1
|
Smith C. The potential of zebrafish as drug discovery research tool in immune-mediated inflammatory disease. Inflammopharmacology 2024; 32:2219-2233. [PMID: 38926297 PMCID: PMC11300644 DOI: 10.1007/s10787-024-01511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Immune-mediated inflammatory disease (IMID) prevalence is estimated at 3-7% for Westernised populations, with annual incidence reported at almost 1 in 100 people globally. More recently, drug discovery approaches have been evolving towards more targeted therapies with an improved long-term safety profile, while the requirement for individualisation of medicine in complex conditions such as IMIDs, is acknowledged. However, existing preclinical models-such as cellular and in vivo mammalian models-are not ideal for modern drug discovery model requirements, such as real-time in vivo visualisation of drug effects, logistically feasible safety assessment over the course of a lifetime, or dynamic assessment of physiological changes during disease development. Zebrafish share high homology with humans in terms of proteins and disease-causing genes, with high conservation of physiological processes at organ, tissue, cellular and molecular level. These and other unique attributes, such as high fecundity, relative transparency and ease of genetic manipulation, positions zebrafish as the next major role player in IMID drug discovery. This review provides a brief overview of the suitability of this organism as model for human inflammatory disease and summarises the range of approaches used in zebrafish-based drug discovery research. Strengths and limitations of zebrafish as model organism, as well as important considerations in research study design, are discussed. Finally, under-utilised avenues for investigation in the IMID context are highlighted.
Collapse
Affiliation(s)
- Carine Smith
- Experimental Medicine Group, Department of Medicine, Stellenbosch University, Parow, South Africa.
| |
Collapse
|
2
|
Kong WZ, Zhang HY, Sun YF, Song J, Jiang J, Cui HY, Zhang Y, Han S, Cheng Y. Plasmodium vivax tryptophan-rich antigen reduces type I collagen secretion via the NF-κBp65 pathway in splenic fibroblasts. Parasit Vectors 2024; 17:239. [PMID: 38802961 PMCID: PMC11131192 DOI: 10.1186/s13071-024-06264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The spleen plays a critical role in the immune response against malaria parasite infection, where splenic fibroblasts (SFs) are abundantly present and contribute to immune function by secreting type I collagen (collagen I). The protein family is characterized by Plasmodium vivax tryptophan-rich antigens (PvTRAgs), comprising 40 members. PvTRAg23 has been reported to bind to human SFs (HSFs) and affect collagen I levels. Given the role of type I collagen in splenic immune function, it is important to investigate the functions of the other members within the PvTRAg protein family. METHODS Protein structural prediction was conducted utilizing bioinformatics analysis tools and software. A total of 23 PvTRAgs were successfully expressed and purified using an Escherichia coli prokaryotic expression system, and the purified proteins were used for co-culture with HSFs. The collagen I levels and collagen-related signaling pathway protein levels were detected by immunoblotting, and the relative expression levels of inflammatory factors were determined by quantitative real-time PCR. RESULTS In silico analysis showed that P. vivax has 40 genes encoding the TRAg family. The C-terminal region of all PvTRAgs is characterized by the presence of a domain rich in tryptophan residues. A total of 23 recombinant PvTRAgs were successfully expressed and purified. Only five PvTRAgs (PvTRAg5, PvTRAg16, PvTRAg23, PvTRAg30, and PvTRAg32) mediated the activation of the NF-κBp65 signaling pathway, which resulted in the production of inflammatory molecules and ultimately a significant reduction in collagen I levels in HSFs. CONCLUSIONS Our research contributes to the expansion of knowledge regarding the functional role of PvTRAgs, while it also enhances our understanding of the immune evasion mechanisms utilized by parasites.
Collapse
Affiliation(s)
- Wei-Zhong Kong
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Hang-Ye Zhang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
- Case Room, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yi-Fan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jing Song
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jian Jiang
- Wuxi Red Cross Blood Center, Wuxi, 214000, China
| | - Heng-Yuan Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Yu Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Su Han
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China.
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China.
| |
Collapse
|
3
|
Chrastina M, Dráfi F, Pružinská K, Poništ S, Kamga KS, Khademnematolahi S, Bilka F, Novák P, Pašková Ľ, Bauerová K. Crocus sativus L. Extract (Saffron) Effectively Reduces Arthritic and Inflammatory Parameters in Monotherapy and in Combination with Methotrexate in Adjuvant Arthritis. Nutrients 2023; 15:4108. [PMID: 37836391 PMCID: PMC10574733 DOI: 10.3390/nu15194108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Rheumatoid arthritis (RA), an autoimmune disease, is characterized by inflammation that affects not only the liver but also other organs and the musculoskeletal system. The standard therapy for RA is methotrexate (MTX), which has safety limitations. The extract from Crocus sativus L. (saffron-SF) is also known for its anti-inflammatory effects. Therefore, we decided to investigate the potential benefit of SF in monotherapy via two doses (SF1-25 mg/kg of b.w.; SF2-50 mg/kg of b.w.) and in combination with MTX (0.3 mg/kg of b.w., twice a week) using adjuvant arthritis in rats. To evaluate these therapeutic settings, we used biometric, immunological, and biochemical parameters, as well as the relative gene expression of the mRNA in the liver. Our results showed a statistically significant increase in the experimental animals' body weight and the arthritic score (AS) on day 14 for monotherapy with SF1 and SF2. The change of hind paw volume (CHPV) was significant only for SF2 monotherapy on the 14th day of the experiment. A combination of SF1 and SF2 with MTX significantly modulated all the biometric parameters during the experimental period. Additionally, AS and CHPV improved considerably compared to MTX monotherapy on day 21. Furthermore, all monotherapies and combination therapies were significant for the biochemical parameter γ-glutamyl transferase (GGT) in the joint. GGT activity in the spleen was less pronounced; only MTX in combination with SF1 significantly modified this parameter. The higher dose of SF monotherapy (SF2) was similarly significant with respect to immunological parameters, such as plasmatic IL-17A, IL-1β, and MMP-9 on day 21. The combination of both doses of SF with MTX significantly improved these immunological parameters, except for C-reactive protein (CRP), which was influenced only by the higher dose of SF2 in combination with MTX in plasma at the end of the experiment. A different effect was found for the relative expression of CD36 mRNA, where only SF1 significantly decreased gene expression in the liver. However, the relative gene mRNA expression of IL-1β in the liver was significantly reduced by the SF monotherapies and the combination of both SF doses with MTX. Our findings showed SF's partial antiarthritic and anti-inflammatory potential in monotherapy, but the effect was stronger in combination with MTX.
Collapse
Affiliation(s)
- Martin Chrastina
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 10701/4A, 036 01 Martin, Slovakia
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
| | - Katarína Pružinská
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 10701/4A, 036 01 Martin, Slovakia
| | - Silvester Poništ
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
| | - Kevine Silihe Kamga
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
- Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 812, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé P.O. Box 1364, Cameroon
| | - Sasan Khademnematolahi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - František Bilka
- Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (F.B.); (P.N.); (Ľ.P.)
| | - Peter Novák
- Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (F.B.); (P.N.); (Ľ.P.)
| | - Ľudmila Pašková
- Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (F.B.); (P.N.); (Ľ.P.)
| | - Katarína Bauerová
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
| |
Collapse
|
4
|
Gál P, Brábek J, Holub M, Jakubek M, Šedo A, Lacina L, Strnadová K, Dubový P, Hornychová H, Ryška A, Smetana K. Autoimmunity, cancer and COVID-19 abnormally activate wound healing pathways: critical role of inflammation. Histochem Cell Biol 2022; 158:415-434. [PMID: 35867145 PMCID: PMC9305064 DOI: 10.1007/s00418-022-02140-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Recent evidence indicates that targeting IL-6 provides broad therapeutic approaches to several diseases. In patients with cancer, autoimmune diseases, severe respiratory infections [e.g. coronavirus disease 2019 (COVID-19)] and wound healing, IL-6 plays a critical role in modulating the systemic and local microenvironment. Elevated serum levels of IL-6 interfere with the systemic immune response and are associated with disease progression and prognosis. As already noted, monoclonal antibodies blocking either IL-6 or binding of IL-6 to receptors have been used/tested successfully in the treatment of rheumatoid arthritis, many cancer types, and COVID-19. Therefore, in the present review, we compare the impact of IL-6 and anti-IL-6 therapy to demonstrate common (pathological) features of the studied diseases such as formation of granulation tissue with the presence of myofibroblasts and deposition of new extracellular matrix. We also discuss abnormal activation of other wound-healing-related pathways that have been implicated in autoimmune disorders, cancer or COVID-19.
Collapse
Affiliation(s)
- Peter Gál
- Department of Pharmacology, Pavol Jozef Šafárik University, Košice, Slovak Republic
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
- Prague Burn Centre, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Michal Holub
- Department of Infectious Diseases, First Faculty of Medicine, Military University Hospital Prague and Charles University, 160 00 Prague, Czech Republic
| | - Milan Jakubek
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 120 00 Praha 2, Czech Republic
| | - Lukáš Lacina
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
| | - Karolína Strnadová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
| | - Petr Dubový
- Institute of Anatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Helena Hornychová
- The Fingerland Department of Pathology, Faculty of Medicine Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Aleš Ryška
- The Fingerland Department of Pathology, Faculty of Medicine Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
| |
Collapse
|
5
|
Effect of Saffron Extract, Astaxanthin, and Carnosic Acid on the Levels of Matrix Metalloproteinase-9 and on Body Weight Changes in Arthritis Experiments. EUROPEAN PHARMACEUTICAL JOURNAL 2022. [DOI: 10.2478/afpuc-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Abstract
AIM
The aim of this study was to explore the potential effect of natural compounds and their combination with methotrexate (M) on levels of matrix metalloproteinase-9 (MMP-9) as a key biochemical parameter in rat adjuvant arthritis. Further change of body weight was selected as one of clinical parameters monitored in this animal model.
MATERIALS AND METHODS
Adjuvant arthritis (AA) was induced in Lewis rats. Methotrexate (M) was administrated twice a week in a dose of 0.3 mg/kg b.w. The saffron extract was administrated daily in two doses: 25 mg/kg b.w. (SF1) and 50 mg/kg b.w. (SF2). Both doses were administrated alone and in combination with M. Astaxanthin was administrated also daily in two doses: 1 mg/kg b.w. (AS1) and 5 mg/kg b.w. (AS2) only as monotherapy. Carnosic acid was administrated daily in one dose: 100 mg/kg (C) in monotherapy and in combination with M. All compounds and M were administrated orally. Plasma samples were collected on the 21st experimental day and used for ELISA determination. The 21st experimental day was used also for the analysis of body weight changes.
RESULTS
We observed a significant decrease of MMP-9 plasmatic levels in SF1 and SF2 monotherapy in AA animal groups. The decrease in levels of MMP-9 in combined therapy of SF1 and M had higher significance than the effect of M only in AA. The same decreasing effect on the levels of MMP-9 was observed in the combined therapy of C and M. Astaxanthin and saffron extract had a very similar effect on clinical parameters and the change in body weight: both have significantly increased body weight in monotherapy in both doses used. The combined therapy of M and saffron extract doses showed no significant difference from M itself. Carnosic acid did not affect the change of body weight, and the combination of C with M reached the same level as M alone.
CONCLUSION
Astaxanthin in monotherapy and saffron extract in monotherapy and in combined therapy with M have significantly decreased plasmatic levels of MMP-9 and increased body weight in animals suffering from AA. Lower doses were more efficient for both experiments: astaxanthin and saffron extract. Carnosic acid has no effect in monotherapy in both parameters, but a combination with M has a significant effect with respect to the improvement of cachexia as well as the inhibition of inflammation.
Collapse
|
6
|
Therapeutic Benefit in Rheumatoid Cachexia Illustrated Using a Novel Primary Human Triple Cell Coculture Model. Int J Inflam 2022; 2022:1524913. [PMID: 35693848 PMCID: PMC9184217 DOI: 10.1155/2022/1524913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Background The loss of muscle mass in rheumatoid arthritis (RA), termed rheumatoid cachexia, is predicted to result from the complex interactions between different cell types involved in the maintenance of skeletal muscle mass, namely, myoblasts, fibroblasts, and macrophages. The complexity within the muscle is further highlighted by the incidence of nonresponsiveness to current RA treatment strategies. Method This study aimed at determining differences in the cellular responses in a novel human primary cell triple coculture model exposed to serum collected from nonarthritic controls (NC), RA treatment naïve (RATN), and RA treatment-nonresponding (RATNR) patients. Bone morphogenetic protein-7 (BMP-7) was investigated as a treatment option. Results Plasma analysis indicated that samples were indeed representative of healthy and RA patients—notably, the RATNR patients additionally exhibited dysregulated IL-6/IL-10 correlations. Coculture exposure to serum from RATNR patients demonstrated increased cellular growth (p < 0.001), while both hepatocyte growth factor (p < 0.01) and follistatin (p < 0.001) were reduced when compared to NC. Furthermore, decreased concentration of markers of extracellular matrix formation, transforming growth factor-β (TGF-β; p < 0.05) and fibronectin (p < 0.001), but increased collagen IV (p < 0.01) was observed following RATNR serum exposure. Under healthy conditions, BMP-7 exhibited potentially beneficial results in reducing fibrosis-generating TGF-β (p < 0.05) and fibronectin (p < 0.05). BMP-7 further exhibited protective potential in the RA groups through reversing the aberrant tendencies observed especially in the RATNR serum-exposed group. Conclusion Exposure of the triple coculture to RATN and RATNR serum resulted in dysregulated myoblast proliferation and growth, and ECM impairment, which was reversed by BMP-7 treatment.
Collapse
|
7
|
A 3D in vitro co-culture model for evaluating biomaterial-mediated modulation of foreign-body responses. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Damasceno de Lima R, Pedersen M, Costa do Bomfim FR, Chiarotto GB, Canciglieri PH, Pauli JR, Felonato M. Effects of different physical training protocols on inflammatory markers in Zymosan-induced rheumatoid arthritis in Wistar rats. Cell Biochem Funct 2022; 40:321-332. [PMID: 35298040 DOI: 10.1002/cbf.3697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/06/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation and involvement of the synovial membrane, causing joint damage and deformities. No effective drug treatment is available, and physical exercise has been utilized to alleviate the inflammatory processes. This study aimed to investigate the effects of different exercise training protocols on Zymosan-induced RA inflammatory markers in the right knee of Wistar rats. The rodents were subjected to aerobic, resisted, and combined physical training protocols with variations in the total training volume (50% or 100% of resistance and aerobic training volume) for 8 weeks. All physical training protocols reduced cachexia and systemic inflammatory processes. The histological results showed an increase in the inflammatory influx to the synovial tissue of the right knee in all physical training protocols. The rats that underwent combined physical training with reduced volume had a lower inflammatory influx compared to the other experimental groups. A reduction in the mRNA expression of inflammatory genes and an increase in anti-inflammatory gene expression were also observed. The physical training protocol associated with volume reduction attenuated systemic and synovial inflammation of the right knee, reducing the impact of Zymosan-induced RA in rats.
Collapse
Affiliation(s)
- Robson Damasceno de Lima
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto-UNIARARAS, Araras, São Paulo, Brazil
| | - Matheus Pedersen
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto-UNIARARAS, Araras, São Paulo, Brazil
| | | | | | | | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,OCRC-Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Maíra Felonato
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto-UNIARARAS, Araras, São Paulo, Brazil
| |
Collapse
|
9
|
Boodhoo K, de Swardt D, Smith C, van de Vyver M. Ex vivo tolerization and M2 polarization of macrophages dampens both pro- and anti-inflammatory cytokine production in response to diabetic wound fluid stimulation. Biochimie 2021; 196:143-152. [PMID: 34954283 DOI: 10.1016/j.biochi.2021.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/04/2021] [Accepted: 12/20/2021] [Indexed: 01/06/2023]
Abstract
Monocytes/macrophages play a prominent role in cutaneous wound healing. Persistent inflammation in diabetic wounds is associated with the inability of monocytic cells to switch from a phagocytic M1 (classically activated) to an anti-inflammatory, pro-regenerative M2 (alternatively activated) phenotype and as consequence, the proliferative phase of healing does not commence. A targeted cell therapy approach could potentially restore the pathological wound microenvironment through paracrine signalling to enable healing. This study investigated whether in vitro pre-treatment of monocytic (J774.1 A) cells - using a combination of endotoxin-induced immune tolerance (Pam3CSK4) and M2 polarization (IL-4) - could make these cells impervious to the pathological wound microenvironment and enhance the release of anti-inflammatory cytokines/growth factors. The effect of Pam3CSK4-induced tolerance and IL-4-associated polarization was assessed independently and in combination, on the expression of intracellular (flow cytometry) and secreted (ELISA) cytokines (TNF-ɑ, IL-6, IL-10, TGF-β) with and without re-stimulation to define the optimal pre-treatment conditions. Successive pre-treatment approach consisting of endotoxin tolerance followed by IL-4 priming, dampened TNF-ɑ release and induced intracellular TGF-β production upon re-stimulation. To mimic a chronic wound microenvironment, the J774A.1 monocytes were differentiated into macrophages using GM-CSF prior to pre-treatment (optimal condition) and subsequently exposed to diabetic wound fluid. The data demonstrated that in the presence of wound fluid, the successive pre-treatment, promoted M2 polarization (CD206) of monocytic cells and significantly dampened the intracellular production of both pro-inflammatory (TNF-ɑ, IL-6) and anti-inflammatory (IL-10, TGF-β) cytokines.
Collapse
Affiliation(s)
- K Boodhoo
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - D de Swardt
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa; Central Analytical Facility, Stellenbosch University, South Africa
| | - C Smith
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - M van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
10
|
Ollewagen T, Powrie YSL, Myburgh KH, Smith C. Unresolved intramuscular inflammation, not diminished skeletal muscle regenerative capacity, is at the root of rheumatoid cachexia: insights from a rat CIA model. Physiol Rep 2021; 9:e15119. [PMID: 34806343 PMCID: PMC8606867 DOI: 10.14814/phy2.15119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
Rheumatoid arthritis targets numerous organs in patients, including the skeletal muscle, resulting in rheumatoid cachexia. In the muscle niche, satellite cells, macrophages, and myofibroblasts may be affected and the factors they release altered. This study aimed to assess these cell types, cytokines, and growth factors and their relationships to muscle fiber size and number in a rodent collagen-induced arthritis (CIA) model, in order to identify new therapeutic targets. Fiber cross-sectional area (CSA) was 57% lower in CIA than controls (p < 0.0001), thus smaller but more fibers visible per field of view. Immunostaining indicated the increased presence of satellite cells, macrophages, myofibroblasts, and myonuclei per field of view in CIA (p < 0.01), but this finding was not maintained when taking fiber number into consideration. Western blots of gastrocnemius samples indicated that tumor necrosis factor-α was significantly elevated (p < 0.01) while interleukin-10 (IL-10) was decreased (p < 0.05) in CIA. This effect was maintained (and heightened for IL-10) when expressed per fiber number. Myogenic regulatory factors (MyoD and myogenin), transforming growth factor-β and inhibitor of differentiation were significantly elevated in CIA muscle and levels correlated significantly with CSA. Several of these factors remained elevated, but bone morphogenetic protein-7 decreased when considering fiber number per area. In conclusion, CIA-muscle demonstrated a good regenerative response. Myoblast numbers per fiber were not elevated, suggesting their activity results from the persistent inflammatory signaling which also significantly hampered maintenance of muscle fiber size. A clearer picture of signaling events at cellular level in arthritis muscle may be derived from expressing data per fiber.
Collapse
Affiliation(s)
- Tracey Ollewagen
- Department Physiological SciencesScience FacultyStellenbosch UniversityStellenboschSouth Africa
| | - Yigael S. L. Powrie
- Division of Clinical PharmacologyDepartment of MedicineFaculty of Medicine and Health SciencesStellenbosch UniversityStellenboschSouth Africa
| | - Kathryn H. Myburgh
- Department Physiological SciencesScience FacultyStellenbosch UniversityStellenboschSouth Africa
| | - Carine Smith
- Division of Clinical PharmacologyDepartment of MedicineFaculty of Medicine and Health SciencesStellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
11
|
Karstensen JK, Primdahl J, Andersson MLE, Christensen JR, Bremander A. Lifestyle factors in patients with rheumatoid arthritis-a cross-sectional study on two Scandinavian cohorts. Clin Rheumatol 2021; 41:387-398. [PMID: 34505213 PMCID: PMC8782815 DOI: 10.1007/s10067-021-05905-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The risk for cardiovascular diseases and other comorbidities increases with the number of unhealthy lifestyle factors in the general population. However, information on the combined number of unhealthy lifestyle factors in people with rheumatoid arthritis (RA) is scarce. OBJECTIVES To study lifestyle factors and the association between disease impact and two or more unhealthy lifestyle factors in two Scandinavian cohorts with RA. METHODS We analysed data from two cohorts, Danish (n = 566; mean age 61.82 (SD 11.13) years; 72% women) and Swedish (n = 955; mean age 66.38 (SD 12.90) years; 73% women). Lifestyle factors (tobacco use, BMI, alcohol consumption and physical activity) were dichotomised as healthy vs. unhealthy (range 0-4 unhealthy factors). The association between disease impact and two or more unhealthy lifestyle factors was analysed using logistic regression. RESULTS Sixty-six percent of Danish and 47% of Swedish respondents reported two or more unhealthy lifestyle factors, most commonly, being overweight/obese and physical inactivity. For Danish participants, two or more unhealthy lifestyle factors were associated with (OR and 95% CI) male gender (1.86; 1.21-2.85), cardiovascular diseases (1.90; 1.28-2.82) and disease duration (0.97; 0.95-0.99). Corresponding findings for the Swedish cohort were male gender (1.42; 1.07-1.89), pain (1.10; 1.04-1.15), fatigue (1.09; 1.04-1.15), physical functioning (1.64; 1.28-2.10) and quality of life (0.35; 0.20-0.60). CONCLUSION Many patients, most often male, in both cohorts had two or more unhealthy lifestyle factors. The number of unhealthy lifestyle factors indicates a multifaceted relationship with disease impact.
Collapse
Affiliation(s)
- Julie Katrine Karstensen
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark. .,Danish Hospital for Rheumatic Diseases, University Hospital of Southern Denmark, Sønderborg, Denmark. .,The DANBIO Registry, Copenhagen, Denmark. .,Spenshult Research and Development Centre, Halmstad, Sweden.
| | - Jette Primdahl
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Danish Hospital for Rheumatic Diseases, University Hospital of Southern Denmark, Sønderborg, Denmark.,Hospital of Southern Jutland, University Hospital of Southern Denmark, Aabenraa, Denmark
| | - Maria L E Andersson
- Spenshult Research and Development Centre, Halmstad, Sweden.,Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jeanette Reffstrup Christensen
- Research Unit of General Practice, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Research Unit of User Perspectives and Community-Based Interventions, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Ann Bremander
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Danish Hospital for Rheumatic Diseases, University Hospital of Southern Denmark, Sønderborg, Denmark.,Spenshult Research and Development Centre, Halmstad, Sweden.,Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Klyne DM, Barbe MF, James G, Hodges PW. Does the Interaction between Local and Systemic Inflammation Provide a Link from Psychology and Lifestyle to Tissue Health in Musculoskeletal Conditions? Int J Mol Sci 2021; 22:ijms22147299. [PMID: 34298917 PMCID: PMC8304860 DOI: 10.3390/ijms22147299] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 01/02/2023] Open
Abstract
Musculoskeletal conditions are known to involve biological, psychological, social and, often, lifestyle elements. However, these domains are generally considered in isolation from each other. This siloed approach is unlikely to be adequate to understand the complexity of these conditions and likely explains a major component of the disappointing effects of treatment. This paper presents a hypothesis that aims to provide a foundation to understand the interaction and integration between these domains. We propose a hypothesis that provides a plausible link between psychology and lifestyle factors with tissue level effects (such as connective tissue dysregulation/accumulation) in musculoskeletal conditions that is founded on understanding the molecular basis for interaction between systemic and local inflammation. The hypothesis provides plausible and testable links between mind and body, for which empirical evidence can be found for many aspects. We present this hypothesis from the perspective of connective tissue biology and pathology (fibrosis), the role of inflammation locally (tissue level), and how this inflammation is shaped by systemic inflammation through bidirectional pathways, and various psychological and lifestyle factors via their influence on systemic inflammation. This hypothesis provides a foundation for new consideration of the development and refinement of personalized multidimensional treatments for individuals with musculoskeletal conditions.
Collapse
Affiliation(s)
- David M. Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane 4072, Australia; (G.J.); (P.W.H.)
- Correspondence: ; Tel.: +61-7-3365-4569
| | - Mary F. Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Greg James
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane 4072, Australia; (G.J.); (P.W.H.)
| | - Paul W. Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane 4072, Australia; (G.J.); (P.W.H.)
| |
Collapse
|