1
|
Hossain R, Lee HJ, Lee CJ. Pyronaridine Inhibited MUC5AC Mucin Gene Expression by Regulation of Nuclear Factor Kappa B Signaling Pathway in Human Pulmonary Mucoepidermoid Cells. Biomol Ther (Seoul) 2024; 32:540-545. [PMID: 39092476 PMCID: PMC11392666 DOI: 10.4062/biomolther.2024.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024] Open
Abstract
In this study, the potential effects of pyronaridine, an antimalarial agent, on airway MUC5AC mucin gene expression were investigated. The human pulmonary epithelial NCI-H292 cells were pretreated with pyronaridine for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h. The effect of pyronaridine on the PMA-induced nuclear factor kappa B (NF-κB) signaling pathway was also examined. Pyronaridine inhibited glycoprotein production and mRNA expression of MUC5AC mucins induced by PMA through the inhibition of degradation of inhibitory kappa Bα and NF-κB p65 nuclear translocation. These results suggest that pyronaridine suppresses gene expression of mucin through regulation of the NF-κB signaling pathway in human pulmonary epithelial cells.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
2
|
Kim KI, Hossain R, Ryu J, Lee HJ, Lee CJ. Regulation of the Gene Expression of Airway MUC5AC Mucin through NF-κB Signaling Pathway by Artesunate, an Antimalarial Agent. Biomol Ther (Seoul) 2023; 31:544-549. [PMID: 37254459 PMCID: PMC10468416 DOI: 10.4062/biomolther.2023.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
In this study, artesunate, an antimalarial agent, was investigated for its potential effect on the gene expression of airway MUC5AC mucin. The human pulmonary epithelial NCI-H292 cells were pretreated with artesunate for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect of artesunate on PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was also examined. Artesunate inhibited the glycoprotein production and mRNA expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IkBα) and NF-kB p65 nuclear translocation. These results suggest artesunate suppresses the gene expression of mucin through regulation of NF-kB signaling pathway, in human pulmonary epithelial cells.
Collapse
Affiliation(s)
- Kyung-il Kim
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Rajib Hossain
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jiho Ryu
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
3
|
Hossain R, Kim KI, Li X, Lee HJ, Lee CJ. Involvement of IKK/IkBα/NF-kB p65 Signaling into the Regulative Effect of Engeletin on MUC5AC Mucin Gene Expression in Human Airway Epithelial Cells. Biomol Ther (Seoul) 2022; 30:473-478. [PMID: 35989685 PMCID: PMC9424336 DOI: 10.4062/biomolther.2022.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022] Open
Abstract
In this study, we examined whether engeletin exerts an effect on the gene expression of MUC5AC mucin, in human pulmonary epithelial NCI-H292 cells. The cells were pretreated with engeletin for 30 min and stimulated with phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect of engeletin on PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was also investigated. Engeletin suppressed the mRNA expression and production of MUC5AC mucin, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IkBα) and NF-kB p65 nuclear translocation. These results suggest engeletin inhibits the gene expression of mucin through regulation of NF-kB signaling pathway, in human airway epithelial cells.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Kyung-Il Kim
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Xin Li
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
4
|
Yun C, Lee HJ, Lee CJ. Eriodictyol Inhibits the Production and Gene Expression of MUC5AC Mucin via the IκBα-NF-κB p65 Signaling Pathway in Airway Epithelial Cells. Biomol Ther (Seoul) 2021; 29:637-642. [PMID: 34565719 PMCID: PMC8551736 DOI: 10.4062/biomolther.2021.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/11/2021] [Accepted: 08/28/2021] [Indexed: 11/05/2022] Open
Abstract
In this study, we investigated whether eriodictyol exerts an effect on the production and gene expression of MUC5AC mucin in human pulmonary epithelial NCI-H292 cells. The cells were pretreated with eriodictyol for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h. The effect of eriodictyol on PMA-induced nuclear factor kappa B (NF-κB) signaling pathway was also investigated. Eriodictyol suppressed the MUC5AC mucin production and gene expression induced by PMA via suppression of inhibitory kappa Bα degradation and NF-κB p65 nuclear translocation. These results suggest that eriodictyol inhibits mucin gene expression and production in human airway epithelial cells via regulation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chawon Yun
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
5
|
Li X, Jin F, Lee HJ, Lee CJ. Kaempferol Regulates the Expression of Airway MUC5AC Mucin Gene via IκBα-NF-κB p65 and p38-p44/42-Sp1 Signaling Pathways. Biomol Ther (Seoul) 2021; 29:303-310. [PMID: 33281120 PMCID: PMC8094069 DOI: 10.4062/biomolther.2020.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/21/2023] Open
Abstract
In the present study, kaempferol, a flavonoidal natural compound found in Polygonati Rhizoma, was investigated for its potential effect on the gene expression and production of airway MUC5AC mucin. A human respiratory epithelial NCI-H292 cells was pretreated with kaempferol for 30 min and stimulated with epidermal growth factor (EGF) or phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect on PMA-induced nuclear factor kappa B (NF-κB) signaling pathway or EGF-induced mitogen-activated protein kinase (MAPK) signaling pathway was investigated. Kaempferol suppressed the production and gene expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IκBα), and NF-κB p65 nuclear translocation. Also, kaempferol inhibited EGF-induced gene expression and production of MUC5AC mucin through regulating the phosphorylation of EGFR, phosphorylation of p38 MAPK and extracellular signal-regulated kinase (ERK) 1/2 (p44/42), and the nuclear expression of specificity protein-1 (Sp1). These results suggest kaempferol regulates the gene expression and production of mucin through regulation of NF-κB and MAPK signaling pathways, in human airway epithelial cells.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Fengri Jin
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
6
|
Kneusels J, Kaehler M, Cascorbi I, Wedel T, Neunlist M, Lucius R, Cossais F. Limited Impact of 6-Mercaptopurine on Inflammation-Induced Chemokines Expression Profile in Primary Cultures of Enteric Nervous System. Neurochem Res 2021; 46:1781-1793. [PMID: 33864170 PMCID: PMC8187225 DOI: 10.1007/s11064-021-03324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 01/09/2023]
Abstract
Increasing evidences indicate that the enteric nervous system (ENS) and enteric glial cells (EGC) play important regulatory roles in intestinal inflammation. Mercaptopurine (6-MP) is a cytostatic compound clinically used for the treatment of inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease. However, potential impacts of 6-MP on ENS response to inflammation have not been evaluated yet. In this study, we aimed to gain deeper insights into the profile of inflammatory mediators expressed by the ENS and on the potential anti-inflammatory impact of 6-MP in this context. Genome-wide expression analyses were performed on ENS primary cultures exposed to lipopolysaccharide (LPS) and 6-MP alone or in combination. Differential expression of main hits was validated by quantitative real-time PCR (qPCR) using a cell line for EGC. ENS cells expressed a broad spectrum of cytokines and chemokines of the C-X-C motif ligand (CXCL) family under inflammatory stress. Induction of Cxcl5 and Cxcl10 by inflammatory stimuli was confirmed in EGC. Inflammation-induced protein secretion of TNF-α and Cxcl5 was partly inhibited by 6-MP in ENS primary cultures but not in EGC. Further work is required to identify the cellular mechanisms involved in this regulation. These findings extend our knowledge of the anti-inflammatory properties of 6-MP related to the ENS and in particular of the EGC-response to inflammatory stimuli.
Collapse
Affiliation(s)
- Jan Kneusels
- Institute of Anatomy, Kiel University, Kiel, Germany.
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Thilo Wedel
- Institute of Anatomy, Kiel University, Kiel, Germany
| | | | - Ralph Lucius
- Institute of Anatomy, Kiel University, Kiel, Germany
| | | |
Collapse
|
7
|
Smolders VFED, Lodder K, Rodríguez C, Tura-Ceide O, Barberà JA, Jukema JW, Quax PHA, Goumans MJ, Kurakula K. The Inflammatory Profile of CTEPH-Derived Endothelial Cells Is a Possible Driver of Disease Progression. Cells 2021; 10:cells10040737. [PMID: 33810533 PMCID: PMC8067175 DOI: 10.3390/cells10040737] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 11/30/2022] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a form of pulmonary hypertension characterized by the presence of fibrotic intraluminal thrombi and causing obliteration of the pulmonary arteries. Although both endothelial cell (EC) dysfunction and inflammation are linked to CTEPH pathogenesis, regulation of the basal inflammatory response of ECs in CTEPH is not fully understood. Therefore, in the present study, we investigated the role of the nuclear factor (NF)-κB pro-inflammatory signaling pathway in ECs in CTEPH under basal conditions. Basal mRNA levels of interleukin (IL)-8, IL-1β, monocyte chemoattractant protein-1 (MCP-1), C-C motif chemokine ligand 5 (CCL5), and vascular cell adhesion molecule-1 (VCAM-1) were upregulated in CTEPH-ECs compared to the control cells. To assess the involvement of NF-κB signaling in basal inflammatory activation, CTEPH-ECs were incubated with the NF-κB inhibitor Bay 11-7085. The increase in pro-inflammatory cytokines was abolished when cells were incubated with the NF-κB inhibitor. To determine if NF-κB was indeed activated, we stained pulmonary endarterectomy (PEA) specimens from CTEPH patients and ECs isolated from PEA specimens for phospho-NF-κB-P65 and found that especially the vessels within the thrombus and CTEPH-ECs are positive for phospho-NF-κB-P65. In summary, we show that CTEPH-ECs have a pro-inflammatory status under basal conditions, and blocking NF-κB signaling reduces the production of inflammatory factors in CTEPH-ECs. Therefore, our results show that the increased basal pro-inflammatory status of CTEPH-ECs is, at least partially, regulated through activation of NF-κB signaling and potentially contributes to the pathophysiology and progression of CTEPH.
Collapse
Affiliation(s)
- Valérie F. E. D. Smolders
- Department of Surgery, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.F.E.D.S.); (P.H.A.Q.)
- Department of Cell and Chemical Biology, Laboratory for CardioVascular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (K.L.); (M.J.G.)
| | - Kirsten Lodder
- Department of Cell and Chemical Biology, Laboratory for CardioVascular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (K.L.); (M.J.G.)
| | - Cristina Rodríguez
- Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.R.); (O.T.-C.); (J.A.B.)
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institut (IDIBGI), 17190 Girona, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.R.); (O.T.-C.); (J.A.B.)
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institut (IDIBGI), 17190 Girona, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.R.); (O.T.-C.); (J.A.B.)
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Paul H. A. Quax
- Department of Surgery, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.F.E.D.S.); (P.H.A.Q.)
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Laboratory for CardioVascular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (K.L.); (M.J.G.)
| | - Kondababu Kurakula
- Department of Cell and Chemical Biology, Laboratory for CardioVascular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (K.L.); (M.J.G.)
- Correspondence:
| |
Collapse
|
8
|
Jin F, Li X, Lee HJ, Lee CJ. Diclofenac Inhibits Phorbol Ester-Induced Gene Expression and Production of MUC5AC Mucin via Affecting Degradation of IkBα and Translocation of NF-kB p65 in NCI-H292 Cells. Biomol Ther (Seoul) 2020; 28:431-436. [PMID: 32753566 PMCID: PMC7457166 DOI: 10.4062/biomolther.2020.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
In this study, diclofenac, a non-steroidal anti-inflammatory drug, was investigated for its potential effect on the gene expression and production of airway MUC5AC mucin. The human respiratory epithelial NCI-H292 cells were pretreated with diclofenac for 30 min and stimulated with phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect of diclofenac on PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was also investigated. Diclofenac suppressed the production and gene expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IkBα) and NF-kB p65 nuclear translocation. These results suggest diclofenac regulates the gene expression and production of mucin through regulation of NF-kB signaling pathway, in human airway epithelial cells.
Collapse
Affiliation(s)
- Fengri Jin
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Xin Li
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Koreance, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
9
|
Scrophularia koraiensis Nakai Attenuates Allergic Airway Inflammation via Suppression of NF-κB and Enhancement of Nrf2/HO-1 Signaling. Antioxidants (Basel) 2020; 9:antiox9020099. [PMID: 31991647 PMCID: PMC7070852 DOI: 10.3390/antiox9020099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Scrophularia koraiensis Nakai (Scrophulariaceae) is a medicinal herb that grows in Korea and which has been widely used to treat fever, edema, neuritis and laryngitis. Hence, we evaluated the anti-inflammatory and antioxidant effects of the ethanol extract (SKE) of S. koraiensis Nakai in an ovalbumin (OVA)-induced mouse model. We injected 20 μg of OVA with 2 mg of aluminum on day 0 and day 14 to induce allergic airway inflammation in six-week-old BALB/c mice, and mice were challenged with 1% OVA by nebulization for 1 h on days 21, 22, and 23. SKE was orally administered at 20 mg/kg and 40 mg/kg from day 18 to 23, and its effects were compared with those of montelukast treatment. SKE significantly reduced proinflammatory cytokines, inflammatory cell counts, immunoglobulin-E, and airway hyperresponsiveness during the OVA-induced allergic airway inflammation model; it also reduced airway inflammation and mucus production. In addition, SKE reduced the OVA-induced nuclear factor kappa B (NF-κB) phosphorylation in lung tissues while enhancing nuclear factor erythroid-derived 2-related factor (Nrf-2) and heme oxygenase-1 (HO-1) expression. In conclusion, SKE showed the protective effects on OVA-induced allergic airway inflammation via the suppression of NF-κB phosphorylation and the enhancement of the Nrf2/HO-1 signaling pathway. These results indicate that SKE is a potential therapeutic agent for allergic airway inflammation.
Collapse
|
10
|
Lê MQ, Carpentier R, Lantier I, Ducournau C, Fasquelle F, Dimier-Poisson I, Betbeder D. Protein delivery by porous cationic maltodextrin-based nanoparticles into nasal mucosal cells: Comparison with cationic or anionic nanoparticles. Int J Pharm X 2019; 1:100001. [PMID: 31545856 PMCID: PMC6733295 DOI: 10.1016/j.ijpx.2018.100001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
Different types of biodegradable nanoparticles (NPs) have been studied as delivery systems for proteins into nasal mucosal cells, especially for vaccine applications. Such a nanocarrier must have the ability to be loaded with proteins and to transport this payload into mucosal cells. However, comparative data on nanoparticles' capacity for protein loading, efficiency of subsequent endocytosis and the quantity of nanocarriers used are either lacking or contradictory, making comparisons and the choice of a best candidate difficult. Here we compared 5 types of nanoparticles with different surface charge (anionic or cationic) and various inner compositions as potential vectors: the NPL (cationic maltodextrin NP with an anionic lipid core), cationic and anionic PLGA (Poly Lactic co-Glycolic Acid) NP, and cationic and anionic liposomes. We first quantified the protein association efficiency and NPL associated the largest amount of ovalbumin, used as a model protein. In vitro, the delivery of fluorescently-labeled ovalbumin into mucosal cells (airway epithelial cells, dendritic cells and macrophages) was assessed by flow cytometry and revealed that the NPL delivered protein to the greatest extent in all 3 different cell lines. Taken together, these data underlined the potential of the porous and cationic maltodextrin-based NPL as efficient protein delivery systems to mucosal cells.
Collapse
Affiliation(s)
- Minh Quan Lê
- Inserm, LIRIC – UMR 995, F-59 000 Lille, France
- Univ Lille, LIRIC – UMR 995, F-59 045 Lille, France
- CHRU de Lille, LIRIC – UMR 995, F-59 000 Lille, France
| | - Rodolphe Carpentier
- Inserm, LIRIC – UMR 995, F-59 000 Lille, France
- Univ Lille, LIRIC – UMR 995, F-59 045 Lille, France
- CHRU de Lille, LIRIC – UMR 995, F-59 000 Lille, France
| | | | | | - François Fasquelle
- Inserm, LIRIC – UMR 995, F-59 000 Lille, France
- Univ Lille, LIRIC – UMR 995, F-59 045 Lille, France
- CHRU de Lille, LIRIC – UMR 995, F-59 000 Lille, France
| | | | - Didier Betbeder
- Inserm, LIRIC – UMR 995, F-59 000 Lille, France
- Univ Lille, LIRIC – UMR 995, F-59 045 Lille, France
- CHRU de Lille, LIRIC – UMR 995, F-59 000 Lille, France
- Université d’Artois, 62300 Lens, France
| |
Collapse
|
11
|
Kurakula K, Sun XQ, Happé C, da Silva Goncalves Bos D, Szulcek R, Schalij I, Wiesmeijer KC, Lodder K, Tu L, Guignabert C, de Vries CJ, de Man FS, Vonk Noordegraaf A, ten Dijke P, Goumans MJ, Bogaard HJ. Prevention of progression of pulmonary hypertension by the Nur77 agonist 6-mercaptopurine: role of BMP signalling. Eur Respir J 2019; 54:13993003.02400-2018. [DOI: 10.1183/13993003.02400-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/19/2019] [Indexed: 01/07/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive fatal disease characterised by abnormal remodelling of pulmonary vessels, leading to increased vascular resistance and right ventricle failure. This abnormal vascular remodelling is associated with endothelial cell dysfunction, increased proliferation of smooth muscle cells, inflammation and impaired bone morphogenetic protein (BMP) signalling. Orphan nuclear receptor Nur77 is a key regulator of proliferation and inflammation in vascular cells, but its role in impaired BMP signalling and vascular remodelling in PAH is unknown.We hypothesised that activation of Nur77 by 6-mercaptopurine (6-MP) would improve PAH by inhibiting endothelial cell dysfunction and vascular remodelling.Nur77 expression is decreased in cultured pulmonary microvascular endothelial cells (MVECs) and lungs of PAH patients. Nur77 significantly increased BMP signalling and strongly decreased proliferation and inflammation in MVECs. In addition, conditioned medium from PAH MVECs overexpressing Nur77 inhibited the growth of healthy smooth muscle cells. Pharmacological activation of Nur77 by 6-MP markedly restored MVEC function by normalising proliferation, inflammation and BMP signalling. Finally, 6-MP prevented and reversed abnormal vascular remodelling and right ventricle hypertrophy in the Sugen/hypoxia rat model of severe angioproliferative PAH.Our data demonstrate that Nur77 is a critical modulator in PAH by inhibiting vascular remodelling and increasing BMP signalling, and activation of Nur77 could be a promising option for the treatment of PAH.
Collapse
|
12
|
Yeo N, Park WJ, Eom D, Oh MY, Lee JH. Effects of azathioprine and its metabolites on inflammatory cytokines in human nasal polyp organ cultures. Int Forum Allergy Rhinol 2019; 9:648-655. [DOI: 10.1002/alr.22303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Nam‐Kyung Yeo
- Department of Otolaryngology, Gangneung Asan HospitalUniversity of Ulsan College of Medicine Gangneung Republic of Korea
| | - Woo Joo Park
- Department of Family Medicine, Gangneung Asan HospitalUniversity of Ulsan College of Medicine Gangneung Republic of Korea
| | - Daeo‐Woon Eom
- Department of Pathology, Gangneung Asan HospitalUniversity of Ulsan College of Medicine Gangneung Republic of Korea
| | - Mi Young Oh
- Biomedical Research Center, Gangneung Asan HospitalUniversity of Ulsan College of Medicine Gangneung Republic of Korea
| | - Ji Hwan Lee
- Biomedical Research Center, Gangneung Asan HospitalUniversity of Ulsan College of Medicine Gangneung Republic of Korea
| |
Collapse
|
13
|
Yu Q, Yang D, Chen X, Chen Q. CD147 increases mucus secretion induced by cigarette smoke in COPD. BMC Pulm Med 2019; 19:29. [PMID: 30727993 PMCID: PMC6364420 DOI: 10.1186/s12890-019-0791-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND CD147 is expressed in many tissues and is involved in many inflammatory diseases. Emerging evidence suggests that the overproduction of mucus is a malignant factor in chronic obstructive pulmonary disease (COPD), which results in severe airway obstruction and repeated airway infections. However, it is still unclear whether CD147 is involved in mucus production in COPD. METHODS We determined the expression levels of CD147 and MUC5AC by immunohistochemistry in 42 human lung specimens from three groups (non-smokers without COPD, smokers without COPD and smokers with COPD). For the in vitro experiment, human bronchial epithelial (HBE) cells were treated with cigarette smoke (CS) extract to establish a mucus secretion model; then, CD147 and MUC5AC production were detected by RT-PCR, Western blotting and ELISA. To determine how CD147 is involved in MUC5AC secretion, HBE cells were transfected with small interfering RNA to silence CD147 and pretreated with inhibitors of MMP9 and p38 MAPK, which are common signaling molecules involved in MUC5AC secretion; then, MUC5AC expression was evaluated. RESULTS Compared with the expression levels in the non-smokers and smokers without COPD, CD147 and MUC5AC expression levels were higher in the smokers with COPD. In the in vitro experiment, CD147 and MUC5AC expression levels were significantly increased after CS extract incubation compared with those after no treatment. Silencing CD147 by siRNA decreased the CS extract-induced MUC5AC secretion and MMP9 and phosphorylated p38 MAPK production. In addition, inhibiting MMP9 or p38 MAPK decreased the CS extract-induced MUC5AC secretion. CONCLUSIONS In lung specimens, CD147 and MUC5AC expression levels were increased in COPD patients. Increased CD147 levels induced by CS extract could stimulate MUC5AC secretion through the MMP9 and p38 MAPK signaling pathway in HBE cells. Therefore, the regulation of CD147 could be a promising target for mucus hypersecretion in COPD.
Collapse
Affiliation(s)
- Qiao Yu
- Department of Gerontology and Respirology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Danhui Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xi Chen
- Department of Respiratory Medicine, Xiangya of Central South University, Changsha, 410008, Hunan, China
| | - Qiong Chen
- Department of Gerontology and Respirology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
14
|
Shin NR, Kwon HJ, Ko JW, Kim JS, Lee IC, Kim JC, Kim SH, Shin IS. S-Allyl cysteine reduces eosinophilic airway inflammation and mucus overproduction on ovalbumin-induced allergic asthma model. Int Immunopharmacol 2019; 68:124-130. [PMID: 30622029 DOI: 10.1016/j.intimp.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/12/2018] [Accepted: 01/01/2019] [Indexed: 01/31/2023]
Abstract
S-Allyl cysteine (SAC) is an active component in garlic and has various pharmacological effects, such as anti-inflammatory, anti-oxidant, and anti-cancer activities. In this study, we explored the suppressive effects of SAC on allergic airway inflammation induced in an ovalbumin (OVA)-induced asthma mouse model. To induce asthma, BALB/c mice were sensitized to OVA on days 0 and 14 by intraperitoneal injection and exposed to OVA from days 21 to 23 using a nebulizer. SAC was administered to mice by oral gavage at a dose of 10 or 20 mg/kg from days 18 to 23. SAC significantly reduced airway hyperresponsiveness, inflammatory cell counts, and Th2 type cytokines in bronchoalveolar lavage fluid induced by OVA exposure, which was accompanied by reduced serum OVA-specific immunoglobulin E. In histological analysis of the lung tissue, administration of SAC reduced inflammatory cell accumulation into lung tissue and mucus production in airway goblet cells induced by OVA exposure. Additionally, SAC significantly decreased MUC5AC expression and nuclear factor-κB phosphorylation induced by OVA exposure. In summary, SAC effectively suppressed allergic airway inflammation and mucus production in OVA-challenged asthmatic mice. Therefore, SAC shows potential for use in treating allergic asthma.
Collapse
Affiliation(s)
- Na-Rae Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hyung-Jun Kwon
- Natural Product Research Center, Jeonbuk Branch, Korea Research Institute of Biosciences and Biotechnology, Ipsingil 181, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Joong-Sun Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Geonjae-ro 177, Naju-si, Jeollanam-do 58245, Republic of Korea
| | - In-Chul Lee
- Natural Product Research Center, Jeonbuk Branch, Korea Research Institute of Biosciences and Biotechnology, Ipsingil 181, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea.
| | - In-Sik Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
15
|
Sun J, Huang N, Ma W, Zhou H, Lai K. Protective effects of metformin on lipopolysaccharide‑induced airway epithelial cell injury via NF‑κB signaling inhibition. Mol Med Rep 2019; 19:1817-1823. [PMID: 30628691 DOI: 10.3892/mmr.2019.9807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/15/2018] [Indexed: 11/05/2022] Open
Abstract
Asthma is a heterogeneous disease characterized by chronic airway inflammation. It has been demonstrated that metformin, an extensively used drug for the treatment of type 2 diabetes, improves airway inflammation and remodeling. However, the mechanism by which this occurs remains poorly understood. The present study investigated the protective effects of metformin in lipopolysaccharide (LPS)‑induced human bronchial epithelial (16HBE) cells injury and the associated mechanisms. 16HBE cells were preincubated with metformin for 1 h and subsequently exposed to LPS for 12 h. A lactate dehydrogenase (LDH) leakage assay was used to determine the extent of injury to 16HBE cells. The expression of tumor necrosis factor‑α (TNF‑α) and interleukin‑6 (IL‑6) was measured by ELISA. The protein expression of intercellular adhesion molecule‑1 (ICAM‑1) and vascular cell adhesion molecule‑1 (VCAM‑1), as well as proteins associated with nuclear factor (NF)‑κB signaling, was measured by western blotting. Immunofluorescence assays confirmed the nuclear translocation of NF‑κB p65. The LDH leakage assays suggested that metformin significantly reduced LPS‑induced 16HBE cell injury. Furthermore, it was confirmed that metformin suppressed the LPS‑induced secretion of TNF‑α, IL‑6, ICAM‑1 and VCAM‑1. The mechanism occurred at least partially via inhibition of NF‑κB signaling. The results demonstrated that metformin inhibited NF‑κB mRNA expression and the nuclear translocation of NF‑κB p65. To the best of our knowledge, the present study was the first to demonstrate that metformin ameliorated LPS‑induced bronchial epithelial cell injury via NF‑κB signaling suppression.
Collapse
Affiliation(s)
- Jiayang Sun
- Department of Respiratory Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Niwen Huang
- Department of Respiratory Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Wen Ma
- Department of Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Haiyan Zhou
- Department of Clinical Research Centre, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Kefang Lai
- Department of Clinical Research State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
16
|
Le MQ, Carpentier R, Lantier I, Ducournau C, Dimier-Poisson I, Betbeder D. Residence time and uptake of porous and cationic maltodextrin-based nanoparticles in the nasal mucosa: Comparison with anionic and cationic nanoparticles. Int J Pharm 2018; 550:316-324. [PMID: 30171898 DOI: 10.1016/j.ijpharm.2018.08.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022]
Abstract
Different types of biodegradable nanoparticles (NP) have been studied as nasal mucosa cell delivery systems. These nanoparticles need to strongly interact with mucosa cells to deliver their payload. However, only a few simultaneous comparisons have been made and it is therefore difficult to determine the best candidate. Here we compared 5 types of nanoparticles with different surface charge (anionic or cationic) and various inner compositions as potential vectors: cationic and anionic liposomes, cationic and anionic PLGA (Poly Lactic co-Glycolic Acid) NP and porous and cationic maltodextrin NP (cationic surface with an anionic lipid core: NPL). We first quantified their nasal residence time after nasal administration in mice using in vivo live imaging and NPL showed the longest residence time. In vitro endocytosis on mucosal cells (airway epithelial cells, macrophages and dendritic cells) using labeled nanoparticles were performed by flow cytometry and confocal microscopy. Among the 5 nanoparticles, NPL were taken up to the greatest extent by the 3 different cell lines and the endocytosis mechanisms were characterized. Taken together, we observed that the nanoparticles' cationic surface charge is insufficient to improve mucosal residence time and cellular uptake and that the NPL are the best candidates to interact with airway mucosal cells.
Collapse
Affiliation(s)
- Minh Quan Le
- Inserm, LIRIC - UMR 995, F-59 000 Lille, France; Univ Lille, LIRIC - UMR 995, F-59 045 Lille, France; CHRU de Lille, LIRIC - UMR 995, F-59 000 Lille, France
| | - Rodolphe Carpentier
- Inserm, LIRIC - UMR 995, F-59 000 Lille, France; Univ Lille, LIRIC - UMR 995, F-59 045 Lille, France; CHRU de Lille, LIRIC - UMR 995, F-59 000 Lille, France.
| | | | | | | | - Didier Betbeder
- Inserm, LIRIC - UMR 995, F-59 000 Lille, France; Univ Lille, LIRIC - UMR 995, F-59 045 Lille, France; CHRU de Lille, LIRIC - UMR 995, F-59 000 Lille, France; Université d'Artois, 62300 Lens, France
| |
Collapse
|
17
|
Matsuyama N, Shibata S, Matoba A, Kudo TA, Danielsson J, Kohjitani A, Masaki E, Emala CW, Mizuta K. The dopamine D 1 receptor is expressed and induces CREB phosphorylation and MUC5AC expression in human airway epithelium. Respir Res 2018; 19:53. [PMID: 29606146 PMCID: PMC5879645 DOI: 10.1186/s12931-018-0757-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Nao Matsuyama
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan
| | - Sumire Shibata
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan
| | - Atsuko Matoba
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan
| | - Tada-Aki Kudo
- Department of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Jennifer Danielsson
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Atsushi Kohjitani
- Department of Dental Anesthesiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eiji Masaki
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan
| | - Charles W Emala
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Kentaro Mizuta
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan. .,Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA.
| |
Collapse
|
18
|
Bae CH, Na HG, Choi YS, Song SY, Kim YD. Clusterin Induces MUC5AC Expression via Activation of NF-κB in Human Airway Epithelial Cells. Clin Exp Otorhinolaryngol 2018; 11:124-132. [PMID: 29316784 PMCID: PMC5951062 DOI: 10.21053/ceo.2017.00493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/08/2017] [Accepted: 11/10/2017] [Indexed: 01/08/2023] Open
Abstract
Objectives Clusterin (CLU) is known as apolipoprotein J, and has three isoforms with different biological functions. CLU is associated with various diseases such as Alzheimer disease, atherosclerosis, and some malignancies. Recent studies report an association of CLU with inflammation and immune response in inflammatory airway diseases. However, the effect of CLU on mucin secretion of airway epithelial cells has not yet been understood. Therefore, the effect and brief signaling pathway of CLU on MUC5AC (as a major secreted mucin) expression were investigated in human airway epithelial cells. Methods In the tissues of nasal polyp and normal inferior turbinate, the presence of MUC5AC and CLU was investigated using immunohistochemical stain and Western blot analysis. In mucin-producing human NCI-H292 airway epithelial cells and primary cultures of normal nasal epithelial cells, the effect and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway of CLU on MUC5AC expression were investigated using immunohistochemical stain, reverse transcription-polymerase chain reaction, real-time polymerase chain reaction, enzyme immunoassay, and Western blot analysis. Results In the nasal polyps, MUC5AC and CLU were abundantly present in the epithelium on immunohistochemical stain, and nuclear CLU (nCLU) was strongly detected on Western blot analysis. In human NCI-H292 airway epithelial cells or the primary cultures of normal nasal epithelial cells, recombinant nCLU increased MUC5AC expression, and significantly activated phosphorylation of NF-κB. And BAY 11-7085 (a specific NF-κB inhibitor) and knockdown of NF-κB by NF-κB siRNA (small interfering RNA) significantly attenuated recombinant nCLU-induced MUC5AC expression. Conclusion These results suggest that nCLU induces MUC5AC expression via the activation of NF-κB signaling pathway in human airway epithelial cells.
Collapse
Affiliation(s)
- Chang Hoon Bae
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Hyung Gyun Na
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Yoon Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Si-Youn Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Yong-Dae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeungnam University College of Medicine, Daegu, Korea.,Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, Korea
| |
Collapse
|
19
|
da Silva Gonçalves Bós D, Van Der Bruggen CEE, Kurakula K, Sun XQ, Casali KR, Casali AG, Rol N, Szulcek R, Dos Remedios C, Guignabert C, Tu L, Dorfmüller P, Humbert M, Wijnker PJM, Kuster DWD, van der Velden J, Goumans MJ, Bogaard HJ, Vonk-Noordegraaf A, de Man FS, Handoko ML. Contribution of Impaired Parasympathetic Activity to Right Ventricular Dysfunction and Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Circulation 2017; 137:910-924. [PMID: 29167228 DOI: 10.1161/circulationaha.117.027451] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 10/31/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND The beneficial effects of parasympathetic stimulation have been reported in left heart failure, but whether it would be beneficial for pulmonary arterial hypertension (PAH) remains to be explored. Here, we investigated the relationship between parasympathetic activity and right ventricular (RV) function in patients with PAH, and the potential therapeutic effects of pyridostigmine (PYR), an oral drug stimulating the parasympathetic activity through acetylcholinesterase inhibition, in experimental pulmonary hypertension (PH). METHODS Heart rate recovery after a maximal cardiopulmonary exercise test was used as a surrogate for parasympathetic activity. RV ejection fraction was assessed in 112 patients with PAH. Expression of nicotinic (α-7 nicotinic acetylcholine receptor) and muscarinic (muscarinic acetylcholine type 2 receptor) receptors, and acetylcholinesterase activity were evaluated in RV (n=11) and lungs (n=7) from patients with PAH undergoing heart/lung transplantation and compared with tissue obtained from controls. In addition, we investigated the effects of PYR (40 mg/kg per day) in experimental PH. PH was induced in male rats by SU5416 (25 mg/kg subcutaneously) injection followed by 4 weeks of hypoxia. In a subgroup, sympathetic/parasympathetic modulation was assessed by power spectral analysis. At week 6, PH status was confirmed by echocardiography, and rats were randomly assigned to vehicle or treatment (both n=12). At the end of the study, echocardiography was repeated, with additional RV pressure-volume measurements, along with lung, RV histological, and protein analyses. RESULTS Patients with PAH with lower RV ejection fraction (<41%) had a significantly reduced heart rate recovery in comparison with patients with higher RV ejection fraction. In PAH RV samples, α-7 nicotinic acetylcholine receptor was increased and acetylcholinesterase activity was reduced versus controls. No difference in muscarinic acetylcholine type 2 receptor expression was observed. Chronic PYR treatment in PH rats normalized the cardiovascular autonomic function, demonstrated by an increase in parasympathetic activity and baroreflex sensitivity. PYR improved survival, increased RV contractility, and reduced RV stiffness, RV hypertrophy, RV fibrosis, RV inflammation, and RV α-7 nicotinic acetylcholine receptor and muscarinic acetylcholine type 2 receptor expression, as well. Furthermore, PYR reduced pulmonary vascular resistance, RV afterload, and pulmonary vascular remodeling, which was associated with reduced local and systemic inflammation. CONCLUSIONS RV dysfunction is associated with reduced systemic parasympathetic activity in patients with PAH, with an inadequate adaptive response of the cholinergic system in the RV. Enhancing parasympathetic activity by PYR improved survival, RV function, and pulmonary vascular remodeling in experimental PH.
Collapse
Affiliation(s)
| | | | - Kondababu Kurakula
- VU University Medical Center / Amsterdam Cardiovascular Sciences, The Netherlands.. Department of Molecular Cell Biology, Laboratory of Experimental Cardiology, Leiden University Medical Center, The Netherlands (K.K., M.-J.G.)
| | - Xiao-Qing Sun
- Department of Pulmonology (D.d.S.G.B., C.E.V.D.B., X.-Q.S., N.R., R.S., H.-J.B., A.V.-N. F.S.d.M.)
| | - Karina R Casali
- Institute of Science and Technology, Universidade Federal de São Paulo, Brazil (K.R.C., A.G.C.)
| | - Adenauer G Casali
- Institute of Science and Technology, Universidade Federal de São Paulo, Brazil (K.R.C., A.G.C.)
| | - Nina Rol
- Department of Pulmonology (D.d.S.G.B., C.E.V.D.B., X.-Q.S., N.R., R.S., H.-J.B., A.V.-N. F.S.d.M.)
| | - Robert Szulcek
- Department of Pulmonology (D.d.S.G.B., C.E.V.D.B., X.-Q.S., N.R., R.S., H.-J.B., A.V.-N. F.S.d.M.)
| | - Cris Dos Remedios
- Heart & Lung Transplant Unit, St. Vincent's Hospital and Bosch Institute, University of Sydney, Australia (C.d.R.)
| | - Christophe Guignabert
- University of Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (C.G., L.T., P.D., M.H.).,INSERM UMR_S 999, Le Plessis-Robinson, France (C.G., L.T., P.D., M.H.)
| | - Ly Tu
- University of Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (C.G., L.T., P.D., M.H.).,INSERM UMR_S 999, Le Plessis-Robinson, France (C.G., L.T., P.D., M.H.)
| | - Peter Dorfmüller
- University of Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (C.G., L.T., P.D., M.H.).,INSERM UMR_S 999, Le Plessis-Robinson, France (C.G., L.T., P.D., M.H.)
| | - Marc Humbert
- University of Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France (C.G., L.T., P.D., M.H.).,INSERM UMR_S 999, Le Plessis-Robinson, France (C.G., L.T., P.D., M.H.)
| | | | | | | | - Marie-José Goumans
- VU University Medical Center / Amsterdam Cardiovascular Sciences, The Netherlands.. Department of Molecular Cell Biology, Laboratory of Experimental Cardiology, Leiden University Medical Center, The Netherlands (K.K., M.-J.G.)
| | - Harm-Jan Bogaard
- Department of Pulmonology (D.d.S.G.B., C.E.V.D.B., X.-Q.S., N.R., R.S., H.-J.B., A.V.-N. F.S.d.M.)
| | - Anton Vonk-Noordegraaf
- Department of Pulmonology (D.d.S.G.B., C.E.V.D.B., X.-Q.S., N.R., R.S., H.-J.B., A.V.-N. F.S.d.M.)
| | - Frances S de Man
- Department of Pulmonology (D.d.S.G.B., C.E.V.D.B., X.-Q.S., N.R., R.S., H.-J.B., A.V.-N. F.S.d.M.)
| | | |
Collapse
|
20
|
Bao Z, Zhang P, Yao Y, Lu G, Tong Z, Yan B, Tu L, Yang G, Zhou J. Deguelin Attenuates Allergic Airway Inflammation via Inhibition of NF-κb Pathway in Mice. Int J Biol Sci 2017; 13:492-504. [PMID: 28529457 PMCID: PMC5436569 DOI: 10.7150/ijbs.17238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/02/2017] [Indexed: 01/10/2023] Open
Abstract
Asthma is a chronic respiratory disease characterized by airway inflammation and remodeling, resulting in a substantial economic burden on both patients and society. Deguelin, a constituent of the Leguminosae family, exhibits anti-proliferative and anti-inflammatory activities in cancer mice models via inhibiting phosphatidylinositol 3-kinases and the NF-κB pathway. We demonstrated that deguelin effectively reduced OVA-induced inflammatory cell recruitment, decreased lung tissue inflammation and mucus production, suppressed airway hyperresponsiveness, and inhibited serum immunoglobulin and Th2 cytokine levels in a dose-dependent manner in asthmatic mice. In addition, we found that deguelin reduced inflammatory gene expressions both in vivo and in vitro, which were closely associated with activation of the NF-κB signaling pathway. Thus, we further explored the underlying mechanisms of deguelin in normal human bronchial epithelial cells (BEAS-2B). Our results suggested that deguelin inhibited NF-κB binding activity by enhancing the ability of IκBα to maintain NF-κB in an inactive form in the cytoplasm and preventing the TNF-α induced translocation of p65 to the nucleus. In conclusion, our research indicates that deguelin attenuates allergic airway inflammation via inhibition of NF-κB pathway in mice model and may act as a potential therapeutic agent for patients with allergic airway inflammation.
Collapse
Affiliation(s)
- Zhang Bao
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pei Zhang
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinan Yao
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lu
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongkai Tong
- Department of Respiratory Diseases, Ningbo No.2 hospital, Ningbo, China
| | - Bing Yan
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingfang Tu
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guangdie Yang
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Lee JW, Park HA, Kwon OK, Jang YG, Kim JY, Choi BK, Lee HJ, Lee S, Paik JH, Oh SR, Ahn KS, Lee HJ. Asiatic acid inhibits pulmonary inflammation induced by cigarette smoke. Int Immunopharmacol 2016; 39:208-217. [PMID: 27494684 DOI: 10.1016/j.intimp.2016.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 01/04/2023]
Abstract
Asiatic acid (AA) is one of the major components of Titrated extract of Centella asiatica (TECA), which has been reported to possess antioxidant and anti-inflammatory activities. The purpose of this study was to investigate the protective effect of AA on pulmonary inflammation induced by cigarette smoke (CS). AA significantly attenuated the infiltration of inflammatory cells in bronchoalveolar lavage fluid (BALF) of CS exposure mice. AA also decreased ROS production and NE activity, and inhibited the release of proinflammatory cytokines in BALF. AA reduced the recruitment of inflammatory cells and MCP-1 expression in lung tissue of CS exposure mice. AA also attenuated mucus overproduction, and decreased the activation of MAPKs and NF-kB in lung tissue. Furthermore, AA increased HO-1 expression and inhibited the reduced expression of SOD3 in lung tissue. These findings indicate that AA effectively inhibits pulmonary inflammatory response, which is an important process in the development of chronic obstructive pulmonary disease (COPD) via suppression of inflammatory mediators and induction of HO-1. Therefore, we suggest that AA has the potential to treat inflammatory disease such as COPD.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Hyun Ah Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea; College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea; Department of Toxicology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Yin-Gi Jang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Ju Yeong Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Bo Kyung Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea; College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea
| | - Sangwoo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea.
| | - Hyun-Jun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea.
| |
Collapse
|
22
|
Liu X, Li L, Li J, Cheng Y, Chen J, Shen M, Zhang S, Wei H. Insulin resistance contributes to multidrug resistance in HepG2 cells via activation of the PERK signaling pathway and upregulation of Bcl-2 and P-gp. Oncol Rep 2016; 35:3018-24. [PMID: 26935266 DOI: 10.3892/or.2016.4632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/11/2016] [Indexed: 11/06/2022] Open
Abstract
Liver tumorigenesis frequently causes insulin resistance which may be used as an independent risk factor for evaluation of survival and post-surgery relapse of liver cancer patients. In the present study, HepG2/IR, an insulin resistant HepG2 cell line, was established by exposing HepG2 cells to 0.5 µmol/l of insulin for 72 h, and comparison of HepG2/IR with the parental HepG2 cells indicated that the HepG2/IR cells showed significantly enhanced resistance to the most frequently used chemotherapeutics for solid tumors, such as cisplatin, 5-fluorouracil, vincristine and mitomycin. Flow cytometric analysis of cisplatin-treated HepG2/IR cells showed a significantly decreased hypodiploid peak and a significantly downregulated expression level of pro-apoptotic protein caspase-3 compared with the parental HepG2 cells. Our data further showed swollen endoplasmic reticulum (ER) in the cisplatin-treated HepG2/IR cells with significantly increased levels of glucose-regulated protein 78 (GRP78), phosphorylated protein kinase R-like ER kinase (p-PERK) and P-glycoprotein (P-gp). There was also an upregulated expression of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) whereas no significant change was observed for CCAAT-enhancer-binding protein homologous protein (CHOP), which is known to be induced by ER stress and to mediate apoptosis. Our results demonstrated that insulin resistance in HepG2 cells promoted a protective unfolded protein response and upregulated the expression of ER chaperone protein GRP78, which resulted in the phosphorylation of PERK kinase to activate the PERK-mediated ER stress signal transduction pathway and the upregulation of Bcl-2 and P-gp, leading to the inhibition of the caspase-3-dependent apoptosis pathway and to the survival of liver tumor cells.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Linjing Li
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jing Li
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yan Cheng
- Experimental Center, Northwest University for Nationalities, Lanzhou, Gansu 730000, P.R. China
| | - Jing Chen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Minghui Shen
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shangdi Zhang
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hulai Wei
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|