1
|
Pula W, Ganugula R, Esposito E, Ravi Kumar MNV, Arora M. Engineered urolithin A-laden functional polymer-lipid hybrid nanoparticles prevent cisplatin-induced proximal tubular injury in vitro. Eur J Pharm Biopharm 2024; 200:114334. [PMID: 38768764 PMCID: PMC11262884 DOI: 10.1016/j.ejpb.2024.114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Functional polymer-lipid hybrid nanoparticles (H-NPs) are a promising class of nanocarriers that combine the benefits of polymer and lipid nanoparticles, offering biocompatibility, structural stability, high loading capacity, and, most importantly, superior surface functionalization. Here, we report the synthesis and design of highly functional H-NPs with specificity toward the transferrin receptor (TfR), using a small molecule ligand, gambogic acid (GA). A fluorescence study revealed the molecular orientation of H-NPs, where the lipid-dense core is surrounded by a polymer exterior, functionalized with GA. Urolithin A, an immunomodulator and anti-inflammatory agent, served as a model drug-like compound to prepare H-NPs via traditional emulsion-based techniques, where H-NPs led to smaller particles (132 nm) and superior entrapment efficiencies (70 % at 10 % drug loading) compared to GA-conjugated polymeric nanoparticles (P-NPs) (157 nm and 52 % entrapment efficiency) and solid lipid nanoparticles (L-NPs) (186 nm and 29 % entrapment efficiency). H-NPs showed superior intracellular accumulation compared to individual NPs using human small intestinal epithelial (FHs 74) cells. The in vitro efficacy was demonstrated by flow cytometry analysis, in which UA-laden H-NPs showed excellent anti-inflammatory properties in cisplatin-induced injury in healthy human proximal tubular cell (HK2) model by decreasing the TLR4, NF-κβ, and IL-β expression. This preliminary work highlights the potential of H-NPs as a novel functional polymer-lipid drug delivery system, establishing the foundation for future research on its therapeutic potential in addressing chemotherapy-induced acute kidney injury in cancer patients.
Collapse
Affiliation(s)
- W Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara, 19-44121 Ferrara, Italy; The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States
| | - R Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States; Division of Translational Science and Medicine, College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL 35401, United States; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35401, United States; Department of Biological Sciences, The University of Alabama, SEC 1325, Tuscaloosa, AL 35487, United States
| | - E Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara, 19-44121 Ferrara, Italy
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States; Division of Translational Science and Medicine, College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL 35401, United States; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35401, United States; Department of Biological Sciences, The University of Alabama, SEC 1325, Tuscaloosa, AL 35487, United States; Chemical and Biological Engineering, University of Alabama, SEC 3448, Tuscaloosa, AL 35487, United States; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - M Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States; Division of Translational Science and Medicine, College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL 35401, United States; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35401, United States; Department of Biological Sciences, The University of Alabama, SEC 1325, Tuscaloosa, AL 35487, United States.
| |
Collapse
|
2
|
Zhu H, Guan Y, Wang W, Liu X, Wang S, Zheng R, Li Y, Liu L, Huang H. Reniformin A suppresses non-small cell lung cancer progression by inducing TLR4/NLRP3/caspase-1/GSDMD-dependent pyroptosis. Int Immunopharmacol 2024; 133:112068. [PMID: 38626545 DOI: 10.1016/j.intimp.2024.112068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/13/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
Pyroptosis is an inflammatory form of programmed cell death that plays an important role in regulating tumor progression. Reniformin A (RA) is a natural compound isolated from the medicinal herb Isodon excisoides that has been applied as folk medicine in the treatment of esophageal cancer. However, whether RA has an individual function in cancer and the molecular mechanisms remain unclear. Here, we show that in non-small-cell lung cancer (NSCLC), RA inhibits tumor growth by functioning as a pyroptosis inducer to promote TLR4/NLRP3/caspase-1/GSDMD axis. Specially, RA treatment increased Toll-like receptor 4 (TLR4) protein expression level by enhancing the TLR4 stability. Based on the molecular docking, we identified that RA directly bound to TLR4 to activate the NLRP3 inflammasome and promote pyroptosis in A549 cells. Moreover, TLR4 is essential for RA-induced pyroptosis, and loss of TLR4 abolished RA-induced pyroptosis and further reduced the inhibitory effect of RA on NSCLC. In vivo experiments confirmed that RA inhibited the growth of lung tumors in mice by affecting pyroptosis in a dose-dependent manner. Furthermore, TLR4 knockdown abolished RA-induced pyroptosis and inhibited the effect of RA chemotherapy in vivo. In conclusion, we propose that RA has a significant anticancer effect in NSCLC by inducing TLR4/NLRP3/caspase-1/GSDMD-mediated pyroptosis, which may provide a potential strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Huiyu Zhu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yifei Guan
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Wei Wang
- Department of Radiology, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Xinhui Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Sijia Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ran Zheng
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yihan Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Lei Liu
- Department of Comprehensive Treatment, 2nd Medical Center of Chinese PLA General Hospital, Beijing 100036, China.
| | - Hua Huang
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
Nadarajapillai K, Jung S, Sellaththurai S, Ganeshalingam S, Kim MJ, Lee J. CRISPR/Cas9-mediated knockout of tnf-α1 in zebrafish reduces disease resistance after Edwardsiella piscicida bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109249. [PMID: 38040136 DOI: 10.1016/j.fsi.2023.109249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Tumor necrosis factor (TNF) is an important cytokine involved in immune responses to bacterial infections in vertebrates, including fish. Although Tnf-α is a well-studied cytokine, there are contradictory findings about Tnf-α function following bacterial infection. In this study, we analyzed the expression and function of the Tnf-α-type I isoform (Tnf-α1) in zebrafish by knockout experiments using the CRISPR/Cas9 gene-editing tool. The open reading frame of tnf-α1 encodes a 25.82 kDa protein with 234 amino acids (aa). The expression of tnf-α1 in the early stages of zebrafish was observed from the 2-cell stage. Adult zebrafish spleens showed the highest expression of tnf-α1. To evaluate the function of Tnf-α1, an 8 bp deletion in the target region, resulting in a short truncated protein of 55 aa, was used to create the tnf-α1 knockout mutant. The pattern of downstream gene expression in 7-day larvae in wild-type (WT) and tnf-α1 knockout fish was examined. We also verified the fish mortality rate after Edwardsiella piscicida challenge and found that it was much higher in tnf-α1 knockout fish than in WT fish. Additionally, downstream gene expression analyses after E. piscicida exposure revealed a distinct expression pattern in tnf-α1 knockout fish compared to that in WT fish. Overall, our study using tnf-α1 deletion in zebrafish confirmed that Tnf-α1 is critical for immune regulation during bacterial infection.
Collapse
Affiliation(s)
- Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Subothini Ganeshalingam
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Myoung-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
4
|
Hu ZC, Wang B, Zhou XG, Liang HF, Liang B, Lu HW, Ge YX, Chen Q, Tian QW, Xue FF, Jiang LB, Dong J. Golgi Apparatus-Targeted Photodynamic Therapy for Enhancing Tumor Immunogenicity by Eliciting NLRP3 Protein-Dependent Pyroptosis. ACS NANO 2023; 17:21153-21169. [PMID: 37921421 DOI: 10.1021/acsnano.3c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Innate and adaptive immunity is important for initiating and maintaining immune function. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome serves as a checkpoint in innate and adaptive immunity, promoting the secretion of pro-inflammatory cytokines and gasdermin D-mediated pyroptosis. As a highly inflammatory form of cell death distinct from apoptosis, pyroptosis can trigger immunogenic cell death and promote systemic immune responses in solid tumors. Previous studies proposed that NLRP3 was activated by translocation to the mitochondria. However, a recent authoritative study has challenged this model and proved that the Golgi apparatus might be a prerequisite for the activation of NLRP3. In this study, we first developed a Golgi apparatus-targeted photodynamic strategy to induce the activation of NLRP3 by precisely locating organelles. We found that Golgi apparatus-targeted photodynamic therapy could significantly upregulate NLRP3 expression to promote the subsequent release of intracellular proinflammatory contents such as IL-1β or IL-18, creating an inflammatory storm to enhance innate immunity. Moreover, this acute NLRP3 upregulation also activated its downstream classical caspase-1-dependent pyroptosis to enhance tumor immunogenicity, triggering adaptive immunity. Pyroptosis eventually led to immunogenic cell death, promoted the maturation of dendritic cells, and effectively activated antitumor immunity and long-lived immune memory. Overall, this Golgi apparatus-targeted strategy provided molecular insights into the occurrence of immunogenic pyroptosis and offered a platform to remodel the tumor microenvironment.
Collapse
Affiliation(s)
- Zhi-Chao Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ben Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Gang Zhou
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hai-Feng Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bing Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hong-Wei Lu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu-Xiang Ge
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Qing Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi-Wei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Feng-Feng Xue
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Li-Bo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Cui Y, Li Y, Long S, Xu Y, Liu X, Sun Z, Sun Y, Hu J, Li X. Comprehensive analysis of the immunogenic cell death-related signature for predicting prognosis and immunotherapy efficiency in patients with lung adenocarcinoma. BMC Med Genomics 2023; 16:184. [PMID: 37553698 PMCID: PMC10410984 DOI: 10.1186/s12920-023-01604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Although immunotherapy has been considered as a potent strategy for lung adenocarcinoma (LUAD), only a small part of patients was served as potentially clinical benefiters. Immunogenic cell death (ICD), a type of regulated cell death (RCD), which enable to reshape the tumor immune microenvironment and contribute to the immunotherapy efficiency. Developing a novel ICD-based signature may be a potential strategy to differentiate prognosis of patients with LUAD and predict efficacy of immunotherapy. METHODS In this study, 34 ICD-related genes (ICDRGs) were identified and analyzed in LUAD samples from the Cancer Genome Atlas (TCGA). 572 patients with LUAD were divided into two distinct clusters according to ICDRGs expression levels. Patients were subsequently classified into two distinct gene subtypes based on differentially expressed genes (DEGs) analyzed between two ICD-related clusters. We further developed and validated a novel ICD-related score (ICDRS) followed by comprehensive investigation about the landscape of the prognosis, immune-based features, immunotherapautic responses and sensitivity of target drugs in patients with LUAD. RESULTS After confirming transcriptomic aberrations and appraising prognostic value of ICDRGs, two ICD-associated subtypes were initially determined by consensus clustering in accordance with differentially expressional levels of ICDRGs. It was shown that patients in the ICD high-subtype possessed the superior clinical prognosis, abundant immune cell infiltration and higher involvement in immune-related signaling compared with the ICD low-subtype. A signature of ICD-related score (ICDRS) was further established and validated, which was served as an independent prognostic indicator for LUAD patients. These comprehensive results revealed that the high-score patients represented better clinical prognosis, higher immune infiltration-related characteristics, stronger expression of immune checkpoints, and better response to immune checkpoint inhibitor therapy and multiple targeted drugs. To further verify our analysis, we selected TLR4 as the representative of ICDRGs and evaluated its expression on the lung normal cells and cancer cells in vitro. Then, relative animal experiments were performed in vivo, with results of that the stimulation of TLR4 suppressed the growth of lung cancer. CONCLUSIONS In conclusion, our comprehensive analysis of ICDRGs in LUAD demonstrated their function in serving as a biomarker of predicting prognosis and clinical effects of immunotherapy and targeted drugs, which is meaningful to improve our understanding of ICDRGs and brought inspirations about evaluating prognosis and developing effective therapeutic strategies to patients with LUAD.
Collapse
Affiliation(s)
- Yingshu Cui
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yi Li
- Medical School of Chinese PLA, Beijing, China
| | - Shan Long
- School of Medicine, Nankai University, Tianjin, China
| | - Yuanyuan Xu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xinxin Liu
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Zhijia Sun
- Department of Radiation Oncology, Air Force General Hospital, Beijing, China
| | - Yuanyuan Sun
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jia Hu
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Xiaosong Li
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Wang L, Yan H, Chen X, Han L, Liu G, Yang H, Lu D, Liu W, Che C. Thymol Ameliorates Aspergillus fumigatus Keratitis by Downregulating the TLR4/ MyD88/ NF-kB/ IL-1β Signal Expression and Reducing Necroptosis and Pyroptosis. J Microbiol Biotechnol 2023; 33:43-50. [PMID: 36517045 PMCID: PMC9895997 DOI: 10.4014/jmb.2207.07017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/11/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Fungal keratitis is a refractory kind of keratopathy. We attempted to investigate the anti-inflammatory role of thymol on Aspergillus fumigatus (A. fumigatus) keratitis. Wound healing and fluorescein staining of the cornea were applied to verify thymol's safety. Mice models of A. fumigatus keratitis underwent subconjunctival injection of thymol. The anti-inflammatory roles of thymol were verified by hematoxylin-eosin (HE) staining, slit lamp observation, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. In contrast with the DMSO group, more transparent corneas and less inflammatory cells infiltration were detected in mice treated with 50 μg/ml thymol. Thymol downregulated the synthesis of TLR4, MyD88, NF-kB, IL-1β, NLRP3, caspase 1, caspase 8, GSDMD, RIPK3 and MLKL. In summary, we proved that thymol played a protective part in A. fumigatus keratitis by cutting down inflammatory cells aggregation, downregulating the TLR4/ MyD88/ NF-kB/ IL-1β signal expression and reducing necroptosis and pyroptosis.
Collapse
Affiliation(s)
- Limei Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China,Department of Ophthalmology, Qingdao Women and Children’s Hospital, Qingdao, Shandong Province 266034, P.R. China
| | - Haijing Yan
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China
| | - Xiaomeng Chen
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China
| | - Lin Han
- Gout Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China
| | - Guibo Liu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China
| | - Hua Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China
| | - Danli Lu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China
| | - Wenting Liu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China
| | - Chengye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China,Corresponding author Phone: +86-17853290318 E-mail:
| |
Collapse
|
7
|
Adipokine human Resistin promotes obesity-associated inflammatory intervertebral disc degeneration via pro-inflammatory cytokine cascade activation. Sci Rep 2022; 12:8936. [PMID: 35624126 PMCID: PMC9142523 DOI: 10.1038/s41598-022-12793-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Adipokine human Resistin (hResistin), is known to be associated with insulin resistance and secrete low-grade pro-inflammatory cytokines in obesity. Although studies on low-grade inflammation of adipokine hResistin are known, studies on the effects and mechanisms of intervertebral disc degeneration (IVDD) are still lacking. Thus, we investigated the adipokine hResistin with or without pro-inflammatory cytokine IL-1β in intervertebral disc (IVD) cells such as human annulus fibrosus (hAF) and nucleus pulposus (hNP). The protein expression changes in IL-1β, IL-6, IL-8, MMP-1, MMP-3, and MMP-13, induced by the combined-hResistin and IL-1β stimulation on hAF cells, was significantly greater than that of the same induced by mono-IL-1β stimulation. Similarly, in the case of the protein expression change of inflammatory mediators induced by the combined-hResistin and IL-1β stimulation on hNP cells was also significantly greater than that of the same induced by mono-IL-1β stimulation. These results improve understanding of hResistin on inflammatory IVDD but also with other obesity-related inflammatory diseases.
Collapse
|
8
|
Yuan R, Zhao W, Wang QQ, He J, Han S, Gao H, Feng Y, Yang S. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis. Pharmacol Res 2021; 170:105748. [PMID: 34217831 DOI: 10.1016/j.phrs.2021.105748] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022]
Abstract
Pyroptosis, a type of programmed cell death (PCD), is characterized by cell swelling with bubbles, and the release of inflammatory cell cytokines. Cucurbitacin B (CuB), extracted from muskmelon pedicel, is a natural bioactive product that could effectively exert anti-tumor activities in lung cancer. However, the exact molecular mechanisms and the direct targets of CuB in non-small cell lung cancer (NSCLC) remain to be discovered. Here, we firstly found that CuB exerted an anti-tumor effect via pyroptosis in NSCLC cells and NSCLC mice models. Next, based on the molecular docking and cellular thermal shift assay (CETSA), we identified that CuB directly bound to Toll-like receptor 4 (TLR4) to activate the NLRP3 inflammasome, which further caused the separation of N- and C-terminals of Gasdermin D (GSDMD) to execute pyroptosis. Moreover, CuB enhanced the mitochondrial reactive oxygen species (ROS), mitochondrial membrane protein Tom20 accumulation, and cytosolic calcium (Ca2+) release, leading to pyroptosis in NSCLC cells. Silencing of TLR4 inhibited CuB-induced pyroptosis and decreased the level of ROS and Ca2+ in A549 cells. In vivo study showed that CuB treatment suppressed lung tumor growth in mice via pyroptosis without dose-dependent manner, and CuB at 0.75 mg/kg had a better anti-tumor effect compared to the Gefitinib group. Taken together, our findings revealed the mechanisms and targets of CuB triggering pyroptosis in NSCLC, thus supporting the notion of developing CuB as a promising therapeutic agent for NSCLC.
Collapse
Affiliation(s)
- Renyikun Yuan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Wentong Zhao
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China.
| | - Yulin Feng
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| |
Collapse
|
9
|
Dukhinova M, Kokinos E, Kuchur P, Komissarov A, Shtro A. Macrophage-derived cytokines in pneumonia: Linking cellular immunology and genetics. Cytokine Growth Factor Rev 2021; 59:46-61. [PMID: 33342718 PMCID: PMC8035975 DOI: 10.1016/j.cytogfr.2020.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
Macrophages represent the first line of anti-pathogen defense - they encounter invading pathogens to perform the phagocytic activity, to deliver the plethora of pro- and anti-inflammatory cytokines, and to shape the tissue microenvironment. Throughout pneumonia course, alveolar macrophages and infiltrated blood monocytes produce increasing cytokine amounts, which activates the antiviral/antibacterial immunity but can also provoke the risk of the so-called cytokine "storm" and normal tissue damage. Subsequently, the question of how the cytokine spectrum is shaped and balanced in the pneumonia context remains a hot topic in medical immunology, particularly in the COVID19 pandemic era. The diversity in cytokine profiles, involved in pneumonia pathogenesis, is determined by the variations in cytokine-receptor interactions, which may lead to severe cytokine storm and functional decline of particular tissues and organs, for example, cardiovascular and respiratory systems. Cytokines and their receptors form unique profiles in individual patients, depending on the (a) microenvironmental context (comorbidities and associated treatment), (b) lung monocyte heterogeneity, and (c) genetic variations. These multidisciplinary strategies can be proactively considered beforehand and during the pneumonia course and potentially allow the new age of personalized immunotherapy.
Collapse
Affiliation(s)
- Marina Dukhinova
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia.
| | - Elena Kokinos
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia
| | - Polina Kuchur
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia
| | - Alexey Komissarov
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia
| | - Anna Shtro
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia; Department of Chemotherapy, Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| |
Collapse
|
10
|
Hui J, Aulakh GK, Unniappan S, Singh B. Loss of Nucleobindin-2/Nesfatin-1 increases lipopolysaccharide-induced murine acute lung inflammation. Cell Tissue Res 2021; 385:87-103. [PMID: 33783610 DOI: 10.1007/s00441-021-03435-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/18/2021] [Indexed: 11/29/2022]
Abstract
NUCB2/nesfatin-1 is expressed in variety of tissues. Treatment with nesfatin-1 reduces inflammation in rat models of subarachnoid hemorrhage-induced oxidative brain damage and traumatic brain injury as well as myocardial injury. There is only one study showing anti-inflammatory actions of nesfatin-1 on acute lung inflammation. To more precisely determine the role of NUCB2/nesfatin-1 in acute lung inflammation, we conducted a study using NUCB2/nesfatin-1 knockout (NKO) mice as well as neutrophils isolated from the bone marrows of WT and NKO mice. Our findings suggest that the absence of NUCB2/nesfatin-1 significantly increases the accumulation of adherent neutrophils by approximately 3 times compared with WT within LPS-treated lungs. Integrating this with observations from both BALF and neutrophil cytokine expression, we propose that although neutrophils lacking NUCB2/nesfatin-1 individually secrete less pro-inflammatory cytokines compared with stimulated WT cells, the result of knocking out NUCB2/nesfatin-1 is net pro-inflammatory. No change was found in NUCB2/nesfatin-1 mRNA or protein expression comparing WT LPS and PBS-treated samples. Taken together, our results show that NUCB2/nesfatin-1 is constitutively expressed in mouse lungs and neutrophils and demonstrates anti-inflammatory properties in mouse lungs during acute lung injury, by inhibiting adherent neutrophil accumulation and inflammatory cytokine expression.
Collapse
Affiliation(s)
- Jasmine Hui
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Gurpreet Kaur Aulakh
- Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Suraj Unniappan
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Baljit Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
11
|
Zhang MY, Jiang YX, Yang YC, Liu JY, Huo C, Ji XL, Qu YQ. Cigarette smoke extract induces pyroptosis in human bronchial epithelial cells through the ROS/NLRP3/caspase-1 pathway. Life Sci 2021; 269:119090. [PMID: 33465393 DOI: 10.1016/j.lfs.2021.119090] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
AIMS Pyroptosis and inflammation are involved in the development of chronic obstructive pulmonary disease (COPD). However, the cigarette smoke-mediated mechanism of COPD remains unclear. In this study, we aimed to investigate the role of nucleotide-binding domain-like receptor protein-3 (NLRP3) inflammasome-mediated pyroptosis in the death of human bronchial epithelial (HBE) cells after cigarette smoke extract (CSE) exposure. MAIN METHODS The protein level of NLRP3 in lung tissue was measured after cigarette smoke exposure in vivo. In vitro, HBE cells were treated with CSE. Subsequently, the activity of caspase-1, lactate dehydrogenase (LDH) release, release of interleukin (IL)-1β and NLRP3 expression levels were measured. The involvement of reactive oxygen species (ROS) was also explored. KEY FINDINGS After exposure to CSE, increased release of LDH, the transcriptional and translational upregulation of NLRP3, the caspase-1 activity levels, and enhanced IL-1β and IL-18 release were observed in 16HBE cells. In addition, NLRP3 was required to activate the caspase-1. Our results suggested that pre-stimulated of 16HBE with a caspase-1 inhibitor, or using NLRP3 siRNA to silence NLRP3 expression, also caused the decrease of IL-1β release and pyroptosis. SIGNIFICANCES CSE induced inflammation and contributed to pyroptosis through the ROS/NLRP3/caspase-1 pathway in 16HBE cells. The NLRP3 inflammasome participates in CSE-induced HBE cell damage and pyroptosis, which could provide new insights into COPD.
Collapse
Affiliation(s)
- Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ying-Xiao Jiang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yi-Can Yang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jian-Yu Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chen Huo
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiu-Li Ji
- Department of Pulmonary Disease, Jinan Traditional Chinese Medicine Hospital, Jinan 250012, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
12
|
Verma G, Sethi RS. Study of ethion and lipopolysaccharide interaction on lung in a mouse model. Lab Anim Res 2020; 36:22. [PMID: 32742976 PMCID: PMC7390112 DOI: 10.1186/s42826-020-00055-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/10/2020] [Indexed: 11/17/2022] Open
Abstract
Ethion is an organophosphate used commonly in India despite being banned in many other countries. The present study was designed to study the interaction of ethion and lipopolysaccharide (LPS) together on lung after single low dose ethion exposure. Mice (n = 20) were alienated into control and treatment groups (n = 10 each). The treatment group was orally fed ethion (8 mg/kg/animal/day) dissolved in corn oil. The animals (n = 5 each) from both the groups were challenged with 80 μg Escherichia coli lipopolysaccharide (LPS) intranasally and the remaining animals (n = 5 each) were administered normal saline solution after 24 h. Ethion along with LPS induced lung inflammation as indicated by increased neutrophils and total leukocyte count (TLC) in broncheoalveolar lavage fluid. Ethion induced histomorphological alterations in lung as shown by increased pulmonary inflammation score in histopathology. Real time PCR analysis showed that ethion followed by LPS resulted significant (p < 0.05) increase in pulmonary Toll-like receptor (TLR)-4 (48.53 fold), interleukin (IL)-1β (7.05 fold) and tumor necrosis factor (TNF)-α (5.74 fold) mRNA expression. LPS co-exposure suggested synergistic effect on TLR4 and TNF-α mRNA expression. Ethion alone or in combination with LPS resulted genotoxicity in blood cells as detected by comet assay. The data suggested single dietary ethion exposure alone or in conjunction with LPS causes lung inflammation and genotoxicity in blood cells.
Collapse
Affiliation(s)
- Geetika Verma
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| | - R S Sethi
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| |
Collapse
|
13
|
Wedgwood S, Gerard K, Halloran K, Hanhauser A, Monacelli S, Warford C, Thai PN, Chiamvimonvat N, Lakshminrusimha S, Steinhorn RH, Underwood MA. Intestinal Dysbiosis and the Developing Lung: The Role of Toll-Like Receptor 4 in the Gut-Lung Axis. Front Immunol 2020; 11:357. [PMID: 32194566 PMCID: PMC7066082 DOI: 10.3389/fimmu.2020.00357] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/14/2020] [Indexed: 01/19/2023] Open
Abstract
Background In extremely premature infants, postnatal growth restriction (PNGR) is common and increases the risk of developing bronchopulmonary dysplasia (BPD) and pulmonary hypertension (PH). Mechanisms by which poor nutrition impacts lung development are unknown, but alterations in the gut microbiota appear to play a role. In a rodent model, PNGR plus hyperoxia causes BPD and PH and increases intestinal Enterobacteriaceae, Gram-negative organisms that stimulate Toll-like receptor 4 (TLR4). We hypothesized that intestinal dysbiosis activates intestinal TLR4 triggering systemic inflammation which impacts lung development. Methods Rat pups were assigned to litters of 17 (PNGR) or 10 (normal growth) at birth and exposed to room air or 75% oxygen for 14 days. Half of the pups were treated with the TLR4 inhibitor TAK-242 from birth or beginning at day 3. After 14 days, pulmonary arterial pressure was evaluated by echocardiography and hearts were examined for right ventricular hypertrophy (RVH). Lungs and serum samples were analyzed by western blotting and immunohistochemistry. Results Postnatal growth restriction + hyperoxia increased pulmonary arterial pressure and RVH with trends toward increased plasma IL1β and decreased IκBα, the inhibitor of NFκB, in lung tissue. Treatment with the TLR4 inhibitor attenuated PH and inflammation. Conclusion Postnatal growth restriction induces an increase in intestinal Enterobacteriaceae leading to PH. Activation of the TLR4 pathway is a promising mechanism by which intestinal dysbiosis impacts the developing lung.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, United States
| | - Kimberly Gerard
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, United States
| | - Katrina Halloran
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, United States
| | - Ashley Hanhauser
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, United States
| | - Sveva Monacelli
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, United States
| | - Cris Warford
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, United States
| | - Phung N Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, UC Davis Health System, Sacramento, CA, United States
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, UC Davis Health System, Sacramento, CA, United States.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, United States
| | | | - Robin H Steinhorn
- Department of Hospital Medicine, Children's National Health System, Washington, DC, United States
| | - Mark A Underwood
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
14
|
Darkwah S, Nago N, Appiah MG, Myint PK, Kawamoto E, Shimaoka M, Park EJ. Differential Roles of Dendritic Cells in Expanding CD4 T Cells in Sepsis. Biomedicines 2019; 7:biomedicines7030052. [PMID: 31323786 PMCID: PMC6783955 DOI: 10.3390/biomedicines7030052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
Sepsis is a systemically dysregulated inflammatory syndrome, in which dendritic cells (DCs) play a critical role in coordinating aberrant immunity. The aim of this study is to shed light on the differential roles played by systemic versus mucosal DCs in regulating immune responses in sepsis. We identified a differential impact of the systemic and mucosal DCs on proliferating allogenic CD4 T cells in a mouse model of sepsis. Despite the fact that the frequency of CD4 T cells was reduced in septic mice, septic mesenteric lymph node (MLN) DCs proved superior to septic spleen (SP) DCs in expanding allogeneic CD4 T cells. Moreover, septic MLN DCs markedly augmented the surface expression of MHC class II and CD40, as well as the messaging of interleukin-1β (IL-1β). Interestingly, IL-1β-treated CD4 T cells expanded in a dose-dependent manner, suggesting that this cytokine acts as a key mediator of MLN DCs in promoting septic inflammation. Thus, mucosal and systemic DCs were found to be functionally different in the way CD4 T cells respond during sepsis. Our study provides a molecular basis for DC activity, which can be differential in nature depending on location, whereby it induces septic inflammation or immune-paralysis.
Collapse
Affiliation(s)
- Samuel Darkwah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Nodoka Nago
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Clinical Nutrition, Suzuka University of Medical Science, Suzuka, Mie 510-0293, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Phyoe Kyawe Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
15
|
Pelin A, Foloppe J, Petryk J, Singaravelu R, Hussein M, Gossart F, Jennings VA, Stubbert LJ, Foster M, Storbeck C, Postigo A, Scut E, Laight B, Way M, Erbs P, Le Boeuf F, Bell JC. Deletion of Apoptosis Inhibitor F1L in Vaccinia Virus Increases Safety and Oncolysis for Cancer Therapy. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:246-252. [PMID: 31428674 PMCID: PMC6695278 DOI: 10.1016/j.omto.2019.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022]
Abstract
Vaccinia virus (VACV) possesses a great safety record as a smallpox vaccine and has been intensively used as an oncolytic virus against various types of cancer over the past decade. Different strategies were developed to make VACV safe and selective to cancer cells. Leading clinical candidates, such as Pexa-Vec, are attenuated through deletion of the viral thymidine kinase (TK) gene, which limits virus growth to replicate in cancer tissue. However, tumors are not the only tissues whose metabolic activity can overcome the lack of viral TK. In this study, we sought to further increase the tumor-specific replication and oncolytic potential of Copenhagen strain VACV ΔTK. We show that deletion of the anti-apoptosis viral gene F1L not only increases the safety of the Copenhagen ΔTK virus but also improves its oncolytic activity in an aggressive glioblastoma model. The additional loss of F1L does not affect VACV replication capacity, yet its ability to induce cancer cell death is significantly increased. Our results also indicate that cell death induced by the Copenhagen ΔTK/F1L mutant releases more immunogenic signals, as indicated by increased levels of IL-1β production. A cytotoxicity screen in an NCI-60 panel shows that the ΔTK/F1L virus induces faster tumor cell death in different cancer types. Most importantly, we show that, compared to the TK-deleted virus, the ΔTK/F1L virus is attenuated in human normal cells and causes fewer pox lesions in murine models. Collectively, our findings describe a new oncolytic vaccinia deletion strain that improves safety and increases tumor cell killing.
Collapse
Affiliation(s)
- Adrian Pelin
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Johann Foloppe
- Transgene S.A., 400 Boulevard Gonthier d'Andernach, 67405 Illkirch-Graffenstaden, France
| | - Julia Petryk
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Ragunath Singaravelu
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Marian Hussein
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Florian Gossart
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Victoria A Jennings
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Lawton J Stubbert
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Madison Foster
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Christopher Storbeck
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Antonio Postigo
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, England, UK
| | - Elena Scut
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Brian Laight
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, England, UK
| | - Philippe Erbs
- Transgene S.A., 400 Boulevard Gonthier d'Andernach, 67405 Illkirch-Graffenstaden, France
| | - Fabrice Le Boeuf
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - John C Bell
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
16
|
Castro-Alves VC, Shiga TM, Nascimento JROD. Polysaccharides from chayote enhance lipid efflux and regulate NLRP3 inflammasome priming in macrophage-like THP-1 cells exposed to cholesterol crystals. Int J Biol Macromol 2019; 127:502-510. [PMID: 30658148 DOI: 10.1016/j.ijbiomac.2019.01.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 01/14/2023]
Abstract
The contribution of dietary fiber to decrease the risk of atherosclerosis may occur through other mechanisms besides the increased excretion of cholesterol. Although macrophages are crucial for lipid clearance, the excessive uptake of cholesterol crystals (CC) by these cells induce NLRP3 inflammasome and foam cell formation. Thus, we investigated whether the water-soluble DF from chayote (WSP) regulate CC-pretreated macrophage-like THP-1 cells. Linkage analysis indicated that WSP is composed mainly of pectic homogalacturonan and highly branched type I rhamnogalacturonan as well as hemicellulosic material including glucomannan, xyloglucan, and glucurono(arabino)xylan. WSP reduced interleukin (IL)-1β and chemokine release in CC-pretreated macrophages. Notably, WSP also reduced lipid accumulation in cells previously exposed to CC. Furthermore, WSP upregulated liver X receptor alpha expression, which may account for increased lipid efflux, and reduced matrix metallopeptidase 9 expression. WSP also reduced active caspase-1 protein levels, and downregulated NLRP3 and IL-1β gene expression in CC-pretreated cells, suggesting that this polysaccharide fraction regulates the priming signals required for NLRP3 inflammasome activation. Thus, WSP regulate lipid efflux and suppress inflammasome priming in macrophages, suggesting that the health benefits of this dietary fiber could go beyond its physical properties on the gastrointestinal tract.
Collapse
Affiliation(s)
- Victor Costa Castro-Alves
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - Tânia Misuzu Shiga
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - João Roberto Oliveira do Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
17
|
Peiró T, Patel DF, Akthar S, Gregory LG, Pyle CJ, Harker JA, Birrell MA, Lloyd CM, Snelgrove RJ. Neutrophils drive alveolar macrophage IL-1β release during respiratory viral infection. Thorax 2018; 73:546-556. [PMID: 29079611 PMCID: PMC5969338 DOI: 10.1136/thoraxjnl-2017-210010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Alveolar macrophages are sentinels of the airways that must exhibit immune restraint to innocuous antigens but elicit a robust inflammatory response to pathogenic threats. How distinction between these dichotomous functions is controlled is poorly defined.Neutrophils are the first responders to infection, and we hypothesised that they may free alveolar macrophages from their hyporesponsive state, promoting their activation. Activation of the inflammasome and interleukin (IL)-1β release is a key early inflammatory event that must be tightly regulated. Thus, the role of neutrophils in defining inflammasome activation in the alveolar macrophage was assessed. METHODS Mice were infected with the X31 strain of influenza virus and the role of neutrophils in alveolar macrophage activation established through administration of a neutrophil-depleting (1A8) antibody. RESULTS Influenza elicited a robust IL-1β release that correlated (r=0.6849; p<0.001) with neutrophil infiltrate and was ablated by neutrophil depletion. Alveolar macrophages were shown to be the prominent source of IL-1β during influenza infection, and virus triggered the expression of Nod-like receptor protein 3 (NLRP3) inflammasome and pro-IL-1β in these cells. However, subsequent activation of the inflammasome complex and release of mature IL-1β from alveolar macrophages were critically dependent on the provision of a secondary signal, in the form of antimicrobial peptide mCRAMP, from infiltrating neutrophils. CONCLUSIONS Neutrophils are critical for the activation of the NLRP3 inflammasome in alveolar macrophages during respiratory viral infection. Accordingly, we rationalise that neutrophils are recruited to the lung to confront a viable pathogenic threat and subsequently commit alveolar macrophages to a pro-inflammatory phenotype to combat infection.
Collapse
Affiliation(s)
- Teresa Peiró
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Dhiren F Patel
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Samia Akthar
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Lisa G Gregory
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Chloe J Pyle
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - James A Harker
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Mark A Birrell
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Clare M Lloyd
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Robert J Snelgrove
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
18
|
Pulmonary innate inflammatory responses to agricultural occupational contaminants. Cell Tissue Res 2017; 367:627-642. [PMID: 28168324 DOI: 10.1007/s00441-017-2573-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Abstract
Agricultural workers are exposed to many contaminants and suffer from respiratory and other symptoms. Dusts, gases, microbial products and pesticide residues from farms have been linked to effects on the health of agricultural workers. Growing sets of data from in vitro and in vivo models demonstrate the role of the innate immune system, especially Toll-like receptor 4 (TLR4) and TLR9, in lung inflammation induced following exposure to contaminants in agricultural environments. Interestingly, inflammation and lung function changes appear to be discordant indicating the complexity of inflammatory responses to exposures. Whereas the recent development of rodent models and exposure systems have yielded valuable data, we need new systems to examine the combined effects of multiple contaminants in order to increase our understanding of farm-exposure-induced negative health effects.
Collapse
|
19
|
Herbst S, Shah A, Mazon Moya M, Marzola V, Jensen B, Reed A, Birrell MA, Saijo S, Mostowy S, Shaunak S, Armstrong-James D. Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med 2015; 7:240-58. [PMID: 25637383 PMCID: PMC4364943 DOI: 10.15252/emmm.201404556] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Transplant recipients on calcineurin inhibitors are at high risk of invasive fungal infection. Understanding how calcineurin inhibitors impair fungal immunity is a key priority for defining risk of infection. Here, we show that the calcineurin inhibitor tacrolimus impairs clearance of the major mould pathogen Aspergillus fumigatus from the airway, by inhibiting macrophage inflammatory responses. This leads to defective early neutrophil recruitment and fungal clearance. We confirm these findings in zebrafish, showing an evolutionarily conserved role for calcineurin signalling in neutrophil recruitment during inflammation. We find that calcineurin–NFAT activation is phagocytosis dependent and collaborates with NF-κB for TNF-α production. For yeast zymosan particles, activation of macrophage calcineurin–NFAT occurs via the phagocytic Dectin-1–spleen tyrosine kinase pathway, but for A. fumigatus, activation occurs via a phagosomal TLR9-dependent and Bruton's tyrosine kinase-dependent signalling pathway that is independent of MyD88. We confirm the collaboration between NFAT and NF-κB for TNF-α production in primary alveolar macrophages. These observations identify inhibition of a newly discovered macrophage TLR9–BTK–calcineurin–NFAT signalling pathway as a key immune defect that leads to organ transplant-related invasive aspergillosis.
Collapse
Affiliation(s)
- Susanne Herbst
- Department of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Anand Shah
- Department of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Maria Mazon Moya
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Vanessa Marzola
- Department of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Barbara Jensen
- Department of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Anna Reed
- Lung Transplant Unit, Royal Brompton and Harefield Hospital, London, UK
| | - Mark A Birrell
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Shinobu Saijo
- Medical Mycology Research Centre, Chiba University, Chiba, Japan
| | - Serge Mostowy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Sunil Shaunak
- Department of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Darius Armstrong-James
- Department of Infectious Diseases and Immunity, Imperial College London, London, UK National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
20
|
Transgenic Mice Overexpressing Serum Retinol-Binding Protein Develop Progressive Retinal Degeneration through a Retinoid-Independent Mechanism. Mol Cell Biol 2015; 35:2771-89. [PMID: 26055327 DOI: 10.1128/mcb.00181-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/01/2015] [Indexed: 12/19/2022] Open
Abstract
Serum retinol-binding protein 4 (RBP4) is the sole specific transport protein for retinol in the blood, but it is also an adipokine with retinol-independent, proinflammatory activity associated with obesity, insulin resistance, type 2 diabetes, and cardiovascular disease. Moreover, two separate studies reported that patients with proliferative diabetic retinopathy have increased serum RBP4 levels compared to patients with mild or no retinopathy, yet the effect of increased levels of RBP4 on the retina has not been studied. Here we show that transgenic mice overexpressing RBP4 (RBP4-Tg mice) develop progressive retinal degeneration, characterized by photoreceptor ribbon synapse deficiency and subsequent bipolar cell loss. Ocular retinoid and bisretinoid levels are normal in RBP4-Tg mice, demonstrating that a retinoid-independent mechanism underlies retinal degeneration. Increased expression of pro-interleukin-18 (pro-IL-18) mRNA and activated IL-18 protein and early-onset microglia activation in the retina suggest that retinal degeneration is driven by a proinflammatory mechanism. Neither chronic systemic metabolic disease nor other retinal insults are required for RBP4 elevation to promote retinal neurodegeneration, since RBP4-Tg mice do not have coincident retinal vascular pathology, obesity, dyslipidemia, or hyperglycemia. These findings suggest that elevation of serum RBP4 levels could be a risk factor for retinal damage and vision loss in nondiabetic as well as diabetic patients.
Collapse
|