1
|
Barbeta E, Arrieta M, Motos A, Bobi J, Yang H, Yang M, Tanzella G, Di Ginnatale P, Nogas S, Vargas CR, Cabrera R, Battaglini D, Meli A, Kiarostami K, Vázquez N, Fernández-Barat L, Rigol M, Mellado-Artigas R, Frigola G, Camprubí-Rimblas M, Ferrer P, Martinez D, Artigas A, Ferrando C, Ferrer M, Torres A. A long-lasting porcine model of ARDS caused by pneumonia and ventilator-induced lung injury. Crit Care 2023; 27:239. [PMID: 37328874 PMCID: PMC10276390 DOI: 10.1186/s13054-023-04512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Animal models of acute respiratory distress syndrome (ARDS) do not completely resemble human ARDS, struggling translational research. We aimed to characterize a porcine model of ARDS induced by pneumonia-the most common risk factor in humans-and analyze the additional effect of ventilator-induced lung injury (VILI). METHODS Bronchoscopy-guided instillation of a multidrug-resistant Pseudomonas aeruginosa strain was performed in ten healthy pigs. In six animals (pneumonia-with-VILI group), pulmonary damage was further increased by VILI applied 3 h before instillation and until ARDS was diagnosed by PaO2/FiO2 < 150 mmHg. Four animals (pneumonia-without-VILI group) were protectively ventilated 3 h before inoculum and thereafter. Gas exchange, respiratory mechanics, hemodynamics, microbiological studies and inflammatory markers were analyzed during the 96-h experiment. During necropsy, lobar samples were also analyzed. RESULTS All animals from pneumonia-with-VILI group reached Berlin criteria for ARDS diagnosis until the end of experiment. The mean duration under ARDS diagnosis was 46.8 ± 7.7 h; the lowest PaO2/FiO2 was 83 ± 5.45 mmHg. The group of pigs that were not subjected to VILI did not meet ARDS criteria, even when presenting with bilateral pneumonia. Animals developing ARDS presented hemodynamic instability as well as severe hypercapnia despite high-minute ventilation. Unlike the pneumonia-without-VILI group, the ARDS animals presented lower static compliance (p = 0.011) and increased pulmonary permeability (p = 0.013). The highest burden of P. aeruginosa was found at pneumonia diagnosis in all animals, as well as a high inflammatory response shown by a release of interleukin (IL)-6 and IL-8. At histological examination, only animals comprising the pneumonia-with-VILI group presented signs consistent with diffuse alveolar damage. CONCLUSIONS In conclusion, we established an accurate pulmonary sepsis-induced ARDS model.
Collapse
Affiliation(s)
- Enric Barbeta
- Surgical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Marta Arrieta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Ana Motos
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- University of Barcelona (UB), Barcelona, Spain.
| | - Joaquim Bobi
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3015, Rotterdam, The Netherlands
- Cardiology Department, Institute Clinic Cardiovascular (ICCV), Hospital Clinic, Barcelona, Spain
| | - Hua Yang
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing, China
| | - Minlan Yang
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Department of Infectious Diseases, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Giacomo Tanzella
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, San Martino Policlinico Hospital, Genoa, Italy
| | - Pierluigi Di Ginnatale
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Anesthesiology, Critical Care Medicine and Emergency, SS. Annunziata Hospital, Chieti, Italy
| | - Stefano Nogas
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, San Martino Policlinico Hospital, Genoa, Italy
| | - Carmen Rosa Vargas
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Roberto Cabrera
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Denise Battaglini
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, San Martino Policlinico Hospital, Genoa, Italy
| | - Andrea Meli
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Anesthesia and Intensive Care, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Kasra Kiarostami
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Nil Vázquez
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Laia Fernández-Barat
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Montserrat Rigol
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Cardiology Department, Institute Clinic Cardiovascular (ICCV), Hospital Clinic, Barcelona, Spain
| | - Ricard Mellado-Artigas
- Surgical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Gerard Frigola
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Marta Camprubí-Rimblas
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Pau Ferrer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniel Martinez
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Pathology, Hospital Clinic, Barcelona, Spain
| | - Antonio Artigas
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Carlos Ferrando
- Surgical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Miquel Ferrer
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Pneumology Service, Respiratory Institute, Hospital Clinic of Barcelona, Villarroel st. 170, 08036, Barcelona, Spain
| | - Antoni Torres
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- University of Barcelona (UB), Barcelona, Spain.
- Pneumology Service, Respiratory Institute, Hospital Clinic of Barcelona, Villarroel st. 170, 08036, Barcelona, Spain.
| |
Collapse
|
2
|
Wu P, Liao T, Ma Z, Wei Y, Yin S, Huang Z, Mao J. Macrophage pyroptosis promotes synovial fibrosis through the HMGB1/TGF- β1 axis: an in vivo and in vitro study. In Vitro Cell Dev Biol Anim 2023; 59:289-299. [PMID: 37195554 DOI: 10.1007/s11626-023-00769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/28/2023] [Indexed: 05/18/2023]
Abstract
Macrophages and fibroblasts are the main effector cells in synovial tissue in the knee joint. Our previous studies showed that there was synovial macrophage pyroptosis in knee osteoarthritis (KOA) and that inhibiting this pyroptosis could alleviate synovial fibrosis. In the present study, we aimed to elucidate the mechanism by which macrophage pyroptosis affects synovial fibrosis. We established an LPS/ATP-induced model in macrophages that mimicked the inflammatory environment of KOA and induced macrophage pyroptosis. The TGF-β1, SMAD3, and P-SMAD3, and the synovial fibrosis markers (Collagen I, TIMP1, Vimentin, and TGF-β1) were significantly decreased after fibroblasts were cultured with RAGE inhibitors and SMAD3 inhibitors. Moreover, ELISA and immunofluorescence analysis showed that macrophage pyroptosis induced the release of IL-1β, IL-18, and HMGB1 and caused the translocation of HMGB1 from the fibroblast nucleus to the cell membrane, where it could bind with RAGE. Subsequently, in the synovial tissue of KOA model rats, we observed that inhibiting HMGB1, RAGE, and SMAD3 could alleviate the expression of synovial fibrosis markers (Collagen I, TIMP1, Vimentin, and TGF-β1) at both the mRNA and protein levels. Besides, HE and Sirius Red staining were used to observe the transverse diameter of the right knee. In conclusion, macrophage pyroptosis induced IL-1β, IL-18, and HMGB1, which could be caused HMGB1 to translocate from the fibroblast nucleus and bind with RAGE, activating the TGF-β1/SMAD3 signaling pathway and affecting synovial fibrosis.
Collapse
Affiliation(s)
- Peng Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Taiyang Liao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenyuan Ma
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yibao Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Songjiang Yin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zhengquan Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| | - Jun Mao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
3
|
Jiang J, Wang J, Li C, Mo L, Huang D. P311 knockdown alleviates hyperoxia-induced injury by inactivating the Smad3 signaling pathway in type II alveolar epithelial cells. Mol Cell Biochem 2023; 478:277-284. [PMID: 35779227 DOI: 10.1007/s11010-022-04500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/06/2022] [Indexed: 02/02/2023]
Abstract
P311 is associated with alveolar formation and development. However, the role and possible mechanism of P311 in hyperoxia-induced injury in type II alveolar epithelial cells (AEC II) need to be elucidated. In our study, rat AEC II (RLE-6TN) were exposure to normoxia (21% O2 and 5% CO2) or hyperoxia (95% O2 and 5% CO2) for 24 h, followed by determination of P311 expression. After knockdown of P311 and hyperoxic treatment, cell viability, cell cycle progression, apoptosis and the Smad3 signaling pathway were examined. Rat AEC II were pretreated with SIS3 HCl for 4 h and then subjected to P311 overexpression plasmid transfection and hyperoxic exposure. Then, cell viability, apoptosis and the Smad3 signaling pathway were determined. The results showed that hyperoxic exposure significantly elevated P311 levels in rat AEC II. P311 knockdown increased cell viability, accelerated cell cycle progression and inhibited apoptosis, as well as suppression of the Smad3 signaling pathway in hyperoxia-exposed AEC II. Additionally, we found that P311 overexpression enhanced the effects of hyperoxia. Interestingly, SIS3 HCl incubation blocked the effects of P311 overexpression on rat AEC II function under hyperoxic condition, as evidenced by an increase in cell viability, and suppressions of apoptosis and the Smad3 signaling pathway. These results indicate that P311 knockdown may ameliorate hyperoxia-induced injury by inhibiting the Smad3 signaling pathway in rat AEC II. P311 may be a novel target for the treatment of hyperoxia-induced lung injury and even bronchopulmonary dysplasia (BPD).
Collapse
Affiliation(s)
- Jun Jiang
- Department of Pediatric Intensive Care Unit, Guizhou Provincial People's Hospital, 83 Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Juan Wang
- Department of Pediatrics, Affiliated Hospital of Hebei University, Handan, China
| | - Cen Li
- Department of Pediatric Intensive Care Unit, Guizhou Provincial People's Hospital, 83 Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Lianqin Mo
- Department of Pediatric Intensive Care Unit, Guizhou Provincial People's Hospital, 83 Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Dong Huang
- Department of Pediatric Intensive Care Unit, Guizhou Provincial People's Hospital, 83 Zhongshan East Road, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
4
|
Luan R, Ding D, Yang J. The protective effect of natural medicines against excessive inflammation and oxidative stress in acute lung injury by regulating the Nrf2 signaling pathway. Front Pharmacol 2022; 13:1039022. [PMID: 36467050 PMCID: PMC9709415 DOI: 10.3389/fphar.2022.1039022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/02/2022] [Indexed: 09/29/2023] Open
Abstract
Acute lung injury (ALI) is a common critical disease of the respiratory system that progresses into acute respiratory distress syndrome (ARDS), with high mortality, mainly related to pulmonary oxidative stress imbalance and severe inflammation. However, there are no clear and effective treatment strategies at present. Nuclear factor erythroid 2-related factor 2(Nrf2) is a transcription factor that interacts with multiple signaling pathways and regulates the activity of multiple oxidases (NOX, NOS, XO, CYP) related to inflammation and apoptosis, and exhibits antioxidant and anti-inflammatory roles in ALI. Recently, several studies have reported that the active ingredients of natural medicines show protective effects on ALI via the Nrf2 signaling pathway. In addition, they are cheap, naturally available, and possess minimal toxicity, thereby having good clinical research and application value. Herein, we summarized various studies on the protective effects of natural pharmaceutical components such as polyphenols, flavonoids, terpenoids, alkaloids, and polysaccharides on ALI through the Nrf2 signaling pathway and demonstrated existing gaps as well as future perspectives.
Collapse
|
5
|
Le A, Liu W, Wu C, Hu P, Zou J, Wu Y, Kuang L. Polymorphonuclear neutrophil activation by Src phosphorylation contributes to HLA-A2 antibody-induced transfusion-related acute lung injury. Mol Immunol 2022; 150:9-19. [PMID: 35914412 DOI: 10.1016/j.molimm.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/18/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
Human leukocyte antigen (HLA)-A2 antibody contributes to the pathogenesis of transfusion-related acute lung injury (TRALI) via polymorphonuclear neutrophil (PMN) activation, but the signaling pathways involved this process remain largely undefined. In this study, we sought to study the signaling pathways involved in the pathogenesis of HLA-A2-induced TRALI. Lipopolysaccharide (LPS), and the plasma from the HLA-A2 antibody-positive donors were utilized to establish a rat model of TRALI. Human pulmonary endothelial cells (HPMECs) were in vitro co-cultured with HLA-A2 antibody-treated PMNs and then treated with LPS to induce a cytotoxicity model. The effects of HLA-A2 antibody on HPMEC injury were evaluated in this model. Besides, dasatinib was used to block the Src phosphorylation to explore whether Src involved in the TRALI or HPMEC injury induced by HLA-A2 antibody. The HLA-A2 antibody plus LPS induced TRALI and stimulated PMN activation in rats. HLA-A2 antibody-induced TRALI could be attenuated via depletion of PMN. HLA-A2 antibody activated NF-κB and NLRP3 inflammasome. In addition, HLA-A2 antibody aggravated the HPMEC injuries and the release of PMN surfaces makers, but dasatinib treatment reversed this effect, indicating that HLA-A2 antibody activated PMNs and exacerbated TRALI by stimulating phosphorylation of Src followed by activation of NF-κB and NLRP3 inflammasome, which was validated in vivo. In summary, HLA-A2 induced PMNs by activating NF-κB/NLRP3 inflammasome via phosphorylated-Src elevation, thereby exacerbating TRALI. This study highlights promising target for the treatment of antibody-mediated TRALI.
Collapse
Affiliation(s)
- Aiping Le
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| | - Wei Liu
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Chenggao Wu
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Piaoping Hu
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Juan Zou
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Yize Wu
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Linju Kuang
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| |
Collapse
|
6
|
Xiao S, Liu L, Sun Z, Liu X, Xu J, Guo Z, Yin X, Liao F, Xu J, You Y, Zhang T. Network Pharmacology and Experimental Validation to Explore the Mechanism of Qing-Jin-Hua-Tan-Decoction Against Acute Lung Injury. Front Pharmacol 2022; 13:891889. [PMID: 35873580 PMCID: PMC9304690 DOI: 10.3389/fphar.2022.891889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
Qing-Jin-Hua-Tan-Decoction (QJHTD), a classic famous Chinese ancient prescription, has been used for treatment of pulmonary diseases since Ming Dynasty. A total of 22 prototype compounds of QJHTD absorbed into rat blood were chosen as candidates for the pharmacological network analysis and molecular docking. The targets from the intersection of compound target and ALI disease targets were used for GO and KEGG enrichment analyses. Molecular docking was adopted to further verify the interactions between 22 components and the top 20 targets with higher degree values in the component–target–pathway network. In vitro experiments were performed to verify the results of network pharmacology using SPR experiments, Western blot experiments, and the PMA-induced neutrophils to produce neutrophil extracellular trap (NET) model. The compound–target–pathway network includes 176 targets and 20 signaling pathways in which the degree of MAPK14, CDK2, EGFR, F2, SRC, and AKT1 is higher than that of other targets and which may be potential disease targets. The biological processes in QJHTD for ALI mainly included protein phosphorylation, response to wounding, response to bacterium, regulation of inflammatory response, and so on. KEGG enrichment analyses revealed multiple signaling pathways, including lipid and atherosclerosis, HIF-1 signaling pathway, renin–angiotensin system, and neutrophil extracellular trap formation. The molecular docking results showed that baicalin, oroxylin A-7-glucuronide, hispidulin-7-O-β-D-glucuronide, wogonoside, baicalein, wogonin, tianshic acid, and mangiferin can be combined with most of the targets, which might be the core components of QJHTD in treatment of ALI. Direct binding ability of baicalein, wogonin, and baicalin to thrombin protein was all micromolar, and their KD values were 11.92 μM, 1.303 μM, and 1.146 μM, respectively, revealed by SPR experiments, and QJHTD could inhibit Src phosphorylation in LPS-activated neutrophils by Western blot experiments. The experimental results of PMA-induced neutrophils to produce NETs indicated that QJHTD could inhibit the production of NETs. This study revealed the active compounds, effective targets, and potential pharmacological mechanisms of QJHTD acting on ALI.
Collapse
Affiliation(s)
- Shunli Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengxiao Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyuan Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaojie Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fulong Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Xu
- National and Local United Engineering Laboratory of Modern Preparation and Quality Control Technology of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yun You, ; Tiejun Zhang,
| | - Tiejun Zhang
- National and Local United Engineering Laboratory of Modern Preparation and Quality Control Technology of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
- *Correspondence: Yun You, ; Tiejun Zhang,
| |
Collapse
|
7
|
Joelsson JP, Ingthorsson S, Kricker J, Gudjonsson T, Karason S. Ventilator-induced lung-injury in mouse models: Is there a trap? Lab Anim Res 2021; 37:30. [PMID: 34715943 PMCID: PMC8554750 DOI: 10.1186/s42826-021-00108-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is a serious acute injury to the lung tissue that can develop during mechanical ventilation of patients. Due to the mechanical strain of ventilation, damage can occur in the bronchiolar and alveolar epithelium resulting in a cascade of events that may be fatal to the patients. Patients requiring mechanical ventilation are often critically ill, which limits the possibility of obtaining patient samples, making VILI research challenging. In vitro models are very important for VILI research, but the complexity of the cellular interactions in multi-organ animals, necessitates in vivo studies where the mouse model is a common choice. However, the settings and duration of ventilation used to create VILI in mice vary greatly, causing uncertainty in interpretation and comparison of results. This review examines approaches to induce VILI in mouse models for the last 10 years, to our best knowledge, summarizing methods and key parameters presented across the studies. The results imply that a more standardized approach is warranted.
Collapse
Affiliation(s)
- Jon Petur Joelsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland. .,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland. .,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland.
| | - Saevar Ingthorsson
- Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,Faculty of Nursing, University of Iceland, Reykjavik, Iceland
| | | | - Thorarinn Gudjonsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland
| | - Sigurbergur Karason
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Intensive Care Unit, Landspitali-University Hospital, Reykjavik, Iceland
| |
Collapse
|
8
|
Lai Y, Huang Y. Mechanisms of Mechanical Force Induced Pulmonary Vascular Endothelial Hyperpermeability. Front Physiol 2021; 12:714064. [PMID: 34671268 PMCID: PMC8521004 DOI: 10.3389/fphys.2021.714064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Mechanical ventilation is a supportive therapy for patients with acute respiratory distress syndrome (ARDS). However, it also inevitably produces or aggravates the original lung injury with pathophysiological changes of pulmonary edema caused by increased permeability of alveolar capillaries which composed of microvascular endothelium, alveolar epithelium, and basement membrane. Vascular endothelium forms a semi-selective barrier to regulate body fluid balance. Mechanical ventilation in critically ill patients produces a mechanical force on lung vascular endothelium when the endothelial barrier was destructed. This review aims to provide a comprehensive overview of molecular and signaling mechanisms underlying the endothelial barrier permeability in ventilator-induced lung jury (VILI).
Collapse
Affiliation(s)
- Yan Lai
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongbo Huang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Amarelle L, Quintela L, Hurtado J, Malacrida L. Hyperoxia and Lungs: What We Have Learned From Animal Models. Front Med (Lausanne) 2021; 8:606678. [PMID: 33768102 PMCID: PMC7985075 DOI: 10.3389/fmed.2021.606678] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Although oxygen (O2) is essential for aerobic life, it can also be an important source of cellular damage. Supra-physiological levels of O2 determine toxicity due to exacerbated reactive oxygen species (ROS) production, impairing the homeostatic balance of several cellular processes. Furthermore, injured cells activate inflammation cascades, amplifying the tissue damage. The lung is the first (but not the only) organ affected by this condition. Critically ill patients are often exposed to several insults, such as mechanical ventilation, infections, hypo-perfusion, systemic inflammation, and drug toxicity. In this scenario, it is not easy to dissect the effect of oxygen toxicity. Translational investigations with animal models are essential to explore injuring stimuli in controlled experimental conditions, and are milestones in understanding pathological mechanisms and developing therapeutic strategies. Animal models can resemble what happens in critical care or anesthesia patients under mechanical ventilation and hyperoxia, but are also critical to explore the effect of O2 on lung development and the role of hyperoxic damage on bronchopulmonary dysplasia. Here, we set out to review the hyperoxia effects on lung pathology, contributing to the field by describing and analyzing animal experimentation's main aspects and its implications on human lung diseases.
Collapse
Affiliation(s)
- Luciano Amarelle
- Department of Pathophysiology, Hospital de Clínicas, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Lucía Quintela
- Department of Pathophysiology, Hospital de Clínicas, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Javier Hurtado
- Department of Pathophysiology, Hospital de Clínicas, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Leonel Malacrida
- Department of Pathophysiology, Hospital de Clínicas, School of Medicine, Universidad de la República, Montevideo, Uruguay.,Advanced Bioimaging Unit, Institut Pasteur Montevideo and Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
10
|
Zeng Z, Chen W, Moshensky A, Shakir Z, Khan R, Crotty Alexander LE, Ware LB, Aldaz CM, Jacobson JR, Dudek SM, Natarajan V, Machado RF, Singla S. Cigarette Smoke and Nicotine-Containing Electronic-Cigarette Vapor Downregulate Lung WWOX Expression, Which Is Associated with Increased Severity of Murine Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2021; 64:89-99. [PMID: 33058734 PMCID: PMC7780991 DOI: 10.1165/rcmb.2020-0145oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
A history of chronic cigarette smoking is known to increase risk for acute respiratory distress syndrome (ARDS), but the corresponding risks associated with chronic e-cigarette use are largely unknown. The chromosomal fragile site gene, WWOX, is highly susceptible to genotoxic stress from environmental exposures and thus an interesting candidate gene for the study of exposure-related lung disease. Lungs harvested from current versus former/never-smokers exhibited a 47% decrease in WWOX mRNA levels. Exposure to nicotine-containing e-cigarette vapor resulted in an average 57% decrease in WWOX mRNA levels relative to vehicle-treated controls. In separate studies, endothelial (EC)-specific WWOX knockout (KO) versus WWOX flox control mice were examined under ARDS-producing conditions. EC WWOX KO mice exhibited significantly greater levels of vascular leak and histologic lung injury. ECs were isolated from digested lungs of untreated EC WWOX KO mice using sorting by flow cytometry for CD31+ CD45-cells. These were grown in culture, confirmed to be WWOX deficient by RT-PCR and Western blotting, and analyzed by electric cell impedance sensing as well as an FITC dextran transwell assay for their barrier properties during methicillin-resistant Staphylococcus aureus or LPS exposure. WWOX KO ECs demonstrated significantly greater declines in barrier function relative to cells from WWOX flox controls during either methicillin-resistant S. aureus or LPS treatment as measured by both electric cell impedance sensing and the transwell assay. The increased risk for ARDS observed in chronic smokers may be mechanistically linked, at least in part, to lung WWOX downregulation, and this phenomenon may also manifest in the near future in chronic users of e-cigarettes.
Collapse
Affiliation(s)
- Zhenguo Zeng
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Weiguo Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | | | - Zaid Shakir
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Raheel Khan
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | | | | | - C. M. Aldaz
- MD Anderson Cancer Center, University of Texas, Houston, Texas; and
| | - Jeffrey R. Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Viswanathan Natarajan
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sunit Singla
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
11
|
Hao L, Marshall AJ, Liu L. Bam32/DAPP1-Dependent Neutrophil Reactive Oxygen Species in WKYMVm-Induced Microvascular Hyperpermeability. Front Immunol 2020; 11:1028. [PMID: 32536926 PMCID: PMC7267069 DOI: 10.3389/fimmu.2020.01028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Abstract
B cell adaptor molecule of 32 kDa (Bam32), known as dual adapter for phosphotyrosine and 3-phosphoinositides 1 (DAPP1), has been implicated in regulating lymphocyte proliferation and recruitment during inflammation. However, its role in neutrophils during inflammation remains unknown. Using intravital microscopy, we examined the role of Bam32 in formyl peptide receptor agonist WKYMVm-induced permeability changes in post-capillary venules and assessed simultaneously neutrophil adhesion and emigration in cremaster muscles of Bam32-deficient (Bam32−/−) and wild-type (WT) control mice. We observed significantly reduced WKYMVm-induced microvascular hyperpermeability accompanied by markedly decreased neutrophil emigration in Bam32−/− mice. The Bam32-specific decrease in WKYMVm-induced hyperpermeability was neutrophil-dependent as this was verified in bone marrow transplanted chimeric mice. We discovered that Bam32 was critically required for WKYMVm-induced intracellular and extracellular production of reactive oxygen species (ROS) in neutrophils. Pharmacological scavenging of ROS eliminated the differences in WKYMVm-induced hyperpermeability between Bam32−/− and WT mice. Deficiency of Bam32 decreased WKYMVm-induced ERK1/2 but not p38 or JNK phosphorylation in neutrophils. Inhibition of ERK1/2 signaling cascade suppressed WKYMVm-induced ROS generation in WT neutrophils and microvascular hyperpermeability in WT mice. In conclusion, our study reveals that Bam32-dependent, ERK1/2-involving ROS generation in neutrophils is critical in WKYMVm-induced microvascular hyperpermeability during neutrophil recruitment.
Collapse
Affiliation(s)
- Li Hao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron J Marshall
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
12
|
Tsai YF, Chen CY, Chang WY, Syu YT, Hwang TL. Resveratrol suppresses neutrophil activation via inhibition of Src family kinases to attenuate lung injury. Free Radic Biol Med 2019; 145:67-77. [PMID: 31550527 DOI: 10.1016/j.freeradbiomed.2019.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/10/2023]
Abstract
The natural stilbenoid, Resveratrol (RSV; 3,5,4'-trihydroxystilbene) has been shown to have beneficial effects on inflammatory diseases as well as cancer, neurodegenerative diseases, and cardiovascular disorders. The underlying mechanism by which RSV affects neutrophil activation has yet to be fully elucidated. In this study, we tested the hypothesis that RSV modulates the inflammatory activities of formyl-Met-Leu-Phe-stimulated human neutrophils. We employed a well-established isolated-neutrophil model to investigate the effects of RSV on neutrophil functions and the underlying mechanism of signaling transduction. The lipopolysaccharide-induced ALI murine model was employed to evaluate the therapeutic effects of RSV. Experiment results demonstrate that RSV reduces respiratory burst, degranulation, integrin expression, and cell adhesion in activated neutrophils in dose-dependent manners. RSV inhibited phosphorylation of Src family kinases (SFKs) and reduced their enzymatic activities. Moreover, RSV and a selective inhibitor of SFKs (PP2) reduced the phosphorylation of Bruton's tyrosine kinase and Vav. There results indicated that the inhibitory effects of RSV are mediated through the inhibition of the SFKs-Btk-Vav pathway. This study also revealed that RSV attenuates endotoxin-induced lung injury. We surmise that the therapeutic effects of RSV on ALI may derive from its anti-neutrophilic inflammation function and free radical-scavenging effects.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Wen-Yi Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yu-Ting Syu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan.
| |
Collapse
|
13
|
Hao L, Lei X, Zhou H, Marshall AJ, Liu L. Critical role for PI3Kγ-dependent neutrophil reactive oxygen species in WKYMVm-induced microvascular hyperpermeability. J Leukoc Biol 2019; 106:1117-1127. [PMID: 31216371 DOI: 10.1002/jlb.3a0518-184rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 04/30/2019] [Accepted: 06/04/2019] [Indexed: 11/06/2022] Open
Abstract
PI3K has been indicated in regulating microvascular permeability changes during inflammation. However, its role in neutrophil-driven microvascular leakage in acute inflammation remains unclear. Using intravital microscopy in mice, we examined the role of PI3Kγ and PI3Kδ in formyl peptide WKYMVm- and chemokine CXCL2-induced permeability changes and assessed simultaneously neutrophil adhesion and emigration in post-capillary venules of murine cremaster muscle. We found a PI3Kγ-specific mechanism in WKYMVm-induced but not CXCL2-induced microvascular hyperpermeability. The increased microvascular permeability triggered by WKYMVm was not entirely due to neutrophil adhesion and emigration in cremasteric microvasculature in different PI3K transgenic mouse strains. The PI3Kγ-specific hyperpermeability was neutrophil-mediated as this was reduced after depletion of neutrophils in mouse circulation. Chimeric mice with PI3Kγ-deficient neutrophils but wild-type endothelium also showed reduced hyperpermeability. Furthermore, we found that the catalytic function of PI3Kγ was required for reactive oxygen species (ROS) generation in neutrophils stimulated with WKYMVm. Pharmacological scavenging PI3Kγ-dependent ROS in the tissue eliminated the discrepancy in hyperpermeability between different PI3K transgenic mice and alleviated WKYMVm-induced microvascular leakage in all mouse strains tested. In conclusion, our study uncovers the critical role for PI3Kγ-dependent ROS generation by neutrophils in formyl peptide-induced microvascular hyperpermeability during neutrophil recruitment.
Collapse
Affiliation(s)
- Li Hao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xi Lei
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aaron J Marshall
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
14
|
Qi S, Feng Z, Li Q, Qi Z, Zhang Y. Inhibition of ROS-mediated activation Src-MAPK/AKT signaling by orientin alleviates H 2O 2-induced apoptosis in PC12 cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3973-3984. [PMID: 30510405 PMCID: PMC6248275 DOI: 10.2147/dddt.s178217] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose Reactive oxygen species (ROS) are considered a direct cause of neurodegenerative diseases (NDDs). Drugs developed to target ROS are effective for the treatment of NDDs. Orientin is a pyrone glucoside extracted from Polygonum orientale, and it exhibits many pharmacological activities. In this study, we aimed to determine whether orientin could relieve hydrogen peroxide (H2O2)-induced neuronal apoptosis and to investigate the specific target of orientin. Materials and methods In this study, the neuroprotective effect and its possible mechanisms of orientin in mouse pheochromocytoma cell line (PC12) cells stimulated by H2O2, establishing an oxidative stress model, were investigated. And we further tested the role of ROS in the neuroprotective effects of orientin. Results Orientin (5-100 µg/mL) did not cause toxicity in PC12 cells but significantly decreased H2O2-induced reduction in PC12 cell viability, cell apoptosis rates, and nuclear condensation. It also inhibited the activation of caspase-3 and degradation of poly(ADP-ribose) polymerase (PARP). Under the stimulation of H2O2, MAPKs (ERK, JNK, and p38), AKT, and Src signaling proteins in PC12 cells were activated in a time-dependent manner. The application of inhibitors that were specific for MAPKs, AKT, and Src effectively alleviated H2O2-induced cell apoptosis. In addition, the Src inhibitor decreased the activation of MAPKs and AKT signaling. More importantly, orientin effectively decreased H2O2-induced phosphorylation of MAPKs, AKT, and Src signaling proteins. Finally, we confirmed that orientin effectively inhibited H2O2-induced accumulation of ROS in cells. In addition, ROS inhibitors blocked the Src-MAPKs/AKT signaling pathway-dependent cell apoptosis stimulated by H2O2. Conclusion These results indicate that alleviation of H2O2-induced cell apoptosis by orientin is Src-MAPKs/AKT dependent. Overall, our study confirms that orientin alleviates H2O2-induced cell apoptosis by inhibiting the ROS-mediated activation of Src-MAPKs/AKT signaling.
Collapse
Affiliation(s)
- Shimei Qi
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, People's Republic of China, .,Department of Biochemistry, Wannan Medical College, Wuhu 241002, People's Republic of China,
| | - Zunyong Feng
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, People's Republic of China, .,Department of Forensic Medicine, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Qiang Li
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, People's Republic of China, .,Department of Biochemistry, Wannan Medical College, Wuhu 241002, People's Republic of China,
| | - Zhilin Qi
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, People's Republic of China, .,Department of Biochemistry, Wannan Medical College, Wuhu 241002, People's Republic of China,
| | - Yao Zhang
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, People's Republic of China, .,Department of Biochemistry, Wannan Medical College, Wuhu 241002, People's Republic of China,
| |
Collapse
|
15
|
Ding H, Wang Y, Dong W, Ren R, Mao Y, Deng X. Proteomic Lung Analysis of Mice with Ventilator-Induced Lung Injury (VILI) Using iTRAQ-Based Quantitative Proteomics. Chem Pharm Bull (Tokyo) 2018; 66:691-700. [PMID: 29962452 DOI: 10.1248/cpb.c17-00844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ventilator-induced lung injury (VILI) has implications for mortality from acute lung injury (ALI) and for acute respiratory distress syndrome (ARDS) patients; the complicated mechanisms of VILI have not been well defined. To discover new biomarkers and mechanisms of VILI, isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-based quantitative proteomics were applied to identify differentially expressed proteins in mice treated with high tidal volume ventilation (HV), low tidal volume ventilation (LV) and lipopolysaccharide (LPS). A total of 14 dysregulated proteins showed the same change trend both in the LV and HV group and no change in the LPS group, and most importantly, the fold change of these proteins increased with the increase of volume ventilation, which indicates these proteins may be considered as potential markers specific for VILI. Ingenuity pathway analysis (IPA) canonical pathways analysis identified the top 4 canonical pathways, including the extrinsic prothrombin activation pathway, coagulation systems, the intrinsic prothrombin activation pathway and the acute phase response, suggesting that these pathways, as associated with these proteins' expression, may be important therapeutic targets for reducing VILI. These findings will provide a new perspective for understanding the pathogenesis of VILI in the future.
Collapse
Affiliation(s)
- Haoshu Ding
- Faculty of Anesthesiology, Changhai Hospital Affiliated to Second Military Medical University.,Department of Anesthesiology and Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
| | - Yan Wang
- Department of Anesthesiology and Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
| | - Wenwen Dong
- Department of Anesthesiology and Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
| | - Rongrong Ren
- Department of Anesthesiology and Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
| | - Yanfei Mao
- Department of Anesthesiology and Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital Affiliated to Second Military Medical University
| |
Collapse
|
16
|
Wang L, Zhang N, Zhang Y, Xia J, Zhan Q, Wang C. Landscape of transcription and long non-coding RNAs reveals new insights into the inflammatory and fibrotic response following ventilator-induced lung injury. Respir Res 2018; 19:122. [PMID: 29929510 PMCID: PMC6013938 DOI: 10.1186/s12931-018-0822-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/08/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mechanical ventilation can cause ventilator-induced lung injury (VILI) and lung fibrosis; however, the underlying mechanisms are still not fully understood. RNA sequencing is a powerful means for detecting vitally important protein-coding transcripts and long non-coding RNAs (lncRNAs) on a genome-wide scale, which may be helpful for reducing this knowledge gap. METHODS Ninety C57BL/6 mice were subjected to either high tidal volume ventilation or sham operation, and then mice with ventilation were randomly allocated to periods of recovery for 0, 1, 3, 5, 7, 14, 21, or 28 days. Lung histopathology, wet-to-dry weight ratio, hydroxyproline concentration, and transforming growth factor beta 1 (TGF-β1) levels were determined to evaluate the progression of inflammation and fibrosis. To compare sham-operated lungs, and 0- and 7-day post-ventilated lungs, RNA sequencing was used to elucidate the expression patterns, biological processes, and functional pathways involved in inflammation and fibrosis. RESULTS A well-defined fibrotic response was most pronounced on day 7 post-ventilation. Pairwise comparisons among the sham and VILI groups showed a total of 1297 differentially expressed transcripts (DETs). Gene Ontology analysis determined that the stimulus response and immune response were the most important factors involved in inflammation and fibrosis, respectively. Kyoto Encyclopedia of Genes and Genomes analysis revealed that mechanistic target of rapamycin (mTOR), Janus kinase-signal transducer and activator of transcription (JAK/STAT), and cyclic adenosine monophosphate (cAMP) signaling were implicated in early inflammation; whereas TGF-β, hypoxia inducible factor-1 (HIF-1), Toll-like receptor (TLR), and kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways were significantly involved in subsequent fibrosis. Additionally, 332 DE lncRNAs were identified and enriched in the processes of cellular and biological regulation. These lncRNAs may potentially regulate fibrosis through signaling pathways such as wingless/integrase-1 (Wnt), HIF-1, and TLR. CONCLUSIONS This is the first transcriptome study to reveal all of the transcript expression patterns and critical pathways involved in the VILI fibrotic process based on the early inflammatory state, and to show the important DE lncRNAs regulated in inflammation and fibrosis. Together, the results of this study provide novel perspectives into the potential molecular mechanisms underlying VILI and subsequent fibrosis.
Collapse
Affiliation(s)
- Lu Wang
- Beijing University of Chinese Medicine, No 11, East Bei San Huan Road, Chaoyang District, Beijing, 100029, China.,Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Nannan Zhang
- Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,Chinese Academy of Medical Sciences and Peking Union Medical Collage, No 9, Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China
| | - Yi Zhang
- Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Jingen Xia
- Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Qingyuan Zhan
- Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China. .,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China. .,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.
| | - Chen Wang
- Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China. .,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China. .,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China. .,Chinese Academy of Medical Sciences and Peking Union Medical Collage, No 9, Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
17
|
Wang X, An X, Wang X, Bao C, Li J, Yang D, Bai C. Curcumin ameliorated ventilator-induced lung injury in rats. Biomed Pharmacother 2018; 98:754-761. [DOI: 10.1016/j.biopha.2017.12.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022] Open
|
18
|
Singla S, Chen J, Sethuraman S, Sysol JR, Gampa A, Zhao S, Machado RF. Loss of lung WWOX expression causes neutrophilic inflammation. Am J Physiol Lung Cell Mol Physiol 2017; 312:L903-L911. [PMID: 28283473 DOI: 10.1152/ajplung.00034.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/18/2022] Open
Abstract
The tumor suppressor WW domain-containing oxidoreductase (WWOX) exhibits regulatory interactions with an array of transcription factors and signaling molecules that are positioned at the well-known crossroads between inflammation and cancer. WWOX is also subject to downregulation by genotoxic environmental exposures, making it of potential interest to the study of lung pathobiology. Knockdown of lung WWOX expression in mice was observed to cause neutrophil influx and was accompanied by a corresponding vascular leak and inflammatory cytokine production. In cultured human alveolar epithelial cells, loss of WWOX expression resulted in increased c-Jun- and IL-8-dependent neutrophil chemotaxis toward cell monolayers. WWOX was observed to directly interact with c-Jun in these cells, and its absence resulted in increased nuclear translocation of c-Jun. Finally, inhibition of the c-Jun-activating kinase JNK abrogated the lung neutrophil influx observed during WWOX knockdown in mice. Altogether, these observations represent a novel mechanism of pulmonary neutrophil influx that is highly relevant to the pathobiology and potential treatment of a number of different lung inflammatory conditions.
Collapse
Affiliation(s)
- Sunit Singla
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Jiwang Chen
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Shruthi Sethuraman
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Justin R Sysol
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Amulya Gampa
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Shuangping Zhao
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|