder cells in highly filamentous or motile forms upon exposure to human urine, and during recovery from infection in a rich medium. We confirm that the dedD gene linked to septal peptidoglycan remodeling is required during UPEC dispersal from human bladder cells and may help stabilize cell division or the cell wall during envelope stress created by host cells. Our findings support a view that the host intracellular environment and infection cycle are multi-nutrient limited and create stress that demands an array of biosynthetic, cell envelope integrity, and biofilm-related functions of UPEC. IMPORTANCE Urinary tract infections (UTIs) are one of the most frequent infections worldwide. Uropathogenic Escherichia coli (UPEC), which accounts for ~80% of UTIs, must rapidly adapt to highly variable host environments, such as the gut, bladder sub-surface, and urine. In this study, we searched for UPEC genes required for bacterial growth and survival throughout the cellular infection cycle. Genes required for de novo synthesis of biomolecules and cell envelope integrity appeared to be important, and other genes were also implicated in bacterial dispersal and recovery from infection of cultured bladder cells. With further studies of individual gene function, their potential as therapeutic targets may be realized. This study expands knowledge of the UTI cycle and establishes an approach to genome-wide functional analyses of stage-resolved microbial infections.
Collapse
Affiliation(s)
- Daniel G. Mediati
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Tamika A. Blair
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Ariana Costas
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
- Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Leigh G. Monahan
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Ian G. Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Iain G. Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
3
|
Matsumoto T, Hashimoto M, Huang WC, Teng CH, Niwa T, Yamada M, Negishi T. Molecular characterization of a carbon dioxide-dependent Proteus mirabilis small-colony variant isolated from a clinical specimen. J Infect Chemother 2024; 30:881-886. [PMID: 38442770 DOI: 10.1016/j.jiac.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Carbon dioxide-dependent Proteus mirabilis has been isolated from clinical specimens. It is not clear whether mutations in carbonic anhydrase are responsible for the carbon dioxide dependence of P. mirabilis. The pathogenicity of carbon dioxide-dependent P. mirabilis also remains unclear. The purpose of this study was to determine the cause carbon dioxide dependence of P. mirabilis and its pathogenicity. METHODS The DNA sequence of can encoding carbonic anhydrase of a carbon dioxide-dependent P. mirabilis small colony variant (SCV) isolate was analyzed. To confirm that impaired carbonic anhydrase activity is responsible for the formation of the carbon dioxide-dependent SCV phenotype of P. mirabilis, we performed complementation experiments using plasmids with intact can. Additionally, mouse infection experiments were performed to confirm the change in virulence due to the mutation of carbonic anhydrase. RESULTS We found that the can gene of the carbon dioxide-dependent P. mirabilis SCV isolate showed had a frameshift mutation with a deletion of 1 bp (c. 173delC). The can of P. mirabilis encodes carbonic anhydrase was also found to function in Escherichia coli. The cause of the carbon dioxide-dependent SCV phenotype of P. mirabilis was an abnormality in carbonic anhydrase. Nevertheless, no changes were observed in virulence due to the mutation of carbonic anhydrase in mouse infection experiments. CONCLUSIONS The can gene is essential for the growth of P. mirabilis in ambient air. The mechanisms underlying this fitness advantage in terms of infection warrant further investigation.
Collapse
Affiliation(s)
- Takehisa Matsumoto
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan; Department of Biomedical Laboratory Sciences, Shinshu University School of Medicine, School of Health Sciences, Shinshu University, Matsumoto, Japan.
| | - Masayuki Hashimoto
- Institute of Molecular Medicine, College of Medicine, National Cheng-Kung University, Tainan City, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng-Kung University, Tainan City, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng-Kung University, Tainan City, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Takahiko Niwa
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan; Department of Clinical Laboratory, Gunma University Hospital, Maebashi, Japan
| | - Mariko Yamada
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Tatsuya Negishi
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| |
Collapse
|
4
|
Mobley HLT, Anderson MT, Moricz BS, Severin GB, Holmes CL, Ottosen EN, Eichler T, Gupta S, Paudel S, Sinha R, Mason S, Himpsl SD, Brown AN, Gaca M, Kiser CM, Clarke TH, Fouts DE, DiRita VJ, Bachman MA. Fitness factor genes conserved within the multi-species core genome of Gram-negative Enterobacterales species contribute to bacteremia pathogenesis. PLoS Pathog 2024; 20:e1012495. [PMID: 39178317 PMCID: PMC11376589 DOI: 10.1371/journal.ppat.1012495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/05/2024] [Accepted: 08/09/2024] [Indexed: 08/25/2024] Open
Abstract
There is a critical gap in knowledge about how Gram-negative bacterial pathogens, using survival strategies developed for other niches, cause lethal bacteremia. Facultative anaerobic species of the Enterobacterales order are the most common cause of Gram-negative bacteremia, including Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, Citrobacter freundii, and Enterobacter hormaechei. Bacteremia often leads to sepsis, a life-threatening organ dysfunction resulting from unregulated immune responses to infection. Despite a lack of specialization for this host environment, Gram-negative pathogens cause nearly half of bacteremia cases annually. Based on our existing Tn-Seq fitness factor data from a murine model of bacteremia combined with comparative genomics of the five Enterobacterales species above, we prioritized 18 conserved fitness genes or operons for further characterization. Mutants were constructed for all genes in all five species. Each mutant was used to cochallenge C57BL/6 mice via tail vein injection along with each respective wild-type strain to determine competitive indices for each fitness gene. Five fitness factor genes, when mutated, attenuated mutants in four or five species in the spleen and liver (tatC, ruvA, gmhB, wzxE, arcA). Five additional fitness factor genes or operons were validated as outcompeted by wild-type in three, four, or five bacterial species in the spleen (xerC, prc, apaGH, atpG, aroC). Overall, 17 of 18 fitness factor mutants were attenuated in at least one species in the spleen or liver. Together, these findings allow for the development of a model of bacteremia pathogenesis that may include future targets of therapy against bloodstream infections.
Collapse
Affiliation(s)
- Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Mark T Anderson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Bridget S Moricz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Geoffrey B Severin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Caitlyn L Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Elizabeth N Ottosen
- Department of Microbiology and Molecular Genetics, Michigan State University College of Natural Sciences, East Lansing, Michigan, United States of America
| | - Tad Eichler
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Surbhi Gupta
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Santosh Paudel
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ritam Sinha
- Department of Microbiology and Molecular Genetics, Michigan State University College of Natural Sciences, East Lansing, Michigan, United States of America
| | - Sophia Mason
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Stephanie D Himpsl
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Aric N Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Margaret Gaca
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Christina M Kiser
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Thomas H Clarke
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Derrick E Fouts
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Victor J DiRita
- Department of Microbiology and Molecular Genetics, Michigan State University College of Natural Sciences, East Lansing, Michigan, United States of America
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
5
|
Huang WC, Dwija IBNP, Hashimoto M, Wu JJ, Wang MC, Kao CY, Lin WH, Wang S, Teng CH. Peptidoglycan endopeptidase MepM of uropathogenic Escherichia coli contributes to competitive fitness during urinary tract infections. BMC Microbiol 2024; 24:190. [PMID: 38816687 PMCID: PMC11137974 DOI: 10.1186/s12866-024-03290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/02/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) are common bacterial infections, primarily caused by uropathogenic Escherichia coli (UPEC), leading to significant health issues and economic burden. Although antibiotics have been effective in treating UPEC infections, the rise of antibiotic-resistant strains hinders their efficacy. Hence, identifying novel bacterial targets for new antimicrobial approaches is crucial. Bacterial factors required for maintaining the full virulence of UPEC are the potential target. MepM, an endopeptidase in E. coli, is involved in the biogenesis of peptidoglycan, a major structure of bacterial envelope. Given that the bacterial envelope confronts the hostile host environment during infections, MepM's function could be crucial for UPEC's virulence. This study aims to explore the role of MepM in UPEC pathogenesis. RESULTS MepM deficiency significantly impacted UPEC's survival in urine and within macrophages. Moreover, the deficiency hindered the bacillary-to-filamentous shape switch which is known for aiding UPEC in evading phagocytosis during infections. Additionally, UPEC motility was downregulated due to MepM deficiency. As a result, the mepM mutant displayed notably reduced fitness in causing UTIs in the mouse model compared to wild-type UPEC. CONCLUSIONS This study provides the first evidence of the vital role of peptidoglycan endopeptidase MepM in UPEC's full virulence for causing UTIs. MepM's contribution to UPEC pathogenesis may stem from its critical role in maintaining the ability to resist urine- and immune cell-mediated killing, facilitating the morphological switch, and sustaining motility. Thus, MepM is a promising candidate target for novel antimicrobial strategies.
Collapse
Affiliation(s)
- Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ida Bagus Nyoman Putra Dwija
- Department of Clinical Microbiology, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Masayuki Hashimoto
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Hung Lin
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Ma Z, Sun Y, Liu Y, Jiao J, Li N, Zuo Y, Li Z, Li Y, Cai X, Meng Q, Qiao J. STM1863, a Member of the DUFs Protein Family, Is Involved in Environmental Adaptation, Biofilm Formation, and Virulence in Salmonella Typhimurium. Foodborne Pathog Dis 2024. [PMID: 38625018 DOI: 10.1089/fpd.2023.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Salmonella Typhimurium (STM) is an important zoonotic Gram-negative pathogen that can cause infection in a variety of livestock and poultry. Meanwhile, as an important foodborne pathogen, the bacterium can survive in various stressful environments and transmits through the fecal-oral route, posing a serious threat to global food safety. To investigate the roles of STM1863, a member of the DUFs protein family, involved in STM environmental adaptation, biofilm formation, and virulence. We analyzed the molecular characteristics of the protein encoded by STM1863 gene and examined intra- and extracellular expression levels of STM1863 gene in mouse macrophages. Furthermore, we constructed STM1863 gene deletion and complementation strains and determined its environmental adaptation under stressful conditions such as acid, alkali, high salt, bile salt, and oxidation. And the capacity of biofilm formation and pathogenicity of those strains were analyzed and compared. In addition, the interaction between the promoter of STM1863 gene and RcsB protein was analyzed using DNA gel electrophoresis migration assay (electrophoretic mobility shift assay [EMSA]). The experiments revealed that acid adaptability and biofilm formation ability of STM1863 gene deletion strain were significantly weakened compared with the parental and complementary strains. Moreover, the adhesion and invasion ability of STM1863 deletion strain to mouse macrophages was significantly decreased, while the median lethal dose (LD50) increased by 2.148-fold compared with the parental strain. In addition, EMSA confirmed that RcsB protein could bind to the promoter sequence of STM1863 gene, suggesting that the expression of STM1863 gene might be modulated by RcsB. The present study demonstrated for the first time that STM1863, a member of the DUFs protein family, is involved in the modulation of environmental adaptation, biofilm formation, and virulence.
Collapse
Affiliation(s)
- Zhongmei Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yaoqiang Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yuchen Liu
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Jian Jiao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Nengxiu Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yufei Zuo
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhiyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yaling Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Xuepeng Cai
- State Key Lab of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Qingling Meng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
7
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
8
|
Gao M, Zhao T, Zhang C, Li P, Wang J, Han J, Zhang N, Pang B, Liu S. Ferritinophagy-mediated iron competition in RUTIs: Tug-of-war between UPEC and host. Biomed Pharmacother 2023; 163:114859. [PMID: 37167722 DOI: 10.1016/j.biopha.2023.114859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the main pathogen of recurrent urinary tract infections (RUTIs). Urinary tract infection is a complicated interaction between UPEC and the host. During infection, UPEC can evade the host's immune response and retain in bladder epithelial cells, which requires adequate nutritional support. Iron is the first necessary trace element in life and a key nutritional factor, making it an important part of the competition between UPEC and the host. On the one hand, UPEC grabs iron to satisfy its reproduction, on the other hand, the host relies on iron to build nutritional immunity defenses against UPEC. Ferritinophagy is a selective autophagy of ferritin mediated by nuclear receptor coactivator 4, which is not only a way for the host to regulate iron metabolism to maintain iron homeostasis, but also a key point of competition between the host and UPEC. Although recent studies have confirmed the role of ferritinophagy in the progression of many diseases, the mechanism of potential interactions between ferritinophagy in UPEC and the host is poorly understood. In this paper, we reviewed the potential mechanisms of ferritinophagy-mediated iron competition in the UPEC-host interactions. This competitive relationship, like a tug-of-war, is a confrontation between the capability of UPEC to capture iron and the host's nutritional immunity defense, which could be the trigger for RUTIs. Therefore, understanding ferritinophagy-mediated iron competition may provide new strategies for exploring effective antibiotic alternative therapies to prevent and treat RUTIs.
Collapse
Affiliation(s)
- Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Tingting Zhao
- Department of Nephrology, Beijing Key Laboratory for Immune-Mediated Inflammatory 9 Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chuanlong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ping Li
- Department of Nephrology, Beijing Key Laboratory for Immune-Mediated Inflammatory 9 Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jiazhe Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiatong Han
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Ning Zhang
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Bo Pang
- International Medical Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China.
| |
Collapse
|
9
|
Joshi JR, Brown K, Charkowski AO, Heuberger AL. Protease Inhibitors from Solanum chacoense Inhibit Pectobacterium Virulence by Reducing Bacterial Protease Activity and Motility. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:825-834. [PMID: 36104309 DOI: 10.1094/mpmi-04-22-0072-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Potato is a major staple crop, and necrotrophic bacterial pathogens such as Pectobacterium spp. are a major threat to global food security. Most lines of cultivated potato (Solanum tuberosum) are susceptible to Pectobacterium spp., but some lines of wild potato are resistant, including Solanum chacoense M6. Despite the discovery of resistance in wild potatoes, specific resistance genes are yet to be discovered. Crude protein extract from M6 had a global effect on Pectobacterium brasiliense Pb1692 (Pb1692) virulence phenotypes. Specifically, M6 protein extracts resulted in reduced Pectobacterium exo-protease activity and motility, induced cell elongation, and affected bacterial virulence and metabolic gene expression. These effects were not observed from protein extracts of susceptible potato S. tuberosum DM1. A proteomics approach identified protease inhibitors (PIs) as candidates for S. chacoense resistance, and genomic analysis showed higher abundance and diversity of PIs in M6 than in DM1. We cloned five PIs that are unique or had high abundance in M6 compared with DM1 and purified the proteins (g18987, g28531, g39249, g40384, g6571). Four of the PIs significantly reduced bacterial protease activity, with strongest effects from g28531 and g6571. Three PIs (g18987, g28531, g6571) inhibited disease when co-inoculated with Pectobacterium pathogens into potato tubers. Two PIs (g28531, g6571) also significantly reduced Pb1692 motility and are promising as resistance genes. These results show that S. chacoense PIs contribute to bacterial disease resistance by inhibiting exo-proteases, motility, and tuber maceration and by modulating cell morphology and metabolism. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Janak R Joshi
- Department of Horticulture and Landscape Architecture, Colorado State University, 1173 Campus Delivery, Fort Collins, CO 80523, U.S.A
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO 80523, U.S.A
| | - Kitty Brown
- Analytical Resource Center-Bioanalysis and Omics, Colorado State University, 2021 Campus Delivery, Fort Collins, CO 80523, U.S.A
| | - Amy O Charkowski
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO 80523, U.S.A
| | - Adam L Heuberger
- Department of Horticulture and Landscape Architecture, Colorado State University, 1173 Campus Delivery, Fort Collins, CO 80523, U.S.A
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO 80523, U.S.A
| |
Collapse
|
10
|
Hashimoto M, Mao BH, Chiou CS, Huang WC, Nyoman Putra Dwija IB, Jeng SL, Wu JJ, Wang MC, Lin WH, Tseng CC, Teng CH. Association between Escherichia coli with NotI-restriction resistance and urinary tract infections. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:686-694. [PMID: 34963576 DOI: 10.1016/j.jmii.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Escherichia coli is the most common cause of urinary tract infections (UTIs). It is widely accepted that uropathogenic E. coli (UPEC) mainly emerge from the distal gut microbiota. Identification of bacterial characteristics that are able to differentiate UPEC from fecal commensal strains will facilitate the development of novel strategies to detect and monitor the spread of UPEC. METHODS Fifty fecal commensal, 83 UTI-associated and 40 biliary tract infection (BTI)-associated E. coli isolates were analyzed. The NotI restriction patterns of chromosomal DNA in the isolates were determined by pulse-field gel electrophoresis. The phylogenetic types and the presence of 9 known virulence genes of each isolate were determined by PCR analyses. Additionally, the susceptibilities of the isolates to antibiotics were revealed. Then the associations of NotI resistance with UTI-associated isolates, phylotypes, and antibiotic resistance were assessed. RESULTS NotI resistance was correlated with UTI-associated isolates, compared to the fecal isolates. Consistently, NotI-resistant isolates harbored a greater number of virulence factors and mainly belonged to phylotype B2. Additionally NotI resistance was correlated with chloramphenicol resistance among the bacteria. Among the fecal, UTI-associated and BTI-associated groups, the distribution of NotI-resistant group B2 isolates was correlated with UTI-associated bacteria. CONCLUSION NotI resistance alone is a potential marker for distinguishing fecal strains and UPEC, while the combination of NotI resistance and B2 phylogeny is a candidate marker to differentiate UPEC from fecal and other extraintestinal pathogenic E. coli. Additionally, NotI resistance may be valuable for assessing the potential of chloramphenicol resistance of E. coli.
Collapse
Affiliation(s)
- Masayuki Hashimoto
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Bin-Hsu Mao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chien-Shun Chiou
- The Central Region Laboratory, Center of Research and Diagnostics, Centers for Disease Control, Taichung City, Taiwan
| | - Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ida Bagus Nyoman Putra Dwija
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Microbiology Clinic Department, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Shuen-Lin Jeng
- Department of Statistics, Institute of Data Science, and Center for Innovative FinTech Business Models, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Wei-Hung Lin
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chin-Chung Tseng
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
11
|
The RNA-Binding Protein ProQ Impacts Exopolysaccharide Biosynthesis and Second Messenger Cyclic di-GMP Signaling in the Fire Blight Pathogen Erwinia amylovora. Appl Environ Microbiol 2022; 88:e0023922. [PMID: 35416685 DOI: 10.1128/aem.00239-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erwinia amylovora is a plant-pathogenic bacterium that causes fire blight disease in many economically important plants, including apples and pears. This bacterium produces three exopolysaccharides (EPSs), amylovoran, levan, and cellulose, and forms biofilms in host plant vascular tissues, which are crucial for pathogenesis. Here, we demonstrate that ProQ, a conserved bacterial RNA chaperone, was required for the virulence of E. amylovora in apple shoots and for biofilm formation in planta. In vitro experiments revealed that the deletion of proQ increased the production of amylovoran and cellulose. Prc is a putative periplasmic protease, and the prc gene is located adjacent to proQ. We found that Prc and the associated lipoprotein NlpI negatively affected amylovoran production, whereas Spr, a peptidoglycan hydrolase degraded by Prc, positively regulated amylovoran. Since the prc promoter is likely located within proQ, our data showed that proQ deletion significantly reduced the prc mRNA levels. We used a genome-wide transposon mutagenesis experiment to uncover the involvement of the bacterial second messenger c-di-GMP in ProQ-mediated cellulose production. The deletion of proQ resulted in elevated intracellular c-di-GMP levels and cellulose production, which were restored to wild-type levels by deleting genes encoding c-di-GMP biosynthesis enzymes. Moreover, ProQ positively affected the mRNA levels of genes encoding c-di-GMP-degrading phosphodiesterase enzymes via a mechanism independent of mRNA decay. In summary, our study revealed a detailed function of E. amylovora ProQ in coordinating cellulose biosynthesis and, for the first time, linked ProQ with c-di-GMP metabolism and also uncovered a role of Prc in the regulation of amylovoran production. IMPORTANCE Fire blight, caused by the bacterium Erwinia amylovora, is an important disease affecting many rosaceous plants, including apple and pear, that can lead to devastating economic losses worldwide. Similar to many xylem-invading pathogens, E. amylovora forms biofilms that rely on the production of exopolysaccharides (EPSs). In this paper, we identified the RNA-binding protein ProQ as an important virulence regulator. ProQ played a central role in controlling the production of EPSs and participated in the regulation of several conserved bacterial signal transduction pathways, including the second messenger c-di-GMP and the periplasmic protease Prc-mediated systems. Since ProQ has recently been recognized as a global posttranscriptional regulator in many bacteria, these findings provide new insights into multitiered regulatory mechanisms for the precise control of virulence factor production in bacterial pathogens.
Collapse
|
12
|
Masoura M, Milner MT, Overton TW, Gkatzionis K, Lund PA. Use of Transposon Directed Insertion-Site Sequencing to Probe the Antibacterial Mechanism of a Model Honey on E. coli K-12. Front Microbiol 2022; 12:803307. [PMID: 35111142 PMCID: PMC8803141 DOI: 10.3389/fmicb.2021.803307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance is an ever-growing health concern worldwide that has created renewed interest in the use of traditional anti-microbial treatments, including honey. However, understanding the underlying mechanism of the anti-microbial action of honey has been hampered due to the complexity of its composition. High throughput genetic tools could assist in understanding this mechanism. In this study, the anti-bacterial mechanism of a model honey, made of sugars, hydrogen peroxide, and gluconic acid, was investigated using genome-wide transposon mutagenesis combined with high-throughput sequencing (TraDIS), with the strain Escherichia coli K-12 MG1655 as the target organism. We identified a number of genes which when mutated caused a severe loss of fitness when cells were exposed to the model honey. These genes encode membrane proteins including those involved in uptake of essential molecules, and components of the electron transport chain. They are enriched for pathways involved in intracellular homeostasis and redox activity. Genes involved in assembly and activity of formate dehydrogenase O (FDH-O) were of particular note. The phenotypes of mutants in a subset of the genes identified were confirmed by phenotypic screening of deletion strains. We also found some genes which when mutated led to enhanced resistance to treatment with the model honey. This study identifies potential synergies between the main honey stressors and provides insights into the global antibacterial mechanism of this natural product.
Collapse
Affiliation(s)
- Maria Masoura
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
- Institute of Microbiology and Infection (IMI), University of Birmingham, Birmingham, United Kingdom
| | - Mathew T. Milner
- Institute of Microbiology and Infection (IMI), University of Birmingham, Birmingham, United Kingdom
| | - Tim W. Overton
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Konstantinos Gkatzionis
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Lemnos, Greece
| | - Peter A. Lund
- Institute of Microbiology and Infection (IMI), University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Peter A. Lund,
| |
Collapse
|
13
|
Effects of lipid emulsions on the formation of Escherichia coli-Candida albicans mixed-species biofilms on PVC. Sci Rep 2021; 11:16929. [PMID: 34413406 PMCID: PMC8376934 DOI: 10.1038/s41598-021-96385-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
Patients receiving lipid emulsions are at increased risk of contracting catheter-related bloodstream infections (CRBSIs) in the clinic. More than 15% of CRBSIs are polymicrobial. The objective of this study was to explore the effects of lipid emulsions on the formation of Escherichia coli (E. coli)–Candida albicans (C. albicans) mixed-species biofilms (BFs) on polyvinyl chloride (PVC) surfaces and the underlying mechanism. Mixed-species BFs were produced by coculturing E. coli and C. albicans with PVC in various concentrations of lipid emulsions. Crystal violet staining and XTT assays were performed to test the mixed-species BF biomass and the viability of microbes in the BFs. The microstructures of the BFs were observed by an approach that combined confocal laser scanning microscopy, fluorescence in situ hybridization, and scanning electron microscopy. The study found that lipid emulsions could promote the formation of E. coli–C. albicans mixed-species BFs, especially with 10% lipid emulsions. The mechanism by which lipid emulsions promote mixed-species BF formation may involve significant upregulation of the expression of the flhDC, iha, HTA1, and HWP1 genes, which are associated with bacterial motility, adhesion, and BF formation. The results derived from this study necessitate strict aseptic precautions when handling lipid emulsions and avoiding the use of high concentrations of lipid emulsions for as long as possible.
Collapse
|
14
|
Liu Y, Zhu M, Fu X, Cai J, Chen S, Lin Y, Jiang N, Chen S, Lin Z. Escherichia coli Causing Neonatal Meningitis During 2001-2020: A Study in Eastern China. Int J Gen Med 2021; 14:3007-3016. [PMID: 34234530 PMCID: PMC8254664 DOI: 10.2147/ijgm.s317299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Background and Objective Neonatal meningitis (NM) caused by Escherichia coli remains a major health problem in industrialized countries. Currently, information on the epidemiology and antimicrobial susceptibility patterns of NM in developing countries such as China is relatively scarce. Therefore, the present study investigated changes in the antimicrobial susceptibility of E. coli causing NM in a perinatal center in eastern China over the past 20 years. Methods This survey was conducted during three periods: 2001–2006, 2007–2012, and 2013–2020. NM was diagnosed according to the number of white blood cells in the cerebrospinal fluid (CSF) and the presence of a single potential pathogenic bacterium in the culture prepared from the blood or CSF of a newborn baby. Changes in the antimicrobial susceptibility of E. coli were analyzed. Results In total, 182 NM cases were identified. E. coli was identified in 69 of these cases, and in 21 of these cases, extended-spectrum beta-lactamase (ESBL) production was detected. E. coli was the main cause of NM identified in this study. The overall susceptibility of E. coli to third-generation cephalosporins such as cefotaxime decreased from 100% during 2001–2006 to 50% during 2007–2012 and, subsequently, increased to 71.0% during 2013–2020. This pattern of change is correlated with bacterial ESBL production. Only 8.3% of E. coli found in samples collected from infants with early onset meningitis (EOM) produced ESBL, while 37.3% of E. coli isolated from children with late-onset meningitis (LOM) produced ESBL. Conclusion E. coli remains the primary pathogen of NM. Compared with that isolated from infants with LOM, the percentage of ESBL-producing multidrug-resistant E. coli isolated from infants with EOM is significantly lower. Clinicians should consider this trend when determining appropriate and effective antibiotics as empirical treatment for NM.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Minli Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Xiaoqin Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Jiaojiao Cai
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Shangqin Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Yuanyuan Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Na Jiang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Si Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| |
Collapse
|
15
|
Roy R, You RI, Chang CH, Yang CY, Lin NT. Carboxy-Terminal Processing Protease Controls Production of Outer Membrane Vesicles and Biofilm in Acinetobacter baumannii. Microorganisms 2021; 9:microorganisms9061336. [PMID: 34203028 PMCID: PMC8234194 DOI: 10.3390/microorganisms9061336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Carboxy-terminal processing protease (Ctp) is a serine protease that controls multiple cellular processes through posttranslational modification of proteins. Acinetobacter baumannii ATCC 17978 ctp mutant, namely MR14, is known to cause cell wall defects and autolysis. The objective of this study was to investigate the role of ctp mutation-driven autolysis in regulating biofilms in A. baumannii and to evaluate the vesiculation caused by cell wall defects. We found that in A. baumannii, Ctp is localized in the cytoplasmic membrane, and loss of Ctp function enhances the biofilm-forming ability of A. baumannii. Quantification of the matrix components revealed that extracellular DNA (eDNA) and proteins were the chief constituents of MR14 biofilm, and the transmission electron microscopy further indicated the presence of numerous dead cells compared with ATCC 17978. The large number of MR14 dead cells is potentially the result of compromised outer membrane integrity, as demonstrated by its high sensitivity to sodium dodecyl sulfate (SDS) and ethylenediaminetetraacetic acid (EDTA). MR14 also exhibited the hypervesiculation phenotype, producing outer-membrane vesicles (OMVs) of large mean size. The MR14 OMVs were more cytotoxic toward A549 cells than ATCC 17978 OMVs. Our overall results indicate that A. baumanniictp negatively controls pathogenic traits through autolysis and OMV biogenesis.
Collapse
Affiliation(s)
- Rakesh Roy
- Institute of Medical Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
| | - Chan-Hua Chang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Chiou-Ying Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan;
- Correspondence: (C.-Y.Y.); (N.-T.L.); Tel.: +886-3-856 5301 (ext. 2080) (N.-T.L.); Fax: +886-3-8566724 (N.-T.L.)
| | - Nien-Tsung Lin
- Institute of Medical Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
- Department of Microbiology, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan
- Correspondence: (C.-Y.Y.); (N.-T.L.); Tel.: +886-3-856 5301 (ext. 2080) (N.-T.L.); Fax: +886-3-8566724 (N.-T.L.)
| |
Collapse
|
16
|
Teng CH, Wu PC, Tang SL, Chen YC, Cheng MF, Huang PC, Ko WC, Wang JL. A Large Spatial Survey of Colistin-Resistant Gene mcr-1-Carrying E. coli in Rivers across Taiwan. Microorganisms 2021; 9:722. [PMID: 33807253 PMCID: PMC8066897 DOI: 10.3390/microorganisms9040722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Colistin is one of the last-line antimicrobial agents against life-threatening infections. The distribution of the colistin resistance gene mcr-1 has been reported worldwide. However, most studies have focused on the distribution of mcr-1-positive bacteria in humans, animals, food, and sewage; few have focused on their distribution in natural environments. METHOD We conducted a large spatial survey of mcr-1-positive Escherichia coli at 119 sites in 48 rivers, covering the entire island of Taiwan. We investigated the relationship between the livestock or poultry density in the surveyed riverine area and the number of mcr-1-positive E. coli in the river water. We then sequenced and characterized the isolated mcr-1-positive plasmids. RESULTS Seven mcr-1 positive E. coli were isolated from 5.9% of the sampling sites. The mcr-1-positive sites correlated with high chicken and pig stocking densities but not human population density or other river parameters. Four of the mcr-1-positive E. coli strains harbored epidemic IncX4 plasmids, and three of them exhibited identical sequences with a size of 33,309 bp. One of the plasmids contained identical 33,309 bp sequences but carried an additional 5711-bp transposon (Tn3 family). To our knowledge, this is the first demonstration that mcr-1-carrying IncX4 plasmids can contain an insertion of such transposons. All mcr-1-positive isolates belonged to phylogenetic group A and harbored few known virulence genes. CONCLUSION This study showed a positive relationship between the number of mcr-1-positive sites and high livestock and poultry density. The sequencing analyses indicated that the epidemic plasmid in the mcr-1 isolates circulates not only in humans, animals, and food but also in the associated environments or natural habitats in Taiwan, suggesting that the surveillance of antibiotics-resistance genes for livestock or poultry farm quality control should include their associated environments.
Collapse
Affiliation(s)
- Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (C.-H.T.); (Y.-C.C.)
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 704, Taiwan
| | - Pin-Chieh Wu
- Department of Physical Examination Center, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Department of Nursing, Meiho University, Pingtung 912, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Yi-Chen Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (C.-H.T.); (Y.-C.C.)
| | - Ming-Fang Cheng
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Chemical Engineering, Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 840, Taiwan
- Department of Nursing, Fooyin University, Kaohsiung 831, Taiwan
| | - Ping-Chih Huang
- Department of Cosmetics and Fashion Styling, Cheng-Shiu University, Kaohsiung 833, Taiwan;
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan;
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan;
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
17
|
Huang WC, Hashimoto M, Shih YL, Wu CC, Lee MF, Chen YL, Wu JJ, Wang MC, Lin WH, Hong MY, Teng CH. Peptidoglycan Endopeptidase Spr of Uropathogenic Escherichia coli Contributes to Kidney Infections and Competitive Fitness During Bladder Colonization. Front Microbiol 2021; 11:586214. [PMID: 33391204 PMCID: PMC7774453 DOI: 10.3389/fmicb.2020.586214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/25/2020] [Indexed: 11/27/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the most common pathogen of urinary tract infections (UTIs). Antibiotic therapy is the conventional measure to manage such infections. However, the rapid emergence of antibiotic resistance has reduced the efficacy of antibiotic treatment. Given that the bacterial factors required for the full virulence of the pathogens are potential therapeutic targets, identifying such factors may facilitate the development of novel therapeutic strategies against UPEC UTIs. The peptidoglycan (PG) endopeptidase Spr (also named MepS) is required for PG biogenesis in E. coli. In the present study, we found that Spr deficiency attenuated the ability of UPEC to infect kidneys and induced a fitness defect during bladder colonization in a mouse model of UTI. Based on the liquid chromatography (LC)/mass spectrometry (MS)/MS analysis of the bacterial envelope, spr deletion changed the levels of some envelope-associated proteins, suggesting that Spr deficiency interfere with the components of the bacterial structure. Among the proteins, FliC was significantly downregulated in the spr mutant, which is resulted in reduced motility. Lack of Spr might hinder the function of the flagellar transcriptional factor FlhDC to decrease FliC expression. The motility downregulation contributed to the reduced fitness in urinary tract colonization. Additionally, spr deletion compromised the ability of UPEC to evade complement-mediated attack and to resist intracellular killing of phagocytes, consequently decreasing UPEC bloodstream survival. Spr deficiency also interfered with the UPEC morphological switch from bacillary to filamentous shapes during UTI. It is known that bacterial filamentation protects UPEC from phagocytosis by phagocytes. In conclusion, Spr deficiency was shown to compromise multiple virulence properties of UPEC, leading to attenuation of the pathogen in urinary tract colonization and bloodstream survival. These findings indicate that Spr is a potential antimicrobial target for further studies attempting to develop novel strategies in managing UPEC UTIs.
Collapse
Affiliation(s)
- Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Masayuki Hashimoto
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ling Shih
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-Ching Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Feng Lee
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Ya-Lei Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hung Lin
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Yuan Hong
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
18
|
Khan F, Tabassum N, Pham DTN, Oloketuyi SF, Kim YM. Molecules involved in motility regulation in Escherichia coli cells: a review. BIOFOULING 2020; 36:889-908. [PMID: 33028083 DOI: 10.1080/08927014.2020.1826939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The initial colonization of the host organism by commensal, probiotic, and pathogenic Escherichia coli strains is an important step in the development of infections and biofilms. Sensing and colonization of host cell surfaces are governed by flagellar and fimbriae/pili appendages, respectively. Biofilm formation confers great advantages on pathogenic E. coli cells such as protection against the host immune system, antimicrobial agents, and several environmental stress factors. The transition from planktonic to sessile physiological states involves several signaling cascades and factors responsible for the regulation of flagellar motility in E. coli cells. These regulatory factors have thus become important targets to control pathogenicity. Hence, attenuation of flagellar motility is considered a potential therapy against pathogenic E. coli. The present review describes signaling pathways and proteins involved in direct or indirect regulation of flagellar motility. Furthermore, application strategies for antimotility natural or synthetic compounds are discussed also.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, Republic of Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
19
|
Hsu PC, Chen CS, Wang S, Hashimoto M, Huang WC, Teng CH. Identification of MltG as a Prc Protease Substrate Whose Dysregulation Contributes to the Conditional Growth Defect of Prc-Deficient Escherichia coli. Front Microbiol 2020; 11:2000. [PMID: 32973722 PMCID: PMC7481392 DOI: 10.3389/fmicb.2020.02000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Microbial proteases play pivotal roles in many aspects of bacterial physiological processes. Because a protease exerts its biological function by proteolytically regulating its substrates, the identification and characterization of the physiological substrates of a protease advance our understanding of the biological roles of the protease. Prc (also named Tsp) is an Escherichia coli periplasmic protease thought to be indispensable for E. coli to survive under low osmolality at 42°C. The accumulation of the Prc substrate MepS due to Prc deficiency contributes to the conditional growth defect. Because preventing MepS accumulation only partially restored the growth of Prc-deficient E. coli, we hypothesized that other unidentified Prc substrates intracellularly accumulate due to Prc deficiency and contribute to the conditional growth defect. To identify previously undiscovered substrates, 85 E. coli proteins able to physically interact with Prc were identified using E. coli proteome arrays. Ten proteins were shown to be cleavable by Prc in vitro. Among these candidates, MltG was able to interact with Prc in E. coli. Prc regulated the intracellular level of MltG, indicating that MltG is a physiological substrate of Prc. Prc deficiency induced the accumulation of MltG in the bacteria. Blocking MltG accumulation by deleting mltG partially restored the growth of Prc-deficient E. coli. In addition, Prc-deficient E. coli with blocked MltG and MepS expression exhibited higher growth levels than those with only the MltG or MepS expression blocked under low osmolality at 42°C, suggesting that these accumulated substrates additively contributed to the conditional growth defect. MltG is a lytic transglycosylase involved in the biogenesis of peptidoglycan (PG). In addition to MltG, the previously identified physiological Prc substrates MepS and PBP3 are involved in PG biogenesis, suggesting a potential role of Prc in regulating PG biogenesis.
Collapse
Affiliation(s)
- Po-Chuen Hsu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Masayuki Hashimoto
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
20
|
Huang WC, Liao YJ, Hashimoto M, Chen KF, Chu C, Hsu PC, Wang S, Teng CH. cjrABC-senB hinders survival of extraintestinal pathogenic E. coli in the bloodstream through triggering complement-mediated killing. J Biomed Sci 2020; 27:86. [PMID: 32762693 PMCID: PMC7412671 DOI: 10.1186/s12929-020-00677-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 07/28/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Extraintestinal pathogenic E. coli (ExPEC) is a common gram-negative organism causing various infections, including urinary tract infections (UTIs), bacteremia, and neonatal meningitis. The cjrABC-senB gene cluster of E. coli contributes to ExPEC virulence in the mouse model of UTIs. Consistently, the distribution of cjrABC-senB is epidemiologically associated with human UTIs caused by E. coli. cjrABC-senB, which has previously been proposed to encode an iron uptake system, may facilitate ExPEC survival in the iron availability-restricted urinary tract. Given that the bloodstream is also an iron limited environment to invading bacteria, the pathogenic role of cjrABC-senB in ExPEC bacteremia, however, remains to be investigated. METHODS The ability of ExPEC RS218 strains with and without cjrABC-senB to survive in the mouse bloodstream and human serum was evaluated. Subsequently, the role of this gene cluster in the ExPEC interaction with the complement system was evaluated. Finally, the distribution of cjrABC-senB in human clinical E. coli isolates was determined by PCR. The frequency of cjrABC-senB in bacteremia isolates that were not associated with UTIs (non-UTI bacteremia isolates) was compared with that in UTI-associated isolates and fecal isolates. RESULTS Expression of cjrABC-senB attenuated the survival of RS218 in the mouse bloodstream and human serum. The cjrABC-senB-harboring strains triggered enhanced classical- and alternative-complement pathway activation and became more vulnerable to complement-mediated killing in serum. cjrA was identified as the major gene responsible for the attenuated serum survival. Expressing cjrABC-senB and cjrA increased bacterial susceptibility to detergent and induced periplasmic protein leakage, suggesting that the expression of these genes compromises the integrity of the outer membrane of ExPEC. In addition, the frequency of cjrABC-senB in non-UTI bacteremia isolates was significantly lower than that in UTI-associated isolates, while the frequencies in non-UTI bacteremia isolates and fecal isolates showed no significant difference. Consistently, this epidemiological investigation suggests that cjrABC-senB does not contribute to E. coli bacteremia in humans. CONCLUSION The contribution of cjrABC-senB to the pathogenesis of ExPEC is niche dependent and contradictory because the genes facilitate ExPEC UTIs but hinder bacteremia. The contradictory niche-dependent characteristic may benefit the development of novel strategies against E. coli-caused infections.
Collapse
Affiliation(s)
- Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 4th F, 367 Sheng Li Road, North District, Tainan City, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yi-Jyun Liao
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 4th F, 367 Sheng Li Road, North District, Tainan City, Taiwan
| | - Masayuki Hashimoto
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 4th F, 367 Sheng Li Road, North District, Tainan City, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan
| | - Kuan-Fu Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 4th F, 367 Sheng Li Road, North District, Tainan City, Taiwan
| | - Chishih Chu
- Department of Microbiology, Immunology, and Biopharmaceuticals, National Chiayi University, Chiayi City, Taiwan
| | - Po-Chuen Hsu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 4th F, 367 Sheng Li Road, North District, Tainan City, Taiwan
| | - Shuying Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan City, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 4th F, 367 Sheng Li Road, North District, Tainan City, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan.
| |
Collapse
|
21
|
Mutation of the Carboxy-Terminal Processing Protease in Acinetobacter baumannii Affects Motility, Leads to Loss of Membrane Integrity, and Reduces Virulence. Pathogens 2020; 9:pathogens9050322. [PMID: 32357487 PMCID: PMC7281292 DOI: 10.3390/pathogens9050322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 01/17/2023] Open
Abstract
Motility plays an essential role in the host–parasite relationship of pathogenic bacteria, and is often associated with virulence. While many pathogenic bacteria use flagella for locomotion, Acinetobacter baumannii strains do not have flagella, but have other features that aid in their motility. To study the genes involved in motility, transposon mutagenesis was performed to construct A. baumannii mutant strains. Mutant strain MR14 was found to have reduced motility, compared to wild-type ATCC 17978. NCBI BLAST analysis revealed that the Tn10 transposon in the MR14 genome is integrated into the gene that encodes for carboxy-terminal processing protease (Ctp). Additionally, MR14 exhibits a mucoidy, sticky phenotype as the result of increased extracellular DNA (eDNA) caused by bacterial autolysis. Transmission and scanning electron microscopy revealed cytoplasmic content leaving the cell and multiple cell membrane depressions, respectively. MR14 showed higher sensitivity to environmental stressors. Mutation of the ctp gene reduced invasion and adhesion of A. baumannii to airway epithelial cells, potentially due to increased hydrophobicity. In the zebrafish model of infection, MR14 increased the survival rate by 40% compared to the wild-type. Taken together, the ctp gene in A. baumannii has a pivotal role in maintaining membrane integrity, adaptation to environmental stress, and controlling virulence.
Collapse
|