1
|
Mei T, Li X, Li Y, Yang X, Li L, He Z. Genetic markers and predictive model for individual differences in countermovement jump enhancement after resistance training. Biol Sport 2024; 41:119-130. [PMID: 39416505 PMCID: PMC11475001 DOI: 10.5114/biolsport.2024.136088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/27/2023] [Accepted: 02/14/2024] [Indexed: 10/19/2024] Open
Abstract
This study aims to utilize Genome-Wide Association Analysis (GWAS) to identify genetic markers associated with enhanced power resulting from resistance training. Additionally, we analyze the potential biological effects of these markers and establish a predictive model for training outcomes. 193 Han Chinese adults (age: 20 ± 1 years) underwent resistance training involving squats and bench presses at 70% 1RM, twice weekly, 5 sets × 10 repetitions, for 12 weeks. Whole-genome genotyping was conducted, and participants' countermovement jump (CMJ) height, lower limb muscle strength, and body muscle mass were assessed. CMJ height change was used to assess changes in power and subjected to Genome-Wide Association Analysis (GWAS) against genotypes. Employing Polygenic Score (PGS) calculations and stepwise linear regression, a predictive model for training effects was constructed. The results revealed a significant increase in CMJ height among participants following the resistance training intervention (Δ% = 16.53%, p < 0.01), with individual differences ranging from -35.90% to 125.71%. 38 lead SNPs, including PCTP rs9907859 (p < 1 × 10-8), showed significant associations with the percentage change in CMJ height after training (p < 1 × 10-5). The explanatory power of the predictive model for training outcomes, established using PGS and phenotypic indicators, was 62.6%, comprising 13.0% from PGS and 49.6% from phenotypic indicators. SNPs associated with power resistance training were found to participate in the biological processes of musculoskeletal movement and the Striated muscle contraction pathway. These findings indicate that individual differences in the training effect of CMJ exist after resistance training, partially explained by genetic markers and phenotypic indicators (62.6%).
Collapse
Affiliation(s)
- Tao Mei
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Xiaoxia Li
- Department of Teaching Affairs, Shandong Sport University, Jinan, China
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Xiaolin Yang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Liang Li
- Sultan Idris Education University, Tanjung Malin, Malaysia
| | - Zihong He
- Biological Science Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
2
|
Castro A, Ferreira AG, Catai AM, Amaral MAB, Cavaglieri CR, Chacon-Mikahil MPT. Metabolic Predictors of Cardiorespiratory Fitness Responsiveness to Continuous Endurance and High-Intensity Interval Training Programs: The TIMES Study-A Randomized Controlled Trial. Metabolites 2024; 14:512. [PMID: 39330519 PMCID: PMC11433752 DOI: 10.3390/metabo14090512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Background/Objectives: Cardiorespiratory fitness (CRF) levels significantly modulate the risk of cardiometabolic diseases, aging, and mortality. Nevertheless, there is a substantial interindividual variability in CRF responsiveness to a given standardized exercise dose despite the type of training. Predicting the responsiveness to regular exercise has the potential to contribute to personalized exercise medicine applications. This study aimed to identify predictive biomarkers for the classification of CRF responsiveness based on serum and intramuscular metabolic levels before continuous endurance training (ET) or high-intensity interval training (HIIT) programs using a randomized controlled trial. Methods: Forty-three serum and seventy intramuscular (vastus lateralis) metabolites were characterized and quantified via proton nuclear magnetic resonance (1H NMR), and CRF levels (expressed in METs) were measured in 70 sedentary young men (age: 23.7 ± 3.0 years; BMI: 24.8 ± 2.5 kg·m-2), at baseline and post 8 weeks of the ET, HIIT, and control (CO) periods. A multivariate binary logistic regression model was used to classify individuals at baseline as Responders or Non-responders to CRF gains after the training programs. Results: CRF responses ranged from 0.9 to 3.9 METs for ET, 1.1 to 4.7 METs for HIIT, and -0.9 to 0.2 METs for CO. The frequency of Responder/Non-responder individuals between ET (76.7%/23.3%) and HIIT (90.0%/10.0%) programs was similar (p = 0.166). The model based on serum O-acetylcarnitine levels [OR (odds ratio) = 4.72, p = 0.012] classified Responder/Non-responders individuals to changes in CRF regardless of the training program with 78.0% accuracy (p = 0.006), while the intramuscular model based on creatinine levels (OR = 4.53, p = 0.0137) presented 72.3% accuracy (p = 0.028). Conclusions: These results highlight the potential value of serum and intramuscular metabolites as biomarkers for the classification of CRF responsiveness previous to different aerobic training programs.
Collapse
Affiliation(s)
- Alex Castro
- Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas 13083-100, SP, Brazil
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas (UNICAMP), Campinas 13083-851, SP, Brazil; (M.A.B.A.); (C.R.C.)
- Laboratory of Nuclear Magnetic Resonance, Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil;
| | - Antonio Gilberto Ferreira
- Laboratory of Nuclear Magnetic Resonance, Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil;
| | - Aparecida Maria Catai
- Laboratory of Cardiovascular Physiotherapy, Department of Physiotherapy, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil;
| | - Matheus Alejandro Bolina Amaral
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas (UNICAMP), Campinas 13083-851, SP, Brazil; (M.A.B.A.); (C.R.C.)
| | - Claudia Regina Cavaglieri
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas (UNICAMP), Campinas 13083-851, SP, Brazil; (M.A.B.A.); (C.R.C.)
| | - Mara Patrícia Traina Chacon-Mikahil
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas (UNICAMP), Campinas 13083-851, SP, Brazil; (M.A.B.A.); (C.R.C.)
| |
Collapse
|
3
|
Sitkowski D, Malczewska-Lenczowska J, Zdanowicz R, Starczewski M, Pokrywka A, Żmijewski P, Faiss R. Predicting Future Athletic Performance in Young Female Road Cyclists Based on Aerobic Fitness and Hematological Variables. Int J Sports Physiol Perform 2024; 19:890-896. [PMID: 39019447 DOI: 10.1123/ijspp.2023-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE This study aimed to determine whether the initial levels of aerobic fitness and hematological variables in young female road cyclists are related to their athletic performance development during their careers. METHODS Results of graded exercise tests on a cycle ergometer and total hemoglobin mass (tHb-mass) measurements were analyzed in 34 female road cyclists (age 18.6 [1.9] y). Among them, 2 groups were distinguished based on their competitive performance (Union Cycliste Internationale world ranking) over the following 8 years. Areas under the curve in receiver-operating-characteristic curves were calculated as indicators of elite-performance prediction. RESULTS Initial graded exercise test variables (peak power, peak oxygen uptake, and power at 4 mmol/L blood lactate) were not significantly different in elite (n = 13) versus nonelite (n = 21) riders. In contrast, elite riders had higher tHb-mass expressed either in absolute measures (664 [75] vs 596 [59] g, P = .006) or normalized to body mass (11.2 [0.8] vs 10.3 [0.7] g/kg, P = .001) and fat-free mass (14.4 [0.9] vs 13.1 [0.9] g/kg, P < .001). Absolute and relative erythrocyte volumes were significantly higher in elite subjects (P ranged from < .001 to .006). Of all the variables analyzed, the relative tHb-mass had the highest predictive ability to reach the elite level (area under the curve ranged from .82 to .85). CONCLUSION Measurement of tHb-mass can be a helpful tool in talent detection to identify young female road cyclists with the potential to reach the elite level in the future.
Collapse
Affiliation(s)
- Dariusz Sitkowski
- Department of Physiology, Institute of Sport-National Research Institute, Warsaw, Poland
| | | | - Ryszard Zdanowicz
- Department of Physiology, Institute of Sport-National Research Institute, Warsaw, Poland
| | - Michał Starczewski
- Department of Physiotherapy Fundamentals, Faculty of Rehabilitation, University of Physical Education, Warsaw, Poland
| | - Andrzej Pokrywka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Żmijewski
- Department of Biomedical Sciences, Faculty of Physical Education, University of Physical Education, Warsaw, Poland
| | - Raphael Faiss
- Institute of Sport Sciences, University of Lausanne, Switzerland
| |
Collapse
|
4
|
Yang X, Li Y, Mei T, Duan J, Yan X, McNaughton LR, He Z. Genome-wide association study of exercise-induced skeletal muscle hypertrophy and the construction of predictive model. Physiol Genomics 2024; 56:578-589. [PMID: 38881426 DOI: 10.1152/physiolgenomics.00019.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
The aim of the current study was to investigate interindividual differences in muscle thickness of the rectus femoris (MTRF) following 12 wk of resistance training (RT) or high-intensity interval training (HIIT) to explore the genetic architecture underlying skeletal muscle hypertrophy and to construct predictive models. We conducted musculoskeletal ultrasound assessments of the MTRF response in 440 physically inactive adults after the 12-wk exercise period. A genome-wide association study was used to identify variants associated with the MTRF response, separately for RT and HIIT. Using the polygenic predictor score (PPS), we estimated the genetic contribution to exercise-induced hypertrophy. Predictive models for the MTRF response were constructed using random forest (RF), support vector mac (SVM), and generalized linear model (GLM) in 10 cross-validated approaches. MTRF increased significantly after both RT (8.8%, P < 0.05) and HIIT (5.3%, P < 0.05), but with considerable interindividual differences (RT: -13.5 to 38.4%, HIIT: -14.2 to 30.7%). Eleven lead single-nucleotide polymorphisms in RT and eight lead single-nucleotide polymorphisms in HIIT were identified at a significance level of P < 1 × 10-5. The PPS was associated with the MTRF response, explaining 47.2% of the variation in response to RT and 38.3% of the variation in response to HIIT. Notably, the GLM and SVM predictive models exhibited superior performance compared with RF models (P < 0.05), and the GLM demonstrated optimal performance with an area under curve of 0.809 (95% confidence interval: 0.669-0.949). Factors such as PPS, baseline MTRF, and exercise protocol exerted influence on the MTRF response to exercise, with PPS being the primary contributor. The GLM and SVM predictive model, incorporating both genetic and phenotypic factors, emerged as promising tools for predicting exercise-induced skeletal muscle hypertrophy.NEW & NOTEWORTHY The interindividual variability induced muscle hypertrophy by resistance training (RT) or high-intensity interval training (HIIT) and the associated genetic architecture remain uncertain. We identified genetic variants that underlie RT- or HIIT-induced muscle hypertrophy and established them as pivotal factors influencing the response regardless of the training type. The genetic-phenotype predictive model developed has the potential to identify nonresponders or individuals with low responsiveness before engaging in exercise training.
Collapse
Affiliation(s)
- Xiaolin Yang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training and Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training and Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Tao Mei
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training and Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Jiayan Duan
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Xu Yan
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science, St Albans, Victoria, Australia
| | - Lars Robert McNaughton
- Sport Performance, Exercise and Nutrition Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom
| | - Zihong He
- Biology Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
5
|
Puvvula J, Braun JM, DeFranco EA, Ho SM, Leung YK, Huang S, Zhang X, Vuong AM, Kim SS, Percy Z, Calafat AM, Botelho JC, Chen A. Gestational exposure to environmental chemicals and epigenetic alterations in the placenta and cord blood mononuclear cells. EPIGENETICS COMMUNICATIONS 2024; 4:4. [PMID: 38962689 PMCID: PMC11217138 DOI: 10.1186/s43682-024-00027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Background Exposure to environmental chemicals such as phthalates, phenols, and polycyclic aromatic hydrocarbons (PAHs) during pregnancy can increase the risk of adverse newborn outcomes. We explored the associations between maternal exposure to select environmental chemicals and DNA methylation in cord blood mononuclear cells (CBMC) and placental tissue (maternal and fetal sides) to identify potential mechanisms underlying these associations. Method This study included 75 pregnant individuals who planned to give birth at the University of Cincinnati Hospital between 2014 and 2017. Maternal urine samples during the delivery visit were collected and analyzed for 37 biomarkers of phenols (12), phthalates (13), phthalate replacements (4), and PAHs (8). Cord blood and placenta tissue (maternal and fetal sides) were also collected to measure the DNA methylation intensities using the Infinium HumanMethylation450K BeadChip. We used linear regression, adjusting for potential confounders, to assess CpG-specific methylation changes in CBMC (n = 54) and placenta [fetal (n = 67) and maternal (n = 68) sides] associated with gestational chemical exposures (29 of 37 biomarkers measured in this study). To account for multiple testing, we used a false discovery rate q-values < 0.05 and presented results by limiting results with a genomic inflation factor of 1±0.5. Additionally, gene set enrichment analysis was conducted using the Kyoto Encyclopedia of Genes and Genomics pathways. Results Among the 29 chemical biomarkers assessed for differential methylation, maternal concentrations of PAH metabolites (1-hydroxynaphthalene, 2-hydroxyfluorene, 4-hydroxyphenanthrene, 1-hydroxypyrene), monocarboxyisononyl phthalate, mono-3-carboxypropyl phthalate, and bisphenol A were associated with altered methylation in placenta (maternal or fetal side). Among exposure biomarkers associated with epigenetic changes, 1-hydroxynaphthalene, and mono-3-carboxypropyl phthalate were consistently associated with differential CpG methylation in the placenta. Gene enrichment analysis indicated that maternal 1-hydroxynaphthalene was associated with lipid metabolism and cellular processes of the placenta. Additionally, mono-3-carboxypropyl phthalate was associated with organismal systems and genetic information processing of the placenta. Conclusion Among the 29 chemical biomarkers assessed during delivery, 1-hydroxynaphthalene and mono-3-carboxypropyl phthalate were associated with DNA methylation in the placenta. Supplementary Information The online version contains supplementary material available at 10.1186/s43682-024-00027-7.
Collapse
Affiliation(s)
- Jagadeesh Puvvula
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, RI USA
| | - Emily A. DeFranco
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY USA
| | - Shuk-Mei Ho
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Yuet-Kin Leung
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Shouxiong Huang
- Pathogen-Host Interaction Program, Texas Biomedical Research Institute, San Antonio, TX USA
| | - Xiang Zhang
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH USA
| | - Ann M. Vuong
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada Las Vegas, Las Vegas, NV USA
| | - Stephani S. Kim
- Health Research, Battelle Memorial Institute, Columbus, OH USA
| | - Zana Percy
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH USA
| | - Antonia M. Calafat
- National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Julianne C. Botelho
- National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
6
|
Roy N, Kabir AH, Zahan N, Mouna ST, Chakravarty S, Rahman AH, Bayzid MS. Genome wide association studies on seven yield-related traits of 183 rice varieties in Bangladesh. PLANT DIRECT 2024; 8:e593. [PMID: 38887667 PMCID: PMC11182691 DOI: 10.1002/pld3.593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 06/20/2024]
Abstract
Rice genetic diversity is regulated by multiple genes and is largely dependent on various environmental factors. Uncovering the genetic variations associated with the diversity in rice populations is the key to breed stable and high yielding rice varieties. We performed genome wide association studies (GWASs) on seven rice yielding traits (grain length, grain width, grain weight, panicle length, leaf length, leaf width, and leaf angle) based on a population of 183 rice landraces of Bangladesh. Our GWASs reveal various chromosomal regions and candidate genes that are associated with different traits in Bangladeshi rice varieties. Noteworthy was the recurrent implication of chromosome 10 in all three grain-shape-related traits (grain length, grain width, and grain weight), indicating its pivotal role in shaping rice grain morphology. Our study also underscores the involvement of transposon gene families across these three traits. For leaf related traits, chromosome 10 was found to harbor regions that are significantly associated with leaf length and leaf width. The results of these association studies support previous findings as well as provide additional insights into the genetic diversity of rice. This is the first known GWAS study on various yield-related traits in the varieties of Oryza sativa available in Bangladesh-the fourth largest rice-producing country. We believe this study will accelerate rice genetics research and breeding stable high-yielding rice in Bangladesh.
Collapse
Affiliation(s)
- Nilanjan Roy
- Department of Biomedical EngineeringMilitary Institute of Science and TechnologyDhakaBangladesh
- Molecular, Cellular, and Developmental BiologyUniversity of KansasLawrenceKansasUSA
| | - Acramul Haque Kabir
- Department of Biomedical EngineeringMilitary Institute of Science and TechnologyDhakaBangladesh
- Department of Biomedical EngineeringUniversity of UtahSalt Lake CityUtahUSA
| | - Nourin Zahan
- Department of Biomedical EngineeringMilitary Institute of Science and TechnologyDhakaBangladesh
| | - Shahba Tasmiya Mouna
- Department of Biomedical EngineeringMilitary Institute of Science and TechnologyDhakaBangladesh
| | - Sakshar Chakravarty
- Department of Computer Science and EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
- Department of Computer Science and EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
| | - Atif Hasan Rahman
- Department of Computer Science and EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
| | - Md. Shamsuzzoha Bayzid
- Department of Computer Science and EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
| |
Collapse
|
7
|
Ahmetov II, John G, Semenova EA, Hall ECR. Genomic predictors of physical activity and athletic performance. ADVANCES IN GENETICS 2024; 111:311-408. [PMID: 38908902 DOI: 10.1016/bs.adgen.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Physical activity and athletic performance are complex phenotypes influenced by environmental and genetic factors. Recent advances in lifestyle and behavioral genomics led to the discovery of dozens of DNA polymorphisms (variants) associated with physical activity and allowed to use them as genetic instruments in Mendelian randomization studies for identifying the causal links between physical activity and health outcomes. On the other hand, exercise and sports genomics studies are focused on the search for genetic variants associated with athlete status, sports injuries and individual responses to training and supplement use. In this review, the findings of studies investigating genetic markers and their associations with physical activity and athlete status are reported. As of the end of September 2023, a total of 149 variants have been associated with various physical activity traits (of which 42 variants are genome-wide significant) and 253 variants have been linked to athlete status (115 endurance-related, 96 power-related, and 42 strength-related).
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia; Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia; Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
| | - George John
- Transform Specialist Medical Centre, Dubai, United Arab Emirates
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia; Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Elliott C R Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
8
|
Atakan MM, Türkel İ, Özerkliğ B, Koşar ŞN, Taylor DF, Yan X, Bishop DJ. Small peptides: could they have a big role in metabolism and the response to exercise? J Physiol 2024; 602:545-568. [PMID: 38196325 DOI: 10.1113/jp283214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Exercise is a powerful non-pharmacological intervention for the treatment and prevention of numerous chronic diseases. Contracting skeletal muscles provoke widespread perturbations in numerous cells, tissues and organs, which stimulate multiple integrated adaptations that ultimately contribute to the many health benefits associated with regular exercise. Despite much research, the molecular mechanisms driving such changes are not completely resolved. Technological advancements beginning in the early 1960s have opened new avenues to explore the mechanisms responsible for the many beneficial adaptations to exercise. This has led to increased research into the role of small peptides (<100 amino acids) and mitochondrially derived peptides in metabolism and disease, including those coded within small open reading frames (sORFs; coding sequences that encode small peptides). Recently, it has been hypothesized that sORF-encoded mitochondrially derived peptides and other small peptides play significant roles as exercise-sensitive peptides in exercise-induced physiological adaptation. In this review, we highlight the discovery of mitochondrially derived peptides and newly discovered small peptides involved in metabolism, with a specific emphasis on their functions in exercise-induced adaptations and the prevention of metabolic diseases. In light of the few studies available, we also present data on how both single exercise sessions and exercise training affect expression of sORF-encoded mitochondrially derived peptides. Finally, we outline numerous research questions that await investigation regarding the roles of mitochondrially derived peptides in metabolism and prevention of various diseases, in addition to their roles in exercise-induced physiological adaptations, for future studies.
Collapse
Affiliation(s)
- Muhammed M Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - İbrahim Türkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Berkay Özerkliğ
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Şükran N Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Dale F Taylor
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne, Victoria, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Yang X, Li Y, Bao D, Mei T, Wuyun G, Zhou D, Nie J, Xia X, Liu X, He Z. Genotype-Phenotype Models Predicting V̇O 2max Response to High-Intensity Interval Training in Physically Inactive Chinese. Med Sci Sports Exerc 2023; 55:1905-1912. [PMID: 37170954 DOI: 10.1249/mss.0000000000003204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
PURPOSE This study aimed to analyze the interindividual differences of the maximal oxygen uptake (V̇O 2max ) response to 12 wk of high-intensity interval training (HIIT), and the genotype-phenotype models were constructed to predict the effect of HIIT on V̇O 2max . METHODS A total of 228 physically inactive adults who completed a 12-wk HIIT were analyzed. A genome-wide association study (GWAS) was conducted to identify genetic variants associated with the V̇O 2max response. Nonresponders, responders, and the highest training responders were defined as the effect sizes (ES) <0.2, ≥0.2, and ≥0.8, respectively. We generated polygenic predictor score (PPS) using lead variants and constructed a predictive model for V̇O 2max response based on a linear stepwise regression analysis. RESULTS The V̇O 2max increased significantly after HIIT (~14%, P < 0.001), but with interindividual differences (-7.8 to 17.9 mL·kg -1 ·min -1 ). In 27% of participants, the V̇O 2max showed no improvement. We identified one genetic locus near the γ-aminobutyric acid type A receptor subunit beta 3 gene ( GABRB3 , rs17116985) associated with V̇O 2max response at the genome-wide significance level ( P < 5 × 10 -8 ), and an additional nine single nucleotide polymorphisms (SNPs) at the suggestive significance level ( P < 1 × 10 -5 ). The SNPs rs474377, rs9365605, and rs17116985, respectively, explained 11%, 9%, and 6.2% of variance in V̇O 2max response. The 13 SNPs ( P < 1 × 10 -5 ) were found on chromosome 6 (position: 148209316-148223568). Individuals with a PPS greater than 1.757 had the highest response, and those with a PPS lower than -3.712 were nonresponders. The PPS, baseline V̇O 2max , sex, and body mass explained 56.4% of the variance in the V̇O 2max response; the major predictor was the PPS, which explained 39.4% of the variance. CONCLUSIONS The PPS, baseline V̇O 2max , sex, and body mass could explain the variance in V̇O 2max response. Individuals who had a PPS greater than 1.757 had the highest training response after 12 wk of HIIT. Genetic variants in a region on chromosome 6, especially the sterile alpha motif domain containing 5 gene ( SAMD5 ), which had been explored influencing angiogenesis, might have a potential role in the V̇O 2max response.
Collapse
Affiliation(s)
- Xiaolin Yang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, CHINA
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, CHINA
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, CHINA
| | - Tao Mei
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, CHINA
| | | | | | - Jing Nie
- Jiangxi Normal University, Nanchang, CHINA
| | | | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Science, Yokohama, JAPAN
| | - Zihong He
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, CHINA
| |
Collapse
|
10
|
Jacques M, Landen S, Romero JA, Hiam D, Schittenhelm RB, Hanchapola I, Shah AD, Voisin S, Eynon N. Methylome and proteome integration in human skeletal muscle uncover group and individual responses to high-intensity interval training. FASEB J 2023; 37:e23184. [PMID: 37698381 DOI: 10.1096/fj.202300840rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Exercise is a major beneficial contributor to muscle metabolism, and health benefits acquired by exercise are a result of molecular shifts occurring across multiple molecular layers (i.e., epigenome, transcriptome, and proteome). Identifying robust, across-molecular level targets associated with exercise response, at both group and individual levels, is paramount to develop health guidelines and targeted health interventions. Sixteen, apparently healthy, moderately trained (VO2 max = 51.0 ± 10.6 mL min-1 kg-1 ) males (age range = 18-45 years) from the Gene SMART (Skeletal Muscle Adaptive Responses to Training) study completed a longitudinal study composed of 12-week high-intensity interval training (HIIT) intervention. Vastus lateralis muscle biopsies were collected at baseline and after 4, 8, and 12 weeks of HIIT. DNA methylation (~850 CpG sites) and proteomic (~3000 proteins) analyses were conducted at all time points. Mixed models were applied to estimate group and individual changes, and methylome and proteome integration was conducted using a holistic multilevel approach with the mixOmics package. A total of 461 proteins significantly changed over time (at 4, 8, and 12 weeks), whilst methylome overall shifted with training only one differentially methylated position (DMP) was significant (adj.p-value < .05). K-means analysis revealed cumulative protein changes by clusters of proteins that presented similar changes over time. Individual responses to training were observed in 101 proteins. Seven proteins had large effect-sizes >0.5, among them are two novel exercise-related proteins, LYRM7 and EPN1. Integration analysis showed bidirectional relationships between the methylome and proteome. We showed a significant influence of HIIT on the epigenome and more so on the proteome in human muscle, and uncovered groups of proteins clustering according to similar patterns across the exercise intervention. Individual responses to exercise were observed in the proteome with novel mitochondrial and metabolic proteins consistently changed across individuals. Future work is required to elucidate the role of these proteins in response to exercise.
Collapse
Affiliation(s)
- Macsue Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Shanie Landen
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Javier Alvarez Romero
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Institute of Nutrition and Health Sciences, Deakin University, Melbourne, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Monash University, Melbourne, Victoria, Australia
| | - Iresha Hanchapola
- Monash Proteomics & Metabolomics Facility, Monash University, Melbourne, Victoria, Australia
| | - Anup D Shah
- Monash Proteomics & Metabolomics Facility, Monash University, Melbourne, Victoria, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Becker GM, Shira KA, Woods JL, Khilji SF, Schauer CS, Webb BT, Stewart WC, Murdoch BM. Angular limb deformity associated with TSPAN18, NRG3 and NOVA2 in Rambouillet rams. Sci Rep 2023; 13:16059. [PMID: 37749158 PMCID: PMC10520043 DOI: 10.1038/s41598-023-43320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
Angular limb deformity (ALD) affects many species of livestock and companion animals. The mechanisms of ALD development are not well understood, but previous research suggests the involvement of genetic risk factors. A case-control genome-wide association study (GWAS) was conducted with 40 ALD-affected and 302 unaffected Rambouillet rams and 40,945 single nucleotide polymorphisms (SNPs). Forelimbs of 6 ALD-affected rams were examined and diagnosed with osteochondrosis. Genome-wide or chromosome-wide significant SNPs were positioned exonic, intronic or within the 3'UTR of genes TSPAN18, NRG3 and NOVA2, respectively. These genes have previously described roles related to angiogenesis and osteoblast, osteoclast and chondrocyte proliferation and differentiation, which suggests the possibility for their involvement in the pathogenesis of osteochondrosis. Functional consequences of SNPs were evaluated through transcription factor binding site analysis, which predicted binding sites for transcription factors of known importance to bone growth, including SOX6, SOX9 and RUNX2. The identification of genetic risk factors for ALD may help to improve animal welfare and production in Rambouillet, a breed known to be at risk for ALD development. This study proposes genes TSPAN18, NRG3 and NOVA2 as targets for further research towards understanding the etiology of ALD in Rambouillet sheep.
Collapse
Affiliation(s)
- Gabrielle M Becker
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
| | - Katie A Shira
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
| | - Julia L Woods
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
| | - Sarem F Khilji
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
| | - Christopher S Schauer
- Hettinger Research Extension Center, North Dakota State University, Hettinger, ND, USA
| | - Brett T Webb
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Whit C Stewart
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
12
|
Xia H, Hao Z, Shen Y, Tu Z, Yang L, Zong Y, Li H. Genome-wide association study of multiyear dynamic growth traits in hybrid Liriodendron identifies robust genetic loci associated with growth trajectories. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1544-1563. [PMID: 37272730 DOI: 10.1111/tpj.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/30/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
The genetic factors underlying growth traits differ over time points or stages. However, most current studies of phenotypes at single time points do not capture all loci or explain the genetic differences underlying growth trajectories. Hybrid Liriodendron exhibits obvious heterosis and is widely cultivated, although its complex genetic mechanism underlying growth traits remains unknown. A genome-wide association study (GWAS) is an effective method for elucidating the genetic architecture by identifying genetic loci underlying complex quantitative traits. In the present study, using a GWAS, we identified robust loci associated with growth trajectories in hybrid Liriodendron populations. We selected 233 hybrid progenies derived from 25 crosses for resequencing, and measured their tree height (H) and diameter at breast height (DBH) for 11 consecutive years; 192 972 high-quality single nucleotide polymorphisms (SNPs) were obtained. The dynamics of the multiyear single-trait GWAS showed that year-specific SNPs predominated, and only five robust SNPs for DBH were identified in at least three different years. Multitrait GWAS analysis with model parameters as latent variables also revealed 62 SNPs for H and 52 for DBH associated with the growth trajectory, displaying different biomass accumulation patterns, among which four SNPs exerted pleiotropic effects. All identified SNPs also exhibited temporal variations in effect sizes and inheritance patterns potentially related to different growth and developmental stages. The haplotypes resulting from these significant SNPs might pyramid favorable loci, benefitting the selection of superior genotypes. The present study provides insights into the genetic architecture of dynamic growth traits and lays a basis for future molecular-assisted breeding.
Collapse
Affiliation(s)
- Hui Xia
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Ziyuan Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yufang Shen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhonghua Tu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Lichun Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yaxian Zong
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
13
|
Chung HC, Keiller DR, Swain PM, Chapman SL, Roberts JD, Gordon DA. Responsiveness to endurance training can be partly explained by the number of favorable single nucleotide polymorphisms an individual possesses. PLoS One 2023; 18:e0288996. [PMID: 37471354 PMCID: PMC10358902 DOI: 10.1371/journal.pone.0288996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/08/2023] [Indexed: 07/22/2023] Open
Abstract
Cardiorespiratory fitness is a key component of health-related fitness. It is a necessary focus of improvement, especially for those that have poor fitness and are classed as untrained. However, much research has shown individuals respond differentially to identical training programs, suggesting the involvement of a genetic component in individual exercise responses. Previous research has focused predominantly on a relatively low number of candidate genes and their overall influence on exercise responsiveness. However, examination of gene-specific alleles may provide a greater level of understanding. Accordingly, this study aimed to investigate the associations between cardiorespiratory fitness and an individual's genotype following a field-based endurance program within a previously untrained population. Participants (age: 29 ± 7 years, height: 175 ± 9 cm, mass: 79 ± 21 kg, body mass index: 26 ± 7 kg/m2) were randomly assigned to either a training (n = 21) or control group (n = 24). The training group completed a periodized running program for 8-weeks (duration: 20-30-minutes per session, intensity: 6-7 Borg Category-Ratio-10 scale rating, frequency: 3 sessions per week). Both groups completed a Cooper 12-minute run test to estimate cardiorespiratory fitness at baseline, mid-study, and post-study. One thousand single nucleotide polymorphisms (SNPs) were assessed via saliva sample collections. Cooper run distance showed a significant improvement (0.23 ± 0.17 km [11.51 ± 9.09%], p < 0.001, ES = 0.48 [95%CI: 0.16-0.32]), following the 8-week program, whilst controls displayed no significant changes (0.03 ± 0.15 km [1.55 ± 6.98%], p = 0.346, ES = 0.08, [95%CI: -0.35-0.95]). A significant portion of the inter-individual variation in Cooper scores could be explained by the number of positive alleles a participant possessed (r = 0.92, R2 = 0.85, p < 0.001). These findings demonstrate the relative influence of key allele variants on an individual's responsiveness to endurance training.
Collapse
Affiliation(s)
- Henry C. Chung
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, United Kingdom
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Don R. Keiller
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Patrick M. Swain
- Department of Sport, Exercise, and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Shaun L. Chapman
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
- HQ Army Recruiting and Initial Training Command, United Kingdom Ministry of Defence, Upavon, United Kingdom
| | - Justin D. Roberts
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Dan A. Gordon
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
14
|
Semenova EA, Hall ECR, Ahmetov II. Genes and Athletic Performance: The 2023 Update. Genes (Basel) 2023; 14:1235. [PMID: 37372415 PMCID: PMC10298527 DOI: 10.3390/genes14061235] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Phenotypes of athletic performance and exercise capacity are complex traits influenced by both genetic and environmental factors. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status summarises recent advances in sports genomics research, including findings from candidate gene and genome-wide association (GWAS) studies, meta-analyses, and findings involving larger-scale initiatives such as the UK Biobank. As of the end of May 2023, a total of 251 DNA polymorphisms have been associated with athlete status, of which 128 genetic markers were positively associated with athlete status in at least two studies (41 endurance-related, 45 power-related, and 42 strength-related). The most promising genetic markers include the AMPD1 rs17602729 C, CDKN1A rs236448 A, HFE rs1799945 G, MYBPC3 rs1052373 G, NFIA-AS2 rs1572312 C, PPARA rs4253778 G, and PPARGC1A rs8192678 G alleles for endurance; ACTN3 rs1815739 C, AMPD1 rs17602729 C, CDKN1A rs236448 C, CPNE5 rs3213537 G, GALNTL6 rs558129 T, IGF2 rs680 G, IGSF3 rs699785 A, NOS3 rs2070744 T, and TRHR rs7832552 T alleles for power; and ACTN3 rs1815739 C, AR ≥21 CAG repeats, LRPPRC rs10186876 A, MMS22L rs9320823 T, PHACTR1 rs6905419 C, and PPARG rs1801282 G alleles for strength. It should be appreciated, however, that elite performance still cannot be predicted well using only genetic testing.
Collapse
Affiliation(s)
- Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Elliott C. R. Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4UA, UK
| | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
15
|
Moneghetti K, Carrick-Ranson G, Howden EJ. Establishing the Optimum use of High-Intensity Interval Training in Heart Failure: Current Status and Future Directions. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
16
|
The genetic basis of exercise and cardiorespiratory fitness – Relation to cardiovascular disease. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
17
|
Williams CJ, Torquati L, Li Z, Lea RA, Croci I, Keating E, Little JP, Eynon N, Coombes JS. Oligofructose-Enriched Inulin Intake, Gut Microbiome Characteristics, and the V̇O2 Peak Response to High-Intensity Interval Training in Healthy Inactive Adults. J Nutr 2022; 152:680-689. [PMID: 34910161 DOI: 10.1093/jn/nxab426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/19/2021] [Accepted: 12/09/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The gut microbiome has been associated with cardiorespiratory fitness. OBJECTIVES To assess the effects of oligofructose (FOS)-enriched inulin supplementation on the gut microbiome and the peak oxygen uptake (V̇O2peak) response to high-intensity interval training (HIIT). METHODS The study was a randomized controlled trial. Forty sedentary and apparently healthy adults [n = 31 women; aged 31.8 ± 9.8 y, BMI (in kg⋅m-2) 25.9 ± 4.3] were randomly allocated to 1) 6 wk of supervised HIIT (4 × 4-min bouts at 85-95% peak heart rate, interspersed with 3 min of active recovery, 3·wk-1) + 12 g·d-1 of FOS-enriched inulin (HIIT-I) or 2) 6 wk of supervised HIIT (3·wk-1, 4 × 4-min bouts) + 12 g·d-1 of maltodextrin/placebo (HIIT-P). Each participant completed an incremental treadmill test to assess V̇O2peak and ventilatory thresholds (VTs), provided a stool and blood sample, and completed a 24-h diet recall questionnaire and FFQ before and after the intervention. Gut microbiome analyses were performed using metagenomic sequencing. Fecal short-chain fatty acids were measured by mass spectrometry. RESULTS There were no differences in the mean change in V̇O2peak response between groups (P = 0.58). HIIT-I had a greater improvement in VTs than HIIT-P [VT1 (lactate accumulation): mean difference + 4.3% and VT2 (lactate threshold): +4.2%, P < 0.05]. HIIT-I had a greater increase in the abundance of Bifidobacterium taxa [false discovery rate (FDR) < 0.05] and several metabolic processes related to exercise capacity (FDR < 0.05). Exploratory analysis of merged data found participants with a greater response to HIIT (V̇O2peak ≥3.5 mL⋅kg-1⋅min-1) had a 2.2-fold greater mean abundance of gellan degradation pathways (FDR < 0.05) and a greater, but not significant, abundance of Bifidobacterium uniformis species (P < 0.00023, FDR = 0.08). CONCLUSIONS FOS-enriched inulin supplementation did not potentiate HIIT-induced improvements in V̇O2peak but led to gut microbiome changes possibly associated with greater ventilatory threshold improvements in healthy inactive adults. Gellan degradation pathways and B. uniformis spp. were associated with greater V̇O2peak responses to HIIT.
Collapse
Affiliation(s)
- Camilla J Williams
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Luciana Torquati
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD, Australia
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Zhixiu Li
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Brisbane, QLD, Australia
| | - Rodney A Lea
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Brisbane, QLD, Australia
| | - Ilaria Croci
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD, Australia
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Sport, Movement and Health, University of Basel, Basel, Switzerland
| | - Eliza Keating
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| | - Jeff S Coombes
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
18
|
Li C, Niu M, Guo Z, Liu P, Zheng Y, Liu D, Yang S, Wang W, Li Y, Hou H. A Mild Causal Relationship Between Tea Consumption and Obesity in General Population: A Two-Sample Mendelian Randomization Study. Front Genet 2022; 13:795049. [PMID: 35281810 PMCID: PMC8907656 DOI: 10.3389/fgene.2022.795049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/25/2022] [Indexed: 12/08/2022] Open
Abstract
Evidence from observational studies for the effect of tea consumption on obesity is inconclusive. This study aimed to verify the causal association between tea consumption and obesity through a two-sample Mendelian randomization (MR) analysis in general population-based datasets. The genetic instruments, single nucleotide polymorphisms (SNPs) associated with tea consumption habits, were obtained from genome-wide association studies (GWAS): UK Biobank, Nurses' Health Study, Health Professionals Follow-up Study, and Women's Genome Health Study. The effect of the genetic instruments on obesity was analyzed using the UK Biobank dataset (among ∼500,000 participants). The causal relationship between tea consumption and obesity was analyzed by five methods of MR analyses: inverse variance weighted (IVW) method, MR-Egger regression method, weighted median estimator (WME), weighted mode, and simple mode. Ninety-one SNPs were identified as genetic instruments in our study. A mild causation was found by IVW (odds ratio [OR] = 0.998, 95% confidence interval [CI] = 0.996 to 1.000, p = 0.049]), which is commonly used in two-sample MR analysis, indicating that tea consumption has a statistically significant but medically weak effect on obesity control. However, the other four approaches did not show significance. Since there was no heterogeneity and pleiotropy in this study, the IVW approach has the priority of recommendation. Further studies are needed to clarify the effects of tea consumption on obesity-related health problems in detail.
Collapse
Affiliation(s)
- Cancan Li
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Mingyun Niu
- The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Zheng Guo
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Pengcheng Liu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yulu Zheng
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Di Liu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Song Yang
- Department of Endocrinology, Taian City Central Hospital, Taian, China
| | - Wei Wang
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Yuanmin Li
- The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
19
|
Castro A, Duft RG, de Oliveira-Nunes SG, de Andrade ALL, Cavaglieri CR, Chacon-Mikahil MPT. Association Between Changes in Serum and Skeletal Muscle Metabolomics Profile With Maximum Power Output Gains in Response to Different Aerobic Training Programs: The Times Study. Front Physiol 2021; 12:756618. [PMID: 34744794 PMCID: PMC8563999 DOI: 10.3389/fphys.2021.756618] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 01/13/2023] Open
Abstract
Purpose: High heterogeneity of the response of cardiorespiratory fitness (CRF) to standardized exercise doses has been reported in different training programs, but the associated mechanisms are not widely known. This study investigated whether changes in the metabolic profile and pathways in blood serum and the skeletal muscle are associated with the inter-individual variability of CRF responses to 8-wk of continuous endurance training (ET) or high-intensity interval training (HIIT). Methods: Eighty men, young and sedentary, were randomized into three groups, of which 70 completed 8 wk of intervention (> 90% of sessions): ET, HIIT, or control. Blood and vastus lateralis muscle tissue samples, as well as the measurement of CRF [maximal power output (MPO)] were obtained before and after the intervention. Blood serum and skeletal muscle samples were analyzed by 600 MHz 1H-NMR spectroscopy (metabolomics). Associations between the pretraining to post-training changes in the metabolic profile and MPO gains were explored via three analytical approaches: (1) correlation between pretraining to post-training changes in metabolites' concentration levels and MPO gains; (2) significant differences between low and high MPO responders; and (3) metabolite contribution to significantly altered pathways related to MPO gains. After, metabolites within these three levels of evidence were analyzed by multiple stepwise linear regression. The significance level was set at 1%. Results: The metabolomics profile panel yielded 43 serum and 70 muscle metabolites. From the metabolites within the three levels of evidence (15 serum and 4 muscle metabolites for ET; 5 serum and 1 muscle metabolites for HIIT), the variance in MPO gains was explained: 77.4% by the intervention effects, 6.9, 2.3, 3.2, and 2.2% by changes in skeletal muscle pyruvate and valine, serum glutamine and creatine phosphate, respectively, in ET; and 80.9% by the intervention effects; 7.2, 2.2, and 1.2% by changes in skeletal muscle glycolate, serum creatine and creatine phosphate, respectively, in HIIT. The most changed and impacted pathways by these metabolites were: arginine and proline metabolism, glycine, serine and threonine metabolism, and glyoxylate and dicarboxylate metabolism for both ET and HIIT programs; and additional alanine, aspartate and glutamate metabolism, arginine biosynthesis, glycolysis/gluconeogenesis, and pyruvate metabolism for ET. Conclusion: These results suggest that regulating the metabolism of amino acids and carbohydrates may be a potential mechanism for understanding the inter-individual variability of CRF in responses to ET and HIIT programs.
Collapse
Affiliation(s)
- Alex Castro
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas (UNICAMP), São Paulo, Brazil.,Nuclear Magnetic Resonance Laboratory, Department of Chemistry, Federal University of São Carlos (UFSCar), São Paulo, Brazil
| | - Renata G Duft
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas (UNICAMP), São Paulo, Brazil
| | | | | | - Claudia R Cavaglieri
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas (UNICAMP), São Paulo, Brazil
| | | |
Collapse
|