1
|
Viswanathan VK, Ghoshal AG, Mohan A, Patil K, Bhargave C, Choudhari S, Mehta S. Patient Profile-Based Management with Nintedanib in Patients with Idiopathic Pulmonary Fibrosis. Pulm Ther 2024:10.1007/s41030-024-00271-1. [PMID: 39340742 DOI: 10.1007/s41030-024-00271-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
A severe and progressive interstitial lung disease (ILD) known as idiopathic pulmonary fibrosis (IPF) has an unknown etiology with poorly defined mechanisms of development. Among the currently prescribed pharmacological interventions for IPF, nintedanib demonstrates the ability to decelerate the deterioration of lung function and yield positive clinical outcomes. Multiple randomized placebo-controlled trials have confirmed the efficacy and acceptable safety profile of nintedanib. Real-world evidence studies also support the use of nintedanib in IPF, being an efficient and well-tolerated treatment option. It has the potential to stabilize the disease progression in patients with ILD. Patients with IPF frequently have comorbidities like diabetes and hypertension, which can exacerbate the course of disease, reduce quality of life, and decrease treatment adherence. For well-informed decision-making, it is important for healthcare professionals to recognize the position of nintedanib therapy in IPF with comorbidities. The gastrointestinal adverse effects, notably diarrhea, dominate the nintedanib safety profile. These can be effectively controlled by closely monitoring side effects, administering anti-diarrheal and anti-emetic drugs, reducing the nintedanib dose, and discontinuing it in case of severe symptoms with an option to reintroduce the treatment after side effects subside. Symptomatic interventions and monitoring of liver enzymes may reduce the occurrence of permanent treatment discontinuations.
Collapse
Affiliation(s)
| | - Aloke G Ghoshal
- National Allergy Asthma Bronchitis Institute, Kolkata, West Bengal, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care & Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Ketaki Patil
- Medical Affairs & Clinical Research, Sun Pharma Laboratories Limited, Mumbai, India.
| | - Chaitanya Bhargave
- Medical Affairs & Clinical Research, Sun Pharma Laboratories Limited, Mumbai, India
| | - Sanjay Choudhari
- Medical Affairs & Clinical Research, Sun Pharma Laboratories Limited, Mumbai, India
| | - Suyog Mehta
- Medical Affairs & Clinical Research, Sun Pharma Laboratories Limited, Mumbai, India
| |
Collapse
|
2
|
Meng C, Fan G, Liu J, Tao N, Sun T. Pirfenidone and nintedanib exert additive antifibrotic effects by the SPP1-AKT pathway in macrophages and fibroblasts. Biochem Biophys Res Commun 2024; 716:150020. [PMID: 38692011 DOI: 10.1016/j.bbrc.2024.150020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease with high mortality rates. It has been shown that pirfenidone (PFD) and nintedanib (Ofev) can slow down the decline in lung function of IPF patients, but their efficacy remains suboptimal. Some studies have suggested that the combination of PFD and Ofev may yield promising results. However, there is a lack of research on the combined application of these two medications in the treatment of IPF. A mouse model of bleomycin-induced (BLM) pulmonary fibrosis was established to investigate the impact of combination therapy on pulmonary fibrosis of mice. The findings demonstrated a significant reduction in lung tissue damage in mice treated with the combination therapy. Subsequent transcriptome analysis identified the differential gene secreted phosphoprotein 1 (SPP1), which was found to be associated with macrophages and fibroblasts based on multiple immunofluorescence staining results. Analysis of a phosphorylated protein microarray indicated that SPP1 plays a regulatory role in macrophages and fibroblasts via the AKT pathway. Consequently, the regulation of macrophages and fibroblasts in pulmonary fibrosis by the combination of PFD and Ofev is mediated by SPP1 through the AKT pathway, potentially offering a novel therapeutic option for IPF patients. Further investigation into the targeting of SPP1 for the treatment of pulmonary fibrosis is warranted.
Collapse
Affiliation(s)
- Chao Meng
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Guoqing Fan
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jingjing Liu
- Department of Respiratory & Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Ningning Tao
- Department of Respiratory & Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Tieying Sun
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Graduate School of Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Sofia C, Comes A, Sgalla G, Richeldi L. Promising advances in treatments for the management of idiopathic pulmonary fibrosis. Expert Opin Pharmacother 2024; 25:717-725. [PMID: 38832823 DOI: 10.1080/14656566.2024.2354460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION Following the INPULSIS and ASCEND studies, leading to the first two approved antifibrotic therapies for patients with IPF, ongoing investigations are firmly exploring novel agents for a targeted effective and better tolerated therapy able to improve the natural history of the disease. AREAS COVERED This review aims to analyze recent advances in pharmacological research of IPF, discussing the currently available treatments and the novel drugs under investigation in phase 3 trials, with particular emphasis on BI 1015550 and inhaled treprostinil. The literature search utilized Medline and Clinicaltrials.org databases. Critical aspects of clinical trial design in IPF are discussed in light of recently completed phase III studies. EXPERT OPINION While randomized clinical trials in IPF are currently underway, future objectives should explore potential synergistic benefits when combining novel molecules with the existing therapies and identify more specific molecular targets. Moreover, refining the study design represent another crucial goal. The aim of the pharmacological research will be not only stabilizing but also potentially reversing the fibrotic changes in IPF.
Collapse
Affiliation(s)
- Carmelo Sofia
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessia Comes
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giacomo Sgalla
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Richeldi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
4
|
Kolanko E, Cargnoni A, Papait A, Silini AR, Czekaj P, Parolini O. The evolution of in vitro models of lung fibrosis: promising prospects for drug discovery. Eur Respir Rev 2024; 33:230127. [PMID: 38232990 DOI: 10.1183/16000617.0127-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/18/2023] [Indexed: 01/19/2024] Open
Abstract
Lung fibrosis is a complex process, with unknown underlying mechanisms, involving various triggers, diseases and stimuli. Different cell types (epithelial cells, endothelial cells, fibroblasts and macrophages) interact dynamically through multiple signalling pathways, including biochemical/molecular and mechanical signals, such as stiffness, affecting cell function and differentiation. Idiopathic pulmonary fibrosis (IPF) is the most common fibrosing interstitial lung disease (fILD), characterised by a notably high mortality. Unfortunately, effective treatments for advanced fILD, and especially IPF and non-IPF progressive fibrosing phenotype ILD, are still lacking. The development of pharmacological therapies faces challenges due to limited knowledge of fibrosis pathogenesis and the absence of pre-clinical models accurately representing the complex features of the disease. To address these challenges, new model systems have been developed to enhance the translatability of preclinical drug testing and bridge the gap to human clinical trials. The use of two- and three-dimensional in vitro cultures derived from healthy or diseased individuals allows for a better understanding of the underlying mechanisms responsible for lung fibrosis. Additionally, microfluidics systems, which replicate the respiratory system's physiology ex vivo, offer promising opportunities for the development of effective therapies, especially for IPF.
Collapse
Affiliation(s)
- Emanuel Kolanko
- Department of Cytophysiology, Katowice Medical University of Silesia in Katowice, Katowice, Poland
- These authors contributed equally
| | - Anna Cargnoni
- Fondazione Poliambulanza Istituto Ospedaliero, Centro di Ricerca E. Menni, Brescia, Italy
- These authors contributed equally
| | - Andrea Papait
- Università Cattolica del Sacro Cuore, Department Life Sciences and Public Health, Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Antonietta Rosa Silini
- Fondazione Poliambulanza Istituto Ospedaliero, Centro di Ricerca E. Menni, Brescia, Italy
| | - Piotr Czekaj
- Department of Cytophysiology, Katowice Medical University of Silesia in Katowice, Katowice, Poland
| | - Ornella Parolini
- Università Cattolica del Sacro Cuore, Department Life Sciences and Public Health, Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| |
Collapse
|
5
|
Kaur R, Shaikh TB, Priya Sripadi H, Kuncha M, Vijaya Sarathi UVR, Kulhari H, Balaji Andugulapati S, Sistla R. Nintedanib solid lipid nanoparticles improve oral bioavailability and ameliorate pulmonary fibrosis in vitro and in vivo models. Int J Pharm 2024; 649:123644. [PMID: 38040396 DOI: 10.1016/j.ijpharm.2023.123644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Nintedanib (NIN) and pirfenidone are the only approved drugs for the treatment of Idiopathic Pulmonary Fibrosis (IPF). However, NIN and pirfenidone have low oral bioavailability and limited therapeutic potential, requiring higher dosages to increase their efficacy, which causes significant liver and gastrointestinal toxicities. In this study, we aimed to develop nintedanib-loaded solid lipid nanoparticles (NIN-SLN) to improve the oral bioavailability and therapeutic potential against TGF-β-induced differentiation in IPF fibroblasts and bleomycin (BLM)-induced lung fibrosis in rat models. NIN-SLN was prepared using a double-emulsification method and characterization studies (Particle size, zeta potential, entrapment efficiency and other parameters) were performed using various techniques. NIN-SLN treatment significantly (p < 0.001) downregulated α-SMA and COL3A1 expression in TGF-β stimulated DHLF and LL29 cells. NIN-SLN showed a 2.87-fold increase in the bioavailability of NIN and also improved the NIN levels in lung tissues compared to NIN alone. Pharmacodynamic investigation revealed that NIN-SLN (50 mg/Kg) treatment significantly attenuated BLM-induced lung fibrosis by inhibiting epithelial-to-mesenchymal-transition (EMT), extracellular matrix remodelling, and collagen deposition compared to free NIN. Additionally, in the BLM model of fibrosis, NIN-SLN greatly improved the BLM-caused pathological changes, attenuated the NIN-induced gastrointestinal abnormalities, and significantly improved the lung functional indices compared to free NIN. Collectively, NIN-SLN could be a promising nanoformulation for the management of pulmonary fibrosis.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Taslim B Shaikh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Hari Priya Sripadi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Madhusudana Kuncha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - U V R Vijaya Sarathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382 030, Gujarat, India.
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
6
|
Liang H, Zhang L, Rong J. Potential roles of exosomes in the initiation and metastatic progression of lung cancer. Biomed Pharmacother 2023; 165:115222. [PMID: 37549459 DOI: 10.1016/j.biopha.2023.115222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
Lung cancer (LC) incidence and mortality continue to increase annually worldwide. LC is insidious and readily metastasizes and relapses. Except for its early diagnosis and surgical resection, there is no effective cure for advanced metastatic LC, and the prognosis remains dismal. Exosomes, a class of nano-sized extracellular vesicles produced by healthy or diseased cells, are coated with a bilayer lipid membrane and contain various functional molecules such as proteins, lipids, and nucleic acids. They can be used for intracellular or intercellular signaling or the transportation of biological substances. A growing body of evidence supports that exosomes play multiple crucial roles in the occurrence and metastatic progression of many malignancies, including LC. The elucidation of the potential roles of exosomes in the initiation, invasion, and metastasis of LC and their underlying molecular mechanisms may contribute to improved early diagnosis and treatment.
Collapse
Affiliation(s)
- Hongyuan Liang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang 110004, PR China
| | - Lingyun Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, No. 210 Baita Street, Hunnan District, Shenyang 110001, PR China.
| | - Jian Rong
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang 110004, PR China.
| |
Collapse
|
7
|
Munker D, Arnold P, Leuschner G, Irlbeck M, Michel S, Kauke T, Meiser B, Behr J, Kneidinger N, Veit T. Impact of ILD-Specific Therapies on Perioperative Course in Patients with Progressive Interstitial Lung Disease Undergoing Lung Transplantation. J Clin Med 2023; 12:4996. [PMID: 37568398 PMCID: PMC10419359 DOI: 10.3390/jcm12154996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Immunosuppressants and antifibrotics are currently used to treat patients with various interstitial lung diseases, which may undergo lung transplantation (LTx). The retrospective study aimed to evaluate the potential effects of therapeutic regimen on the perioperative course in patients with idiopathic pulmonary fibrosis (IPF) or progressive pulmonary fibrosis (PPF) undergoing LTx. All patients with IPF and PPF undergoing LTx between January 2014 and December 2021 were included. We retrospectively screened for previous use of immunosuppressants and antifibrotic therapy. We analyzed perioperative courses, short-term outcomes, and safety retrospectively. In total, 286 patients with diagnosis of IPF or PPF were analyzed. According to the treatment regimen before LTx, the study cohort was divided into four groups and compared. No differences between antifibrotic monotherapy, combined antifibrotic and immunosuppressive therapy with regard to postoperative complications were observed. Length of mechanical ventilation was shorter in patients with antifibrotics prior to LTx. Pretreatment with antifibrotic monotherapy and a combination of antifibrotic drugs with immunosuppressive therapy, lower body mass index (BMI) and lower blood loss, were independently associated with primary graft dysfunction grades 0-3 72 hours after LTx (p < 0.001). Finally, patients with antifibrotic monotherapy developed significantly less de novo donor-specific antibodies (DSA) (p = 0.009). Higher intraoperative blood loss, etiology of interstitial lung disease (ILD) and older age were independently associated with shorter survival after LTx. Use of antifibrotic monotherapy and a combination of antifibrotic drugs with immunosuppressive therapy in IPF/PPF patients undergoing LTx, proved to be safe and might lead to beneficial effects after LTx.
Collapse
Affiliation(s)
- Dieter Munker
- Department of Medicine V, University Hospital LMU Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany; (D.M.); (P.A.); (J.B.); (N.K.)
| | - Paola Arnold
- Department of Medicine V, University Hospital LMU Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany; (D.M.); (P.A.); (J.B.); (N.K.)
| | - Gabriela Leuschner
- Department of Medicine V, University Hospital LMU Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany; (D.M.); (P.A.); (J.B.); (N.K.)
| | - Michael Irlbeck
- Department of Anaesthesiology, University of Munich (LMU), 81377 Munich, Germany;
| | - Sebastian Michel
- Clinic of Cardiac Surgery, University of Munich (LMU), 81377 Munich, Germany;
| | - Teresa Kauke
- Department of Thoracic Surgery, University of Munich (LMU), 81377 Munich, Germany;
| | - Bruno Meiser
- Transplant Center, University of Munich, 81377 Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, University Hospital LMU Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany; (D.M.); (P.A.); (J.B.); (N.K.)
| | - Nikolaus Kneidinger
- Department of Medicine V, University Hospital LMU Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany; (D.M.); (P.A.); (J.B.); (N.K.)
| | - Tobias Veit
- Department of Medicine V, University Hospital LMU Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany; (D.M.); (P.A.); (J.B.); (N.K.)
| |
Collapse
|
8
|
Hsia I, Asmani M, Zhao R. Predicting the preclinical efficacy of anti-fibrosis agents using a force-sensing fibrosis on chip system. Biosens Bioelectron 2023; 228:115194. [PMID: 36933322 DOI: 10.1016/j.bios.2023.115194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/11/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
The high attrition rate of drug candidates contributes to the long duration and high cost in modern drug development. A major barrier in drug development is the poor predicting power of the preclinical models. In the current study, a human pulmonary fibrosis on chip system was developed for the preclinical evaluation of anti-fibrosis drugs. Pulmonary fibrosis is a severe disease characterized by progressive tissue stiffening that leads to respiration failure. To recapitulate the unique biomechanical feature of the fibrotic tissues, we developed flexible micropillars that can serve as in-situ force sensors to detect the changes in the mechanical properties of engineered lung microtissues. Using this system, we modeled the fibrogenesis of the alveolar tissues including the tissue stiffening and the expression of α-smooth muscle actin (α-SMA) and pro-collagen. Two anti-fibrosis drug candidates that are currently under clinical trials (KD025 and BMS-986020) were tested for their potential anti-fibrosis efficacy and the results were compared to those of FDA-approved anti-fibrosis drugs pirfenidone and nintedanib. Both pre-approval drugs were effective in inhibiting transforming growth factor beta 1 (TGF-β1) induced increases in tissue contractile force, stiffness and expressions of fibrotic biomarkers, which are similar to the effects of FDA-approved anti-fibrosis drugs. These results demonstrated the potential utility of the force-sensing fibrosis on chip system in the pre-clinical development of anti-fibrosis drugs.
Collapse
Affiliation(s)
- Isaac Hsia
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, N.Y, 14260, USA
| | - Mohammadnabi Asmani
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, N.Y, 14260, USA
| | - Ruogang Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, N.Y, 14260, USA.
| |
Collapse
|
9
|
Yüksel R, Yüksel N, Yazır Y, Öztürk A, Furat Rençber S, Demirci Küçük K. The anti-scar effect of tyrosine-kinase inhibitor nintedanib in experimental glaucoma filtration surgery in rabbits. Exp Eye Res 2023; 229:109431. [PMID: 36870440 DOI: 10.1016/j.exer.2023.109431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/28/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
PURPOSE To investigate the efficacy of nintedanib on preventing postoperative scar in formation following glaucoma filtering surgery (GFC) in rabbits in comparison with Mitomycin-C (MMC). DESIGN Experimental Animal Study. METHODS 24 New Zealand rabbits were divided randomly into 3 groups as Sham, Nindetanib and MMC(n = 8). Limbal-based trabeculectomy was performed on the right eyes of the rabbits. Left eyes that did'nt undergo surgery were included in the control group (n = 8). Following surgery, Intraocular pressures (IOP), postoperative complications and morphological changes in the bleb were evaluated. On the 28th day, eight eyes from each group were enucleated and histologically and immunohistochemically analyzed. Matrix metalloproteinase-2 (MMP-2), Transforming Growth Factor-1 (TGF-B1) and alpha-smooth muscle actin (a-SMA) were evaluated. RESULTS It was observed that nintedanib has no side effects and reduces subconjunctival fibrosis. Postoperative IOP values in the Nindetanib group were lower than the other groups (p < 0.05). The longest bleb survival was observed in the Nintedanib group and the shortest in the Sham group (p < 0.001). Conjunctival vascularity and inflammation was reduced in the Nintedanib group compared to the Sham group (p < 0.05). The highest subconjunctival fibrosis was observed in the Sham group and the least in the Nintedanib group (p < 0.05). Although the fibrosis score was found lower in the Nintedanib group compared to the MMC(p > 0.05). α-SMA TGF-β1, MMP-2 expressions were similar in Nintedanib and MMC groups (p > 0.05), however, it was observed that significantly decreased in both groups compared to Sham group (p < 0.05). CONCLUSION It has been observed that Nindetanib suppress fibroblast proliferation Thus, It may be a drug that can prevent subconjunctival fibrosis in GFC.
Collapse
Affiliation(s)
- Refref Yüksel
- Şanlıurfa Training and Research Hospital, Department of Ophthalmology, Şanlıurfa, Turkey.
| | - Nurşen Yüksel
- Kocaeli University School of Medicine, Department of Ophthalmology, Umuttepe Yerleşkesi, 41000, İzmit, Kocaeli, Turkey.
| | - Yusufhan Yazır
- Kocaeli University School of Medicine, Center of Stem Cells and Gene Therapies Research and Practice, Umuttepe Yerleşkesi, 41000, İzmit, Kocaeli, Turkey; Kocaeli University School of Medicine, Department of Histology and Embryology, Umuttepe Yerleşkesi, 41000, İzmit, Kocaeli, Turkey.
| | - Ahmet Öztürk
- Kocaeli University School of Medicine, Center of Stem Cells and Gene Therapies Research and Practice, Umuttepe Yerleşkesi, 41000, İzmit, Kocaeli, Turkey.
| | - Selenay Furat Rençber
- Kocaeli University School of Medicine, Department of Histology and Embryology, Umuttepe Yerleşkesi, 41000, İzmit, Kocaeli, Turkey.
| | | |
Collapse
|
10
|
Kang D, Lee Y, Kim W, Lee HR, Jung S. 3D pulmonary fibrosis model for anti-fibrotic drug discovery by inkjet-bioprinting. Biomed Mater 2022; 18. [PMID: 36562496 DOI: 10.1088/1748-605x/aca8e3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Pulmonary fibrosis (PF) is known as a chronic and irreversible disease characterized by excessive extracellular matrix accumulation and lung architecture changes. Large efforts have been made to develop prospective treatments and study the etiology of pulmonary fibrotic diseases utilizing animal models and spherical organoids. As part of these efforts, we created an all-inkjet-printed three-dimensional (3D) alveolar barrier model that can be used for anti-fibrotic drug discovery. Then, we developed a PF model by treating the 3D alveolar barrier with pro-fibrotic cytokine and confirmed that it is suitable for the fibrosis model by observing changes in structural deposition, pulmonary function, epithelial-mesenchymal transition, and fibrosis markers. The model was tested with two approved anti-fibrotic drugs, and we could observe that the symptoms in the disease model were alleviated. Consequently, structural abnormalities and changes in mRNA expression were found in the induced fibrosis model, which were shown to be recovered in all drug treatment groups. The all-inkjet-printed alveolar barrier model was reproducible for disease onset and therapeutic effects in the human body. This finding emphasized that thein vitroartificial tissue with faithfully implemented 3D microstructures using bioprinting technology may be employed as a novel testing platform and disease model to evaluate potential drug efficacy.
Collapse
Affiliation(s)
- Dayoon Kang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Yunji Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Wookyeom Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Hwa-Rim Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Sungjune Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| |
Collapse
|
11
|
Saito S, Deskin B, Rehan M, Yadav S, Matsunaga Y, Lasky JA, Thannickal VJ. Novel mediators of idiopathic pulmonary fibrosis. Clin Sci (Lond) 2022; 136:1229-1240. [PMID: 36043396 DOI: 10.1042/cs20210878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Fibrosis involving the lung may occur in many settings, including in association with known environmental agents, connective tissue diseases, and exposure to drugs or radiation therapy. The most common form is referred to as 'idiopathic' since a causal agent or specific association has not been determined; the strongest risk factor for idiopathic pulmonary fibrosis is aging. Emerging studies indicate that targeting certain components of aging biology may be effective in mitigating age-associated fibrosis. While transforming growth factor-β1 (TGF-β1) is a central mediator of fibrosis in almost all contexts, and across multiple organs, it is not feasible to target this canonical pathway at the ligand-receptor level due to the pleiotropic nature of its actions; importantly, its homeostatic roles as a tumor-suppressor and immune-modulator make this an imprudent strategy. However, defining targets downstream of its receptor(s) that mediate fibrogenesis, while relatively dispenable for tumor- and immune-suppressive functions may aid in developing safer and more effective therapies. In this review, we explore molecular targets that, although TGF-β1 induced/activated, may be relatively more selective in mediating tissue fibrosis. Additionally, we explore epigenetic mechanisms with global effects on the fibrogenic process, as well as metabolic pathways that regulate aging and fibrosis.
Collapse
Affiliation(s)
- Shigeki Saito
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Brian Deskin
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Mohammad Rehan
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Santosh Yadav
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Yasuka Matsunaga
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Joseph A Lasky
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| |
Collapse
|
12
|
Lehtonen S, Kaarteenaho R. Bronchoalveolar-Lavage-Derived Fibroblast Cell Lines Provide Tools for Investigating Various Interstitial Lung Diseases. Cells 2022; 11:cells11142226. [PMID: 35883669 PMCID: PMC9318103 DOI: 10.3390/cells11142226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 01/25/2023] Open
Abstract
Bronchoalveolar lavage (BAL) is an important diagnostic and research tool for the investigation of various lung diseases. In addition to inflammatory and epithelial cells, BAL fluid may contain a small number of stromal cells, such as fibroblasts. During the past 30 years, a number of research groups have cultured BAL-derived fibroblasts for several passages in vitro. In addition to fibroblasts, these cultures have been reported to contain fibrocytes, myofibroblasts, and stem cells. We aim to present a summary of studies that have cultured stromal cells from BAL fluid.
Collapse
Affiliation(s)
- Siri Lehtonen
- PEDEGO Research Unit, University of Oulu, POB 8000, FIN-90014 Oulu, Finland;
- Department of Obstetrics and Gynecology, Medical Research Center Oulu, Oulu University Hospital, POB 10, FIN-90029 Oulu, Finland
| | - Riitta Kaarteenaho
- Research Unit of Internal Medicine, University of Oulu, POB 8000, FIN-90014 Oulu, Finland
- Center of Internal Medicine and Respiratory Medicine, Medical Research Center Oulu, Oulu University Hospital, POB 10, FIN-90029 Oulu, Finland
- Correspondence:
| |
Collapse
|
13
|
De Sadeleer LJ, Verleden SE, Schupp JC, McDonough JE, Goos T, Yserbyt J, Bargagli E, Rottoli P, Kaminski N, Prasse A, Wuyts WA. BAL Transcriptomes Characterize Idiopathic Pulmonary Fibrosis Endotypes With Prognostic Impact. Chest 2022; 161:1576-1588. [PMID: 35063449 PMCID: PMC9424328 DOI: 10.1016/j.chest.2021.12.668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Given the plethora of pathophysiologic mechanisms described in idiopathic pulmonary fibrosis (IPF), we hypothesize that the mechanisms driving fibrosis in IPF may be different from one patient to another. RESEARCH QUESTION Do IPF endotypes exist and are they associated with outcome? STUDY DESIGN AND METHODS Using a publicly available gene expression dataset retrieved from BAL samples of patients with IPF and control participants (GSE70867), we clustered IPF samples based on a dimension reduction algorithm specifically designed for -omics data, called DDR Tree. After clustering, gene set enrichment analysis was performed for functional annotation, associations with clinical variables and prognosis were investigated, and differences in transcriptional regulation were determined using motif enrichment analysis. The findings were validated in three independent publicly available gene expression datasets retrieved from IPF blood samples. RESULTS One hundred seventy-six IPF samples from three centers were clustered in six IPF clusters, with distinct functional enrichment. Although clinical characteristics did not differ between the clusters, one cluster conferred worse sex-age-physiology score-corrected survival, whereas another showed a numeric trend toward worse survival (P = .08). The first was enriched for increased epithelial and innate and adaptive immunity signatures, whereas the other showed important telomere and mitochondrial dysfunction, loss of proteostasis, and increased myofibroblast signatures. The existence of these two endotypes, including the impact on survival of the immune endotype, was validated in three independent validation cohorts. Finally, we identified transcription factors regulating the expression of endotype-specific survival-associated genes. INTERPRETATION Gene expression-based endotyping in IPF is feasible and can inform clinical evolution. As endotype-specific pathways and survival-associated transcription factors are identified, endotyping may open up the possibility of endotype-tailored therapy.
Collapse
Affiliation(s)
- Laurens J De Sadeleer
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, Leuven, Belgium; Unit of Interstitial Lung Diseases, Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.
| | - Stijn E Verleden
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, Leuven, Belgium; Antwerp Surgical Training, Anatomy and Research Centre, Antwerp University, Antwerp, Belgium
| | - Jonas C Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT; Department of Pulmonology, Hannover Medical School, Hannover, Germany
| | - John E McDonough
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT
| | - Tinne Goos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, Leuven, Belgium; Unit of Interstitial Lung Diseases, Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Jonas Yserbyt
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, Leuven, Belgium
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation Unit, AOUS and Siena University, Siena, Italy
| | - Paola Rottoli
- Specialization School in Respiratory Diseases, Siena University, Siena, Italy
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT
| | - Antje Prasse
- Department of Pulmonology, Hannover Medical School, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany; German Centre for Lung Research, BREATH, Hannover, Germany; Department of Pneumology, University Medical Centre, Freiburg, Germany
| | - Wim A Wuyts
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, Leuven, Belgium; Unit of Interstitial Lung Diseases, Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Saygili E, Devamoglu U, Goker-Bagca B, Goksel O, Biray-Avci C, Goksel T, Yesil-Celiktas O. A drug-responsive multicellular human spheroid model to recapitulate drug-induced pulmonary fibrosis. Biomed Mater 2022; 17. [PMID: 35617946 DOI: 10.1088/1748-605x/ac73cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/26/2022] [Indexed: 11/12/2022]
Abstract
Associated with a high mortality rate, pulmonary fibrosis (PF) is the end stage of several interstitial lung diseases. Although many factors are linked to PF progression, initiation of the fibrotic process remains to be studied. Current research focused on generating new strategies to gain a better understanding of the underlying disease mechanism as the animal models remain insufficient to reflect human physiology. Herein, to account complex cellular interactions within the fibrotic tissue, a multicellular spheroid (MCS) model where human bronchial epithelial cells incorporated with human lung fibroblasts was generated and treated with bleomycin (BLM) to emulate drug-induced PF. Recapitulating the epithelial-interstitial microenvironment, the findings successfully reflected the PF disease, where excessive alpha smooth muscle actin (α-SMA) and collagen type I secretion were noted along with the morphological changes in response to BLM. Moreover, increased levels of fibrotic linked COL13A1, MMP2, WNT3 and decreased expression level of CDH1 provide evidence for the model reliability on fibrosis modelling. Subsequent administration of the FDA approved nintedanib and pirfenidone anti-fibrotic drugs proved the drug-responsiveness of the model.
Collapse
Affiliation(s)
- Ecem Saygili
- Department of Bioengineering, Ege University, Department of Bioengineering, Bornova, Izmir, 35040, TURKEY
| | - Utku Devamoglu
- Department of Bioengineering, Ege University, Department of Bioengineering, Bornova, Izmir, 35040, TURKEY
| | - Bakiye Goker-Bagca
- Department of Medical Biology, Adnan Menderes University, Department of Medical Biology, Aydin, Aydin, 09010, TURKEY
| | - Ozlem Goksel
- Department of Pulmonary Medicine / EgeSAM-Ege University Translational Pulmonary Research Center, Ege University, Bornova, Izmir, 35040, TURKEY
| | - Cigir Biray-Avci
- Department of Medical Biology, Ege University, Bornova, Izmir, 35040, TURKEY
| | - Tuncay Goksel
- Department of Pulmonary Medicine / EgeSAM-Ege University Translational Pulmonary Research Center, Ege University, Bornova, Izmir, 35040, TURKEY
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering / EgeSAM-Ege University Translational Pulmonary Research Center, Ege University, Bornova, Izmir, 35040, TURKEY
| |
Collapse
|
15
|
Gu C, Li W, Ju Q, Yao H, Yang L, An B, Hu W, Li X. Synthesis and evaluation of new pirfenidone derivatives as anti-fibrosis agents. RSC Adv 2022; 12:14492-14501. [PMID: 35702193 PMCID: PMC9102048 DOI: 10.1039/d2ra00990k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/16/2022] [Indexed: 11/21/2022] Open
Abstract
Two series of new pirfenidone derivatives, in which phenyl groups or benzyl groups are attached to the nitrogen atom of the pyridin-2(1H)-one moiety were synthesized and evaluated as anti-fibrosis agents. Among them, compound 5d, with a (S)-2-(dimethylamino) propanamido group in the R2 position (series 1) exhibited 10 times the anti-fibrosis activity (IC50: 0.245 mM) of pirfenidone (IC50: 2.75 mM). Compound 9d (series 2) gave an IC50 of 0.035 mM against the human fibroblast cell line HFL1. The mechanism of the optimal compound inhibiting fibrosis was also studied.
Collapse
Affiliation(s)
- Chenxi Gu
- School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 PR China
| | - Wei Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 PR China
| | - Qing Ju
- Medicine and Pharmacy Research Center, Binzhou Medical University Yantai Shandong Province 264003 PR China
| | - Han Yao
- School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 PR China
| | - Lisheng Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 PR China
| | - Baijiao An
- Medicine and Pharmacy Research Center, Binzhou Medical University Yantai Shandong Province 264003 PR China
| | - Wenhao Hu
- School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 PR China
| | - Xingshu Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 PR China
| |
Collapse
|
16
|
Sayah DM, Pilewski JM. Outpatient Pharmacologic Management of Lung Transplant Candidates on the Waiting List. Thorac Surg Clin 2022; 32:111-119. [PMID: 35512930 DOI: 10.1016/j.thorsurg.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The medical care of patients awaiting lung transplantation is complex and requires the treatment of active medical conditions, including lung disease, while at the same time maintaining candidacy for transplantation. Some medications that would otherwise be considered routine may create undesirable challenges or complications in the perioperative setting. Therefore, a comprehensive assessment of the risks and benefits of these medications must take into account both their potential utility in managing a patient's current disease state, as well as the risks of compromising postlung transplant outcomes. In this review, we summarize the available data regarding several medications that are commonly used to treat patients with a variety of lung diseases, but that may impact a patient's course on the waiting list or in the posttransplant period.
Collapse
Affiliation(s)
- David M Sayah
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Box 951690, Los Angeles, CA 90095-1690, USA.
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, NW 628 MUH, 3459 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
17
|
Kumari J, Wagener FADTG, Kouwer PHJ. Novel Synthetic Polymer-Based 3D Contraction Assay: A Versatile Preclinical Research Platform for Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19212-19225. [PMID: 35468292 PMCID: PMC9073832 DOI: 10.1021/acsami.2c02549] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The driving factors causing fibrosis and scar formation include fibroblast differentiation into myofibroblasts and hampered myofibroblast apoptosis, which ultimately results in collagen accumulation and tissue contraction. Currently, only very few drugs are available for fibrosis treatment, and there is an urgent demand for new pharmaceutical products. High-throughput in vitro fibrosis models are necessary to develop such drugs. In this study, we developed such a novel model based on synthetic polyisocyanide (PIC-RGD) hydrogels. The model not only measures contraction but also allows for subsequent molecular and cellular analysis. Fibroblasts were seeded in small (10 μL) PIC-RGD gels in the absence or presence of TGFβ1, the latter to induce myofibroblast differentiation. The contraction model clearly differentiates fibroblasts and myofibroblasts. Besides a stronger contraction, we also observed α-smooth muscle actin (αSMA) production and higher collagen deposition for the latter. The results were supported by mRNA expression experiments of αSMA, Col1α1, P53, and Ki67. As proof of principle, the effects of FDA-approved antifibrotic drugs nintedanib and pirfenidone were tested in our newly developed fibrosis model. Both drugs clearly reduce myofibroblast-induced contraction. Moreover, both drugs significantly decrease myofibroblast viability. Our low-volume synthetic PIC-RGD hydrogel platform is an attractive tool for high-throughput in vitro antifibrotic drug screening.
Collapse
Affiliation(s)
- Jyoti Kumari
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department
of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Centre, 6525 EX Nijmegen, The Netherlands
| | - Frank A. D. T. G. Wagener
- Department
of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Centre, 6525 EX Nijmegen, The Netherlands
- (F.A.D.T.G.W.)
| | - Paul H. J. Kouwer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- (P.H.J.K.)
| |
Collapse
|
18
|
COX-2/sEH Dual Inhibitor PTUPB Attenuates Epithelial-Mesenchymal Transformation of Alveolar Epithelial Cells via Nrf2-Mediated Inhibition of TGF- β1/Smad Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5759626. [PMID: 35509835 PMCID: PMC9060975 DOI: 10.1155/2022/5759626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/02/2022] [Accepted: 04/09/2022] [Indexed: 12/15/2022]
Abstract
Background Arachidonic acid (ARA) metabolites are involved in the pathogenesis of epithelial-mesenchymal transformation (EMT). However, the role of ARA metabolism in the progression of EMT during pulmonary fibrosis (PF) has not been fully elucidated. The purpose of this study was to investigate the role of cytochrome P450 oxidase (CYP)/soluble epoxide hydrolase (sEH) and cyclooxygenase-2 (COX-2) metabolic disorders of ARA in EMT during PF. Methods A signal intratracheal injection of bleomycin (BLM) was given to induce PF in C57BL/6 J mice. A COX-2/sEH dual inhibitor PTUPB was used to establish the function of CYPs/COX-2 dysregulation to EMT in PF mice. In vitro experiments, murine alveolar epithelial cells (MLE12) and human alveolar epithelial cells (A549) were used to explore the roles and mechanisms of PTUPB on transforming growth factor (TGF)-β1-induced EMT. Results PTUPB treatment reversed the increase of mesenchymal marker molecule α-smooth muscle actin (α-SMA) and the loss of epithelial marker molecule E-cadherin in lung tissue of PF mice. In vitro, COX-2 and sEH protein levels were increased in TGF-β1-treated alveolar epithelial cells (AECs). PTUPB decreased the expression of α-SMA and restored the expression of E-cadherin in TGF-β1-treated AECs, accompanied by reduced migration and collagen synthesis. Moreover, PTUPB attenuated TGF-β1-Smad2/3 pathway activation in AECs via Nrf2 antioxidant cascade. Conclusion PTUPB inhibits EMT in AECs via Nrf2-mediated inhibition of the TGF-β1-Smad2/3 pathway, which holds great promise for the clinical treatment of PF.
Collapse
|
19
|
Low Molecular Weight Fucoidan Inhibits Pulmonary Fibrosis In Vivo and In Vitro via Antioxidant Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7038834. [PMID: 35281460 PMCID: PMC8906950 DOI: 10.1155/2022/7038834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/13/2021] [Accepted: 02/14/2022] [Indexed: 12/05/2022]
Abstract
In this study, sulfated polysaccharides extracted from Laminaria japonica were degraded by free radicals to obtain low molecular weight fucoidan (LMWF). The in vivo and in vitro effects of LMWF on bleomycin-treated pulmonary fibrosis mice and TGF-treated A549 cells, respectively, were evaluated, and the role of antioxidant activity was assessed. H&E, Masson's trichrome, and Sirius red staining results showed that bleomycin induced obvious pathological changes and collagen deposition in the lung tissue of mice. However, LMWF effectively inhibited collagen deposition, and based on immunohistochemistry analyses, LMWF can also inhibit the expression of fibrosis markers. At the same time, LMWF could regulate related antioxidant factors in the lung tissue of pulmonary fibrosis mice and reduce the pressure of oxidative stress. Moreover, LMWF could improve the morphology of cells induced with TGF, which confirmed that LMWF could inhibit fibrosis via antioxidant activity modulation.
Collapse
|
20
|
Wang L, Zhu W, Sun R, Liu J, Ma Q, Zhang B, Shi Y. Network Pharmacology Prediction and Molecular Docking-Based Strategy to Discover the Potential Pharmacological Mechanism of Wen-Yu-Jin against Pulmonary Fibrosis in a Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7753508. [PMID: 35186103 PMCID: PMC8853792 DOI: 10.1155/2022/7753508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a devastating lung disease, resulting in gas exchange dysfunction until death. The two drugs approved by the FDA, pirfenidone and nintedanib, have obvious side effects. Wen-yu-jin (WYJ), one of the commonly used herbs in China, can treat respiratory diseases. The potential effects and the underlying mechanism of WYJ against PF are unclear. PURPOSE Employing network pharmacology, molecular docking, and in vivo and in vitro experiments to explore the potential effects and underlying mechanisms of WYJ in the treatment of PF. METHODS Ultra-high pressure liquid chromatography combined with linear ion trap-orbital tandem mass spectrometry (UHPLC-LTQ-orbital trap) was used to identify compounds of WYJ. We got PF-related targets and WYJ compounds-related targets from public databases and further completed critical targets exploration, network construction, and pathway analysis by network pharmacology. Molecular docking predicted binding activity of WYJ compounds and critical targets. Based on the above results, in vivo and in vitro experiments validated the potential effects and mechanisms of WYJ against PF. RESULTS 23 major compositions of WYJ were identified based on UHPLC-LTQ-Orbitrap. According to the results of network pharmacology, STAT3, SRC, IL6, MAPK1, AKT1, EGFR, MAPK8, MAPK14, and IL1B are critical therapeutic targets. Molecular docking results showed that most of the compounds have good binding activities with critical targets. The results of in vivo and in vitro experiments showed that WYJ alleviated the process of fibrosis by targeting MAPK and STAT3 pathways. CONCLUSION Network pharmacology, molecular docking, and in vivo and in vitro experiments showed the potential effects and mechanisms of WYJ against PF, which provides a theoretical basis for the treatment of WYJ with PF.
Collapse
Affiliation(s)
- Lu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenxiang Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Rui Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qihong Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Binbin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
21
|
Papadimitriou TI, van Caam A, van der Kraan PM, Thurlings RM. Therapeutic Options for Systemic Sclerosis: Current and Future Perspectives in Tackling Immune-Mediated Fibrosis. Biomedicines 2022; 10:316. [PMID: 35203525 PMCID: PMC8869277 DOI: 10.3390/biomedicines10020316] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Systemic sclerosis (SSc) is a severe auto-immune, rheumatic disease, characterized by excessive fibrosis of the skin and visceral organs. SSc is accompanied by high morbidity and mortality rates, and unfortunately, few disease-modifying therapies are currently available. Inflammation, vasculopathy, and fibrosis are the key hallmarks of SSc pathology. In this narrative review, we examine the relationship between inflammation and fibrosis and provide an overview of the efficacy of current and novel treatment options in diminishing SSc-related fibrosis based on selected clinical trials. To do this, we first discuss inflammatory pathways of both the innate and acquired immune systems that are associated with SSc pathophysiology. Secondly, we review evidence supporting the use of first-line therapies in SSc patients. In addition, T cell-, B cell-, and cytokine-specific treatments that have been utilized in SSc are explored. Finally, the potential effectiveness of tyrosine kinase inhibitors and other novel therapeutic approaches in reducing fibrosis is highlighted.
Collapse
Affiliation(s)
- Theodoros-Ioannis Papadimitriou
- Department of Rheumatic Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.v.C.); (P.M.v.d.K.); (R.M.T.)
| | | | | | | |
Collapse
|
22
|
Pirfenidone attenuates acetaminophen-induced liver injury via suppressing c-Jun N-terminal kinase phosphorylation. Toxicol Appl Pharmacol 2022; 434:115817. [PMID: 34890640 DOI: 10.1016/j.taap.2021.115817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Acetaminophen (APAP)-induced liver injury is the most frequent cause of acute liver failure in Western countries. Pirfenidone (PFD), an orally bioavailable pyridone derivative, is clinically used for idiopathic pulmonary fibrosis treatment and has antifibrotic, anti-inflammatory, and antioxidant effects. Here we examined the PFD effect on APAP-induced liver injury. In a murine model, APAP caused serum alanine aminotransferase elevation attenuated by PFD treatment. We performed terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) and vital propidium iodide (PI) stainings simultaneously. APAP induced TUNEL-positive/PI-negative necrosis around the central vein and subsequent TUNEL-negative/PI-positive oncotic necrosis with hemorrhage and caused the upregulation of hypercoagulation- and hypoxia-associated gene expressions. PFD treatment suppressed these findings. Western blotting revealed PFD suppressed APAP-induced c-Jun N-terminal kinase (JNK) phosphorylation despite no effect on JNK phosphatase expressions. In conclusion, simultaneous TUNEL and vital PI staining is useful for discriminating APAP-induced necrosis from typical oncotic necrosis. Our results indicated that PFD attenuated APAP-induced liver injury by suppressing TUNEL-positive necrosis by directly blocking JNK phosphorylation. PFD is promising as a new option to prevent APAP-induced liver injury.
Collapse
|
23
|
Finnerty JP, Ponnuswamy A, Dutta P, Abdelaziz A, Kamil H. Efficacy of antifibrotic drugs, nintedanib and pirfenidone, in treatment of progressive pulmonary fibrosis in both idiopathic pulmonary fibrosis (IPF) and non-IPF: a systematic review and meta-analysis. BMC Pulm Med 2021; 21:411. [PMID: 34895203 PMCID: PMC8666028 DOI: 10.1186/s12890-021-01783-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Background Research questions To compare the efficacy of nintedanib and pirfenidone in the treatment of progressive pulmonary fibrosis; and to compare the efficacy of anti-fibrotic therapy (grouping nintedanib and pirfenidone together) in patients with IPF versus patients with progressive lung fibrosis not classified as IPF.
Study design and methods A search of databases including MEDLINE, EMBASE, PubMed, and clinicaltrials.gov was conducted. Studies were included if they were randomised controlled trials of pirfenidone or nintedanib in adult patients with IPF or non-IPF patients, and with extractable data on mortality or decline in forced vital capacity (FVC). Random effects meta-analyses were performed on changes in FVC and where possible on mortality in the selected studies. Results 13 trials of antifibrotic therapy were pooled in a meta-analysis (with pirfenidone and nintedanib considered together as anti-fibrotic therapy). The change in FVC was expressed as a standardised difference to allow pooling of percentage and absolute changes. The mean effect size in the IPF studies was − 0.305 (SE 0.043) (p < 0.001) and in the non-IPF studies the figures were − 0.307 (SE 0.063) (p < 0.001). There was no evidence of any difference between the two groups for standardised rate of FVC decline (p = 0.979). Pooling IPF and non-IPF showed a significant reduction in mortality, with mean risk ratio of 07.01 in favour of antifibrotic therapy (p = 0.008). A separate analysis restricted to non-IPF did not show a significant reduction in mortality (risk ratio 0.908 (0.547 to 1.508), p = 0.71. Interpretation Anti-fibrotic therapy offers protection against the rate of decline in FVC in progressive lung fibrosis, with similar efficacy shown between the two anti-fibrotic agents currently in clinical use. There was no significant difference in efficacy of antifibrotic therapy whether the underlying condition was IPF or non-IPF with progressive fibrosis, supporting the hypothesis of a common pathogenesis. The data in this analysis was insufficient to be confident about a reduction in mortality in non-IPF with anti-fibrotic therapy.
Trial Registration PROSPERO, registration number CRD42021266046.
Collapse
Affiliation(s)
- James Patrick Finnerty
- Department of Respiratory Medicine, Countess of Chester Hospital NHS Trust, Liverpool Road, Chester, CH2 1UL, UK. .,University of Chester Medical School, Chester, UK.
| | | | - Prosjenjit Dutta
- Department of Respiratory Medicine, Countess of Chester Hospital NHS Trust, Liverpool Road, Chester, CH2 1UL, UK
| | | | - Hafiz Kamil
- Department of Respiratory Medicine, Countess of Chester Hospital NHS Trust, Liverpool Road, Chester, CH2 1UL, UK
| |
Collapse
|
24
|
Wenzel D, Haddadi N, Afshari K, Richmond JM, Rashighi M. Upcoming treatments for morphea. Immun Inflamm Dis 2021; 9:1101-1145. [PMID: 34272836 PMCID: PMC8589364 DOI: 10.1002/iid3.475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/29/2021] [Indexed: 11/25/2022] Open
Abstract
Morphea (localized scleroderma) is a rare autoimmune connective tissue disease with variable clinical presentations, with an annual incidence of 0.4-2.7 cases per 100,000. Morphea occurs most frequently in children aged 2-14 years, and the disease exhibits a female predominance. Insights into morphea pathogenesis are often extrapolated from studies of systemic sclerosis due to their similar skin histopathologic features; however, clinically they are two distinct diseases as evidenced by different demographics, clinical features, disease course and prognosis. An interplay between genetic factors, epigenetic modifications, immune and vascular dysfunction, along with environmental hits are considered as the main contributors to morphea pathogenesis. In this review, we describe potential new therapies for morphea based on both preclinical evidence and ongoing clinical trials. We focus on different classes of therapeutics, including antifibrotic, anti-inflammatory, cellular and gene therapy, and antisenolytic approaches, and how these target different aspects of disease pathogenesis.
Collapse
Affiliation(s)
- Dan Wenzel
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Nazgol‐Sadat Haddadi
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Khashayar Afshari
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Jillian M. Richmond
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Mehdi Rashighi
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
25
|
Morin inhibits the transformation of fibroblasts towards myofibroblasts through regulating "PPAR-γ-glutaminolysis-DEPTOR" pathway in pulmonary fibrosis. J Nutr Biochem 2021; 101:108923. [PMID: 34843935 DOI: 10.1016/j.jnutbio.2021.108923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/06/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022]
Abstract
Morin, a natural flavonoid exists in many foods and dietary plants, owns good bioactivities. Herein, we investigated its effect on pulmonary fibrosis (PF), and further explored the mechanisms. Results showed that morin remarkably improved the pathologic alterations, and inhibited the transformation of fibroblasts towards myofibroblasts in lungs of mice with bleomycin-induced PF as well as TGF-β1 or hypoxia-stimulated NIH-3T3 cells. Mechanistic studies revealed that morin activated peroxisome proliferator activated receptor-gamma (PPAR-γ), and GW9662 or siPPAR-γ significantly weakened the inhibition of morin on the transformation of NIH-3T3 cells. Furthermore, morin restricted glutaminolysis by down-regulating the level of glutaminase 1 (GLS1), which was confirmed by glutamine deprivation, and GLS1 overexpression. Replenishment of metabolite α-ketoglutarate (α-KG) and 2-hydroxyglutarate (2-HG) inhibited morin-prevented transformation of fibroblasts, but neither TGF-β1 nor hypoxia could induce the transformation of IDH2-knockdown fibroblasts, suggesting 2-HG was directly involved in the action of morin. Then, ubiquitination of DEPTOR was demonstrated to be prevented by morin, which was attributed to KDM4A, an enzyme inactivated by 2-HG, and leucine as well as KDM4A inhibitor obstructed the effect of morin. Finally, the mechanisms of morin were further confirmed in vivo. Collectively, morin inhibited PF through intervening in "PPAR-γ-glutaminolysis-DEPTOR" signals, and subsequent restriction on the transformation of fibroblasts towards myofibroblasts.
Collapse
|
26
|
Speca S, Dubuquoy C, Rousseaux C, Chavatte P, Desreumaux P, Spagnolo P. GED-0507 attenuates lung fibrosis by counteracting myofibroblast transdifferentiation in vivo and in vitro. PLoS One 2021; 16:e0257281. [PMID: 34529707 PMCID: PMC8445472 DOI: 10.1371/journal.pone.0257281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
The development of more effective, better tolerated drug treatments for progressive pulmonary fibrosis (of which idiopathic pulmonary fibrosis is the most common and severe form) is a research priority. The peroxisome proliferator-activated receptor gamma (PPAR-γ) is a key regulator of inflammation and fibrosis and therefore represents a potential therapeutic target. However, the use of synthetic PPAR-γ agonists may be limited by their potentially severe adverse effects. In a mouse model of bleomycin (BLM)-induced pulmonary fibrosis, we have demonstrated that the non-racemic selective PPAR-γ modulator GED-0507 is able to reduce body weight loss, ameliorate clinical and histological features of pulmonary fibrosis, and increase survival rate without any safety concerns. Here, we focused on the biomolecular effects of GED-0507 on various inflammatory/fibrotic pathways. We demonstrated that preventive and therapeutic administration of GED-0507 reduced the BLM-induced mRNA expression of several markers of fibrosis, including transforming growth factor (TGF)-β, alpha-smooth muscle actin, collagen and fibronectin as well as epithelial-to-mesenchymal transition (EMT) and expression of mucin 5B. The beneficial effect of GED-0507 on pulmonary fibrosis was confirmed in vitro by its ability to control TGFβ-induced myofibroblast activation in the A549 human alveolar epithelial cell line, the MRC-5 lung fibroblast line, and primary human lung fibroblasts. Compared with the US Food and Drug Administration-approved antifibrotic drugs pirfenidone and nintedanib, GED-0507 displayed greater antifibrotic activity by controlling alveolar epithelial cell dysfunction, EMT, and extracellular matrix remodeling. In conclusion, GED-0507 demonstrated potent antifibrotic properties and might be a promising drug candidate for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Silvia Speca
- Univ. Lille, INSERM, U1286 –Infinite–Institute for Translational Research in Inflammation, Lille, France
- * E-mail: (PS); (SS)
| | | | | | - Philippe Chavatte
- Univ. Lille, INSERM, U1286 –Infinite–Institute for Translational Research in Inflammation, Lille, France
- Laboratoire de Pharmacie Clinique, Faculté des Sciences Pharmaceutiques et Biologiques, Lille, France
| | - Pierre Desreumaux
- Univ. Lille, INSERM, U1286 –Infinite–Institute for Translational Research in Inflammation, Lille, France
- Hepato-Gastroenterology Department, CHU Lille, Lille, France
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- * E-mail: (PS); (SS)
| |
Collapse
|
27
|
Vasse GF, Van Os L, De Jager M, Jonker MR, Borghuis T, Van Den Toorn LT, Jellema P, White ES, Van Rijn P, Harmsen MC, Heijink IH, Melgert BN, Burgess JK. Adipose Stromal Cell-Secretome Counteracts Profibrotic Signals From IPF Lung Matrices. Front Pharmacol 2021; 12:669037. [PMID: 34393771 PMCID: PMC8355988 DOI: 10.3389/fphar.2021.669037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction: Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease characterized by excess deposition and altered structure of extracellular matrix (ECM) in the lungs. The fibrotic ECM is paramount in directing resident cells toward a profibrotic phenotype. Collagens, an important part of the fibrotic ECM, have been shown to be structurally different in IPF. To further understand the disease to develop better treatments, the signals from the ECM that drive fibrosis need to be identified. Adipose tissue-derived stromal cell conditioned medium (ASC-CM) has demonstrated antifibrotic effects in animal studies but has not been tested in human samples yet. In this study, the collagen structural integrity in (fibrotic) lung tissue, its interactions with fibroblasts and effects of ASC-CM treatment hereon were studied. Methods: Native and decellularized lung tissue from patients with IPF and controls were stained for denatured collagen using a collagen hybridizing peptide. Primary lung fibroblasts were seeded into decellularized matrices from IPF and control subjects and cultured for 7 days in the presence or absence of ASC-CM. Reseeded matrices were fixed, stained and analyzed for total tissue deposition and specific protein expression. Results: In both native and decellularized lung tissue, more denatured collagen was observed in IPF tissue compared to control tissue. Upon recellularization with fibroblasts, the presence of denatured collagen was equalized in IPF and control matrices, whereas total ECM was higher in IPF matrices than in the control. Treatment with ASC-CM resulted in less ECM deposition, but did not alter the levels of denatured collagen. Discussion: Our data showed that ASC-CM can inhibit fibrotic ECM-induced profibrotic behavior of fibroblasts. This process was independent of collagen structural integrity. Our findings open up new avenues for ASC-CM to be explored as treatment for IPF.
Collapse
Affiliation(s)
- Gwenda F. Vasse
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science, Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Lisette Van Os
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Marina De Jager
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, Groningen, Netherlands
| | - Marnix R. Jonker
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - L. Tim Van Den Toorn
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Pytrick Jellema
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Eric S. White
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Patrick Van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science, Groningen, Netherlands
| | - Martin C. Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Barbro N. Melgert
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| |
Collapse
|
28
|
Ono J, Takai M, Kamei A, Azuma Y, Izuhara K. Pathological Roles and Clinical Usefulness of Periostin in Type 2 Inflammation and Pulmonary Fibrosis. Biomolecules 2021; 11:1084. [PMID: 34439751 PMCID: PMC8391913 DOI: 10.3390/biom11081084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Periostin is known to be a useful biomarker for various diseases. In this article, we focus on allergic diseases and pulmonary fibrosis, for which we and others are now developing detection systems for periostin as a biomarker. Biomarker-based precision medicine in the management of type 2 inflammation and fibrotic diseases since heterogeneity is of utmost importance. Periostin expression is induced by type 2 cytokines (interleukin-4/-13) or transforming growth factor-β, and plays a vital role in the pathogenesis of allergic inflammation or interstitial lung disease, respectively, andits serum levels are correlated disease severity, prognosis and responsiveness to the treatment. We first summarise the importance of type 2 biomarker and then describe the pathological role of periostin in the development and progression of type 2 allergic inflammation and pulmonary fibrosis. In addition, then, we summarise the recent development of assay methods for periostin detection, and analyse the diseases in which periostin concentration is elevated in serum and local biological fluids and its usefulness as a biomarker. Furthermore, we describe recent findings of periostin as a biomarker in the use of biologics or anti-fibrotic therapy. Finally, we describe the factors that influence the change in periostin concentration under the healthy conditions.
Collapse
Affiliation(s)
- Junya Ono
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Masayuki Takai
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
- Division of Medical Biochemistry, Department of Biomolecular Science, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| | - Ayami Kamei
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Yoshinori Azuma
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Science, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| |
Collapse
|
29
|
Li S, Xu A, Li Y, Tan C, La Regina G, Silvestri R, Wang H, Qi W. RS4651 suppresses lung fibroblast activation via the TGF-β1/SMAD signalling pathway. Eur J Pharmacol 2021; 903:174135. [PMID: 33940030 DOI: 10.1016/j.ejphar.2021.174135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive disease resulting in respiratory failure with no efficient treatment options. We investigated the protective effect of RS4651 on pulmonary fibrosis in mice and the mechanism. METHODS Intratracheal injection of bleomycin (BLM) was used to induce pulmonary fibrosis in mice. RS4561 was administered intraperitoneally at different doses. Histopathological changes were observed. The level of alpha-smooth muscle actin (α-SMA) were also tested. In vitro, the proliferation and migratory effects of RS4651 treatment on MRC-5 cells pre-treated with transforming growth factor (TGF-β1) were examined. RNA-sequencing was used to detect differentially expressed target genes. Then, the expression of α-SMA, pSMAD2 and SMAD7 were analysed during RS4651 treatment of MRC-5 cells with or without silencing by SMAD7 siRNA. RESULTS Histopathological staining results showed decreased collagen deposition in RS4651 administered mice. Additionally, a lower level of α-SMA was also observed compared to the BLM group. The results of in vitro studies confirmed that RS4651 can inhibit the proliferation and migration, as well as α-SMA and pSMAD2 expression in MRC-5 cells treated with TGF-β1. RNA-sequencing data identified the target gene SMAD7. We found that RS4651 could upregulate SMAD7 expression and inhibit the proliferation and migration of MRC-5 cells via SMAD7, and RS4651 inhibition of α-SMA and pSMAD2 expression was blocked in SMAD7-siRNA MRC-5 cells. In vivo studies further confirmed that RS4651 could upregulate SMAD7 expression in BLM-induced lung fibrosis in mice. CONCLUSIONS Our data suggest that RS4651 alleviates BLM-induced pulmonary fibrosis in mice by inhibiting the TGF-β1/SMAD signalling pathway.
Collapse
Affiliation(s)
- Shirong Li
- Department of Infectious Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Anjian Xu
- Experimental Center, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing 100050, PR China
| | - Yanmeng Li
- Experimental Center, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing 100050, PR China
| | - Chunting Tan
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy.
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Wenjie Qi
- Department of Infectious Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
30
|
Bos S, De Sadeleer LJ, Vanstapel A, Beeckmans H, Sacreas A, Yserbyt J, Wuyts WA, Vos R. Antifibrotic drugs in lung transplantation and chronic lung allograft dysfunction: a review. Eur Respir Rev 2021; 30:30/160/210050. [PMID: 34415849 DOI: 10.1183/16000617.0050-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/02/2021] [Indexed: 12/30/2022] Open
Abstract
This review aims to provide an overview of pre-transplant antifibrotic therapy on peri-transplant outcomes and to address the possible role of antifibrotics in lung transplant recipients with chronic lung allograft dysfunction.Lung transplantation is an established treatment modality for patients with various end-stage lung diseases, of which idiopathic pulmonary fibrosis and other progressive fibrosing interstitial lung diseases are growing indications. Theoretically, widespread use of antifibrotics prior to lung transplantation may increase the risk of bronchial anastomotic complications and impaired wound healing.Long-term graft and patient survival are still hampered by development of chronic lung allograft dysfunction, on which antifibrotics may have a beneficial impact.Antifibrotics until the moment of lung transplantation proved to be safe, without increasing peri-transplant complications. Currently, best practice is to continue antifibrotics until time of transplantation. In a large multicentre randomised trial, pirfenidone did not appear to have a beneficial effect on lung function decline in established bronchiolitis obliterans syndrome. The results of antifibrotic therapy in restrictive allograft syndrome are eagerly awaited, but nonrandomised data from small case reports/series are promising.
Collapse
Affiliation(s)
- Saskia Bos
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J De Sadeleer
- Dept of Respiratory Diseases, Ziekenhuis Oost-Limburg, Genk, Belgium.,Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Arno Vanstapel
- Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Hanne Beeckmans
- Dept of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Annelore Sacreas
- Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Jonas Yserbyt
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.,Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Wim A Wuyts
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.,Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Robin Vos
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.,Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Nathan SD, Waxman A, Rajagopal S, Case A, Johri S, DuBrock H, De La Zerda DJ, Sahay S, King C, Melendres-Groves L, Smith P, Shen E, Edwards LD, Nelsen A, Tapson VF. Inhaled treprostinil and forced vital capacity in patients with interstitial lung disease and associated pulmonary hypertension: a post-hoc analysis of the INCREASE study. THE LANCET RESPIRATORY MEDICINE 2021; 9:1266-1274. [PMID: 34214475 DOI: 10.1016/s2213-2600(21)00165-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND INCREASE was a randomised, placebo-controlled, phase 3 trial that evaluated inhaled treprostinil in patients with interstitial lung disease (ILD) and associated pulmonary hypertension. Treprostinil improved exercise capacity from baseline to week 16, assessed with the use of a 6-min walk test, compared with placebo. Improvements in forced vital capacity (FVC) were also reported. The aim of this post-hoc analysis was to further characterise the effects of inhaled treprostinil on FVC in the overall study population and in various subgroups of interest. METHODS In this post-hoc analysis, we evaluated FVC changes in the overall study population and in various subgroups defined by cause of disease or baseline clinical parameters. The study population included patients aged 18 years and older who had a diagnosis of ILD based on evidence of diffuse parenchymal lung disease on chest CT done within 6 months before random assignment (not centrally adjudicated). All analyses were done on the intention-to-treat population, defined as individuals who were randomly assigned and received at least one dose of study drug. The INCREASE study is registered with ClinicalTrials.gov, NCT02630316. FINDINGS Between Feb 3, 2017, and Aug 30, 2019, 326 patients were enrolled in the INCREASE trial. Inhaled treprostinil was associated with a placebo-corrected least squares mean improvement in FVC of 28·5 mL (SE 30·1; 95% CI -30·8 to 87·7; p=0·35) at week 8 and 44·4 mL (35·4; -25·2 to 114·0; p=0·21) at week 16, with associated percentage of predicted FVC improvements of 1·8% (0·7; 0·4 to 3·2; p=0·014) and 1·8% (0·8; 0·2 to 3·4; p=0·028). Subgroup analysis of patients with idiopathic interstitial pneumonia showed FVC differences of 46·5 mL (SE 39·9; 95% CI -32·5 to 125·5; p=0·25) at week 8 and 108·2 mL (46·9; 15·3 to 201·1; p=0·023) at week 16. Analysis of patients with idiopathic pulmonary fibrosis showed FVC differences of 84·5 mL (52·7; -20·4 to 189·5; p=0·11) at week 8 and 168·5 mL (64·5; 40·1 to 297·0; p=0·011) at week 16. The most frequent adverse events included cough, headache, dyspnoea, dizziness, nausea, fatigue, and diarrhoea. INTERPRETATION In patients with ILD and associated pulmonary hypertension, inhaled treprostinil was associated with improvements in FVC versus placebo at 16 weeks. This difference was most evident in patients with idiopathic interstitial pneumonia, particularly idiopathic pulmonary fibrosis. Inhaled treprostinil appears to be a promising therapy for idiopathic pulmonary fibrosis that warrants further investigation in a prospective, randomised, placebo-controlled study. FUNDING United Therapeutics Corporation.
Collapse
Affiliation(s)
- Steven D Nathan
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA.
| | - Aaron Waxman
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Amy Case
- Piedmont Healthcare, Austell, GA, USA
| | - Shilpa Johri
- Pulmonary Associates of Richmond, Richmond, VA, USA
| | - Hilary DuBrock
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Mayo Clinic, Rochester, MN, USA
| | - David J De La Zerda
- Division of Pulmonary & Critical Care Medicine, University of Miami Health System, Miami, FL, USA
| | - Sandeep Sahay
- Division of Pulmonary, Critical Care and Sleep Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Christopher King
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Lana Melendres-Groves
- Pulmonary & Critical Care Division, University of New Mexico, 1 University of New Mexico, DoIM MSC10-5550, Albuquerque, NM, USA
| | - Peter Smith
- United Therapeutics Corporation, Research Triangle Park, NC, USA
| | - Eric Shen
- United Therapeutics Corporation, Research Triangle Park, NC, USA
| | - Lisa D Edwards
- United Therapeutics Corporation, Research Triangle Park, NC, USA
| | - Andrew Nelsen
- United Therapeutics Corporation, Research Triangle Park, NC, USA
| | - Victor F Tapson
- Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
32
|
Romano E, Rosa I, Fioretto BS, Matucci-Cerinic M, Manetti M. New Insights into Profibrotic Myofibroblast Formation in Systemic Sclerosis: When the Vascular Wall Becomes the Enemy. Life (Basel) 2021; 11:610. [PMID: 34202703 PMCID: PMC8307837 DOI: 10.3390/life11070610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
In systemic sclerosis (SSc), abnormalities in microvessel morphology occur early and evolve into a distinctive vasculopathy that relentlessly advances in parallel with the development of tissue fibrosis orchestrated by myofibroblasts in nearly all affected organs. Our knowledge of the cellular and molecular mechanisms underlying such a unique relationship between SSc-related vasculopathy and fibrosis has profoundly changed over the last few years. Indeed, increasing evidence has suggested that endothelial-to-mesenchymal transition (EndoMT), a process in which profibrotic myofibroblasts originate from endothelial cells, may take center stage in SSc pathogenesis. While in arterioles and small arteries EndoMT may lead to the accumulation of myofibroblasts within the vessel wall and development of fibroproliferative vascular lesions, in capillary vessels it may instead result in vascular destruction and formation of myofibroblasts that migrate into the perivascular space with consequent tissue fibrosis and microvessel rarefaction, which are hallmarks of SSc. Besides endothelial cells, other vascular wall-resident cells, such as pericytes and vascular smooth muscle cells, may acquire a myofibroblast-like synthetic phenotype contributing to both SSc-related vascular dysfunction and fibrosis. A deeper understanding of the mechanisms underlying the differentiation of myofibroblasts inside the vessel wall provides the rationale for novel targeted therapeutic strategies for the treatment of SSc.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy;
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy;
| |
Collapse
|
33
|
Kai Y, Yoneyama H, Yoshikawa M, Kimura H, Muro S. Chondroitin sulfate in tissue remodeling: Therapeutic implications for pulmonary fibrosis. Respir Investig 2021; 59:576-588. [PMID: 34176780 DOI: 10.1016/j.resinv.2021.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Fibrosis is characterized by the deposition of extracellular matrix (ECM) proteins, while idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease characterized by dysregulated tissue repair and remodeling. Anti-inflammatory drugs, such as corticosteroids and immunosuppressants, and antifibrotic drugs, like pirfenidone and nintedanib, are used in IPF therapy. However, their limited effects suggest that single mediators are inadequate to control IPF. Therefore, therapies targeting the multifactorial cascades that regulate tissue remodeling in fibrosis could provide alternate solutions. ECM molecules have been shown to modulate various biological functions beyond tissue structure support and thus, could be developed into novel therapeutic targets for modulating tissue remodeling. Among ECM molecules, glycosaminoglycans (GAG) are linear polysaccharides consisting of repeated disaccharides, which regulate cell-matrix interactions. Chondroitin sulfate (CS), one of the major GAGs, binds to multifactorial mediators in the ECM and reportedly participates in tissue remodeling in various diseases; however, to date, its biological functions have drawn considerably less attention than other GAGs, like heparan sulfate. In the present review, we discuss the involvement and regulation of CS in tissue remodeling and pulmonary fibrotic diseases, its role in pulmonary fibrosis, and the therapeutic approaches targeting CS.
Collapse
Affiliation(s)
- Yoshiro Kai
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara, 634-8522, Japan; Department of Respiratory Medicine, Minami-Nara General Medical Center, 8-1 Fukugami, Oyodo-cho, Yoshino-gun, Nara, 638-8551, Japan.
| | - Hiroyuki Yoneyama
- TME Therapeutics Inc., 2-16-1 Higashi-shinbashi, Minato-ku, Tokyo, 105-0021, Japan.
| | - Masanori Yoshikawa
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara, 634-8522, Japan.
| | - Hiroshi Kimura
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose-city, Tokyo, 204-8522, Japan.
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara, 634-8522, Japan.
| |
Collapse
|
34
|
Kuno H, Akagi T, Fukui E, Yamato H, Akashi M, Shintani Y. Three-Dimensional Idiopathic Pulmonary Fibrosis Model Using a Layer-by-Layer Cell Coating Technique. Tissue Eng Part C Methods 2021; 27:378-390. [PMID: 34074128 DOI: 10.1089/ten.tec.2020.0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe health problem characterized by progressive fibroblast proliferation and aberrant vascular remodeling. However, the lack of a suitable in vitro model that replicates cell-specific changes in IPF tissue is a crucial issue. Three-dimensional (3D) cell cultures allow the mimicking of cell-specific functions, facilitating development of novel antifibrosis drugs. We have established a layer-by-layer (LbL) cell coating technique that enables the construction of 3D tissue and also vascularized 3D tissue. This study evaluated whether this technique is beneficial for constructing an in vitro IPF-3D model using human lung fibroblasts and microvascular endothelial cells. We fabricated an in vitro IPF-3D model to provide IPF-derived fibroblasts-specific function and aberrant microvascular structure using the LbL cell coating technique. We also found that this in vitro IPF-3D model showed drug responsiveness to two antifibrosis drugs that have recently been approved worldwide. This in vitro IPF-3D model constructed by a LbL cell coating technique would help in the understanding of fibroblast function and the microvascular environment in IPF and could also be used to predict the efficacy of novel antifibrosis drugs. Impact statement We established a novel in vitro model mimicking idiopathic pulmonary fibrosis. Three-dimensional culture was constructed by layer-by-layer cell coating technique. This novel model provides a visualization of fibroblast-specific function. This assay allows for the assessment of pulmonary microvascular environment. Our model may be useful for predicting the efficacy of novel antifibrosis drugs.
Collapse
Affiliation(s)
- Hidenori Kuno
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takami Akagi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroyuki Yamato
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Mitsuru Akashi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
35
|
van Geffen C, Deißler A, Quante M, Renz H, Hartl D, Kolahian S. Regulatory Immune Cells in Idiopathic Pulmonary Fibrosis: Friends or Foes? Front Immunol 2021; 12:663203. [PMID: 33995390 PMCID: PMC8120991 DOI: 10.3389/fimmu.2021.663203] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
The immune system is receiving increasing attention for interstitial lung diseases, as knowledge on its role in fibrosis development and response to therapies is expanding. Uncontrolled immune responses and unbalanced injury-inflammation-repair processes drive the initiation and progression of idiopathic pulmonary fibrosis. The regulatory immune system plays important roles in controlling pathogenic immune responses, regulating inflammation and modulating the transition of inflammation to fibrosis. This review aims to summarize and critically discuss the current knowledge on the potential role of regulatory immune cells, including mesenchymal stromal/stem cells, regulatory T cells, regulatory B cells, macrophages, dendritic cells and myeloid-derived suppressor cells in idiopathic pulmonary fibrosis. Furthermore, we review the emerging role of regulatory immune cells in anti-fibrotic therapy and lung transplantation. A comprehensive understanding of immune regulation could pave the way towards new therapeutic or preventive approaches in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Chiel van Geffen
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany
| | - Astrid Deißler
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany.,Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Markus Quante
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Dominik Hartl
- Department of Pediatrics I, Eberhard Karls University of Tübingen, Tübingen, Germany.,Dominik Hartl, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany.,Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
36
|
Romano E, Rosa I, Fioretto BS, Cerinic MM, Manetti M. The Role of Pro-fibrotic Myofibroblasts in Systemic Sclerosis: from Origin to Therapeutic Targeting. Curr Mol Med 2021; 22:209-239. [PMID: 33823766 DOI: 10.2174/0929867328666210325102749] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is a complex connective tissue disorder characterized by multisystem clinical manifestations resulting from immune dysregulation/autoimmunity, vasculopathy and, most notably, progressive fibrosis of the skin and internal organs. In recent years, it has emerged that the main drivers of SSc-related tissue fibrosis are myofibroblasts, a type of mesenchymal cells with both the extracellular matrix-synthesizing features of fibroblasts and the cytoskeletal characteristics of contractile smooth muscle cells. The accumulation and persistent activation of pro-fibrotic myofibroblasts during SSc development and progression result into elevated mechanical stress and reduced matrix plasticity within the affected tissues and may be ascribed to a reduced susceptibility of these cells to pro-apoptotic stimuli, as well as their increased formation from tissue-resident fibroblasts or transition from different cell types. Given the crucial role of myofibroblasts in SSc pathogenesis, finding the way to inhibit myofibroblast differentiation and accumulation by targeting their formation, function and survival may represent an effective approach to hamper the fibrotic process or even halt or reverse established fibrosis. In this review, we discuss the role of myofibroblasts in SSc-related fibrosis, with a special focus on their cellular origin and the signaling pathways implicated in their formation and persistent activation. Furthermore, we provide an overview of potential therapeutic strategies targeting myofibroblasts that may be able to counteract fibrosis in this pathological condition.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Marco Matucci Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence. Italy
| |
Collapse
|
37
|
Jaffar J, Glaspole I, Symons K, Westall G. Inhibition of NF-κB by ACT001 reduces fibroblast activity in idiopathic pulmonary fibrosis. Biomed Pharmacother 2021; 138:111471. [PMID: 33730605 DOI: 10.1016/j.biopha.2021.111471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/18/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease of unknown etiology and poor prognosis. In IPF, aberrant extracellular matrix production by activated, hyperproliferative fibroblasts drives disease progression but the exact mechanisms by which this occurs remains undefined. The transcription factor nuclear factor kappa-B (NF-ĸB) has been suggested as a potential therapeutic target in IPF and therefore the aim of this study was to investigate the efficacy of ACT001, an NF-ĸB inhibitor, on primary fibroblasts derived from patients with and without IPF. Primary lung fibroblasts derived from eight patients with IPF and eight age-matched non-diseased controls (NDC) were treated with 0-10 µM ACT001 and the effects on fibroblast activity (viability and proliferation, fibroblast-to-myofibroblast transition, fibronectin expression), interleukin (IL)-6 and IL-8 cytokine release were quantified. ACT001 inhibited fibroblast activity in a concentration-dependent manner in both groups of fibroblasts. ACT001 inhibited IL-6 but not IL-8 production in unstimulated fibroblasts. ACT001 is a water-soluble compound with a stable half-life in plasma, thus making it an attractive candidate for further investigation as a therapeutic in IPF. This study adds to the growing body of literature that demonstrates anti-fibrotic activity of NF-ĸB inhibition in the context of IPF.
Collapse
Affiliation(s)
- Jade Jaffar
- Department of Respiratory Medicine, The Alfred Hospital, 99 Commercial Rd, Melbourne, VIC 3000, Australia; Department of Immunology and Pathology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia; N.M.H.R.C. Centre of Research Excellence in Pulmonary Fibrosis, Australia.
| | - Ian Glaspole
- Department of Respiratory Medicine, The Alfred Hospital, 99 Commercial Rd, Melbourne, VIC 3000, Australia; Department of Immunology and Pathology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia; N.M.H.R.C. Centre of Research Excellence in Pulmonary Fibrosis, Australia
| | - Karen Symons
- Department of Respiratory Medicine, The Alfred Hospital, 99 Commercial Rd, Melbourne, VIC 3000, Australia
| | - Glen Westall
- Department of Respiratory Medicine, The Alfred Hospital, 99 Commercial Rd, Melbourne, VIC 3000, Australia; Department of Immunology and Pathology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia; N.M.H.R.C. Centre of Research Excellence in Pulmonary Fibrosis, Australia
| |
Collapse
|
38
|
Puerta Cavanzo N, Bigaeva E, Boersema M, Olinga P, Bank RA. Macromolecular Crowding as a Tool to Screen Anti-fibrotic Drugs: The Scar-in-a-Jar System Revisited. Front Med (Lausanne) 2021; 7:615774. [PMID: 33521022 PMCID: PMC7841046 DOI: 10.3389/fmed.2020.615774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
An unsolved therapeutic problem in fibrosis is the overproduction of collagen. In order to screen the effect of anti-fibrotic drugs on collagen deposition, the Scar-in-a-Jar approach has been introduced about a decade ago. With macromolecular crowding a rapid deposition of collagen is seen, resulting in a substantial decrease in culture time, but the system has never been tested in an adequate way. We therefore have compared six different macromolecular crowders [Ficoll PM 70 (Fc70), Ficoll PM 400 (Fc400), a mixture of Ficoll 70 and 400 (Fc70/400), polyvinylpyrrolidone 40 (PVP40), polyvinylpyrrolidone 360 (PVP360), neutral dextran 670 (ND670), dextran sulfate 500 (DxS500), and carrageenan (CR)] under profibrotic conditions (addition of TGFβ1) with primary human adult dermal fibroblasts in the presence of 0.5 and 10% FBS. We found that (1) collagen deposition and myofibroblast formation was superior with 0.5% FBS, (2) DxS500 and CR results in an aberrant collagen deposition pattern, (3) ND670 does not increase collagen deposition, and (4) CR, DxS500, and Fc40/700 affected important phenotypical properties of the cells when cultured under pro-fibrotic conditions, whereas PVP40 and PVP360 did less or not. Because of viscosity problems with PVP360, we conclude that PVP40 is the most optimal crowder for the screening of anti-fibrotic drugs. Finally, the effect of various concentrations of Imatinib, Galunisertib, Omipalisib or Nintedanib on collagen deposition and myofibroblast formation was tested with PVP40 as the crowder.
Collapse
Affiliation(s)
- Nataly Puerta Cavanzo
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, Netherlands.,MATRIX Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Emilia Bigaeva
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, Netherlands
| | - Miriam Boersema
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, Netherlands
| | - Ruud A Bank
- MATRIX Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
39
|
Roach KM, Castells E, Dixon K, Mason S, Elliott G, Marshall H, Poblocka MA, Macip S, Richardson M, Khalfaoui L, Bradding P. Evaluation of Pirfenidone and Nintedanib in a Human Lung Model of Fibrogenesis. Front Pharmacol 2021; 12:679388. [PMID: 34712131 PMCID: PMC8546112 DOI: 10.3389/fphar.2021.679388] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction: Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal lung disease with a poor prognosis and increasing incidence. Pirfenidone and nintedanib are the only approved treatments for IPF but have limited efficacy and their mechanisms of action are poorly understood. Here we have examined the effects of pirfenidone and nintedanib in a human model of lung fibrogenesis, and compared these with the putative anti-fibrotic compounds Lipoxin A4 (LXA4), and senicapoc, a KCa3.1 ion channel blocker. Methods: Early fibrosis was induced in cultured human lung parenchyma using TGFβ1 for 7 days, ± pirfenidone, nintedanib, or LXA4. Pro-fibrotic responses were examined by RT-PCR, immunohistochemistry and soluble collagen secretion. Results: Thirty six out of eighty four IPF and fibrosis-associated genes tested were significantly upregulated by TGFβ1 in human lung parenchyma with a ≥0.5 log2FC (n = 32). Nintedanib (n = 13) reduced the mRNA expression of 14 fibrosis-associated genes including MMPs (MMP1,-4,-13,-14), integrin α2, CXCR4 and PDGFB, but upregulated α-smooth muscle actin (αSMA). Pirfenidone only reduced mRNA expression for MMP3 and -13. Senicapoc (n = 11) previously attenuated the expression of 28 fibrosis-associated genes, including αSMA, several growth factors, collagen type III, and αV/β6 integrins. Pirfenidone and nintedanib significantly inhibited TGFβ1-induced fibroblast proliferation within the tissue, but unlike senicapoc, neither pirfenidone nor nintedanib prevented increases in tissue αSMA expression. LXA4 was ineffective. Conclusions: Pirfenidone and nintedanib demonstrate modest anti-fibrotic effects and provide a benchmark for anti-fibrotic activity of new drugs in human lung tissue. Based on these data, we predict that the KCa3.1 blocker senicapoc will show greater benefit than either of these licensed drugs in IPF.
Collapse
Affiliation(s)
- K M Roach
- Department of Respiratory Sciences, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - E Castells
- Department of Respiratory Sciences, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - K Dixon
- Department of Respiratory Sciences, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - S Mason
- Department of Respiratory Sciences, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - G Elliott
- Department of Respiratory Sciences, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - H Marshall
- Department of Respiratory Sciences, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - M A Poblocka
- Mechanisms of Cancer and Ageing Lab, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - S Macip
- Mechanisms of Cancer and Ageing Lab, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom.,FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - M Richardson
- Department of Respiratory Sciences, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - L Khalfaoui
- Department of Respiratory Sciences, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - P Bradding
- Department of Respiratory Sciences, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
40
|
Gad ES, Salama AAA, El-Shafie MF, Arafa HMM, Abdelsalam RM, Khattab M. The Anti-fibrotic and Anti-inflammatory Potential of Bone Marrow-Derived Mesenchymal Stem Cells and Nintedanib in Bleomycin-Induced Lung Fibrosis in Rats. Inflammation 2020; 43:123-134. [PMID: 31646446 DOI: 10.1007/s10753-019-01101-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by progressive lung damage. Tyrosine kinase inhibitors are approved to treat people with IPF while bone marrow-derived mesenchymal stem cell therapy was previously suggested to inhibit pulmonary fibrosis through the alveolar epithelial cell repair. The present study aimed to evaluate the anti-inflammatory and anti-fibrotic effect of the bone marrow-derived mesenchymal stem cell (BM-MSC) therapy in comparison with nintedanib, a tyrosine kinase inhibitor, on improving survival in bleomycin-induced lung fibrosis in rats. Moreover, the combined therapy of BM-MSCs and nintedanib will be evaluated. In the present study, IPF was induced through intra-tracheal instillation of bleomycin (5 mg/kg) in rats then treatments were administered 14 days thereafter. Nintedanib (100 mg/kg, I.P.) was administered daily for 28 days, while BM-MSCs were injected once intravenously in tail vein in the dose 1 × 106 cells/ml/rat. In the present study, both treatment regimens effectively inhibited lung fibrosis through several pathways, suppressing tumor growth factor-β (TGF-β)/SMAD3 expression which is considered the master signaling pathway. Nintedanib and BLM-MSCs exerted their anti-inflammatory effect through minimizing the expression of TNF-α and IL-6. In addition, the histopathological examination of the lung tissue showed a significant decrease in the alveolar wall thickening, in the inflammatory infiltrate, and in the collagen fiber deposition in response to either nintedanib or BM-MSC and their combination. In conclusion, the therapeutic pulmonary anti-fibrotic activity of nintedanib or BM-MSC is mediated through their anti-inflammatory properties and inhibition of SMAD-3/TGF-β expression.
Collapse
Affiliation(s)
- E S Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - A A A Salama
- Department of Pharmacology, National Research Centre, Cairo, Egypt
| | - M F El-Shafie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - H M M Arafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Ahram Canadian University, Cairo, Egypt
| | - R M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
41
|
Mejías JC, Nelson MR, Liseth O, Roy K. A 96-well format microvascularized human lung-on-a-chip platform for microphysiological modeling of fibrotic diseases. LAB ON A CHIP 2020; 20:3601-3611. [PMID: 32990704 DOI: 10.1039/d0lc00644k] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Development of organoids and microfluidic on-chip models has enabled studies of organ-level disease pathophysiologies in vitro. However, current lung-on-a-chip platforms are primarily monolayer epithelial-endothelial co-cultures, separated by a thin membrane, lacking microvasculature-networks or interstitial-fibroblasts. Here we report the design, microfabrication, and characterization of a unique microphysiological on-chip device that recapitulates the human lung interstitium-airway interface through a 3D vascular network, and normal or diseased fibroblasts encapsulated within a fibrin-collagen hydrogel underneath an airlifted airway epithelium. By incorporating fibroblasts from donors with idiopathic pulmonary fibrosis (IPF), or healthy-donor fibroblasts treated with TGF-β1, we successfully created a fibrotic, alpha smooth muscle actin (αSMA)-positive disease phenotype which led to fibrosis-like transformation in club cells and ciliated cells in the airway. Using this device platform, we further modeled the cystic fibrosis (CF) epithelium and recruitment of neutrophils to the vascular networks. Our results suggest that this microphysiological model of the human lung could enable more pathophysiologically relevant studies of complex pulmonary diseases.
Collapse
Affiliation(s)
- Joscelyn C Mejías
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Marcus Center for Therapeutic Cell Characterization and Manufacturing (MCM3), Center for ImmunoEngineering, NSF ERC for Cell Manufacturing Technologies (CMaT), The Georgia Institute of Technology, EBB 3018, 950 Atlantic Dr, Atlanta, GA 30332, USA.
| | - Michael R Nelson
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Marcus Center for Therapeutic Cell Characterization and Manufacturing (MCM3), Center for ImmunoEngineering, NSF ERC for Cell Manufacturing Technologies (CMaT), The Georgia Institute of Technology, EBB 3018, 950 Atlantic Dr, Atlanta, GA 30332, USA.
| | - Olivia Liseth
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Marcus Center for Therapeutic Cell Characterization and Manufacturing (MCM3), Center for ImmunoEngineering, NSF ERC for Cell Manufacturing Technologies (CMaT), The Georgia Institute of Technology, EBB 3018, 950 Atlantic Dr, Atlanta, GA 30332, USA.
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Marcus Center for Therapeutic Cell Characterization and Manufacturing (MCM3), Center for ImmunoEngineering, NSF ERC for Cell Manufacturing Technologies (CMaT), The Georgia Institute of Technology, EBB 3018, 950 Atlantic Dr, Atlanta, GA 30332, USA.
| |
Collapse
|
42
|
Zhou BY, Wang WB, Wu XL, Zhang WJ, Zhou GD, Gao Z, Liu W. Nintedanib inhibits keloid fibroblast functions by blocking the phosphorylation of multiple kinases and enhancing receptor internalization. Acta Pharmacol Sin 2020; 41:1234-1245. [PMID: 32327724 PMCID: PMC7608201 DOI: 10.1038/s41401-020-0381-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/13/2020] [Indexed: 01/22/2023] Open
Abstract
Keloid is a benign skin tumor characterized by its cell hyperproliferative activity, invasion into normal skin, uncontrolled growth, overproduction and deposition of extracellular matrices and high recurrence rate after various therapies. Nintedanib is a receptor tyrosine kinase inhibitor targeting VEGF, PDGF, FGF, and TGF-β receptors with proved efficacy in anti-angiogenesis and in treating various types of cancers. In this study, we investigated the effects of nintedanib on keloid fibroblasts in both in vitro and ex vivo models. Keloid fibroblasts were prepared from 54 keloid scar samples in active stages collected from 49 patients. We found that nintedanib (1−4 μM) dose-dependently suppressed cell proliferation, induced G0/G1 cell cycle arrest, and inhibited migration and invasion of keloid fibroblasts. The drug also significantly inhibited the gene and protein expression of collagen I (COL-1) and III (COL-3), fibronectin (FN), and connective growth factor (CTGF), as well as the gene expression of other pathological factors, such as alpha smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), FK506-binding protein 10 (FKBP10), and heat shock protein 47 (HSP47) in keloid fibroblasts. Furthermore, nintedanib treatment significantly suppressed the phosphorylation of p38, JNK, ERK, STAT3, and Smad, enhanced endocytosis of various growth factor receptors. Using an ex vivo tissue explant model, we showed that nintedanib significantly suppressed cell proliferation, migration, and collagen production. The drug also significantly disrupted microvessel structure ex vivo. In summary, our results demonstrate that nintedanib is likely to become a potential targeted drug for keloid systemic therapy.
Collapse
|
43
|
Exhaled Biomarkers in Idiopathic Pulmonary Fibrosis-A Six-Month Follow-Up Study in Patients Treated with Pirfenidone. J Clin Med 2020; 9:jcm9082523. [PMID: 32764328 PMCID: PMC7465603 DOI: 10.3390/jcm9082523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/11/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
The mechanism of action of pirfenidone in idiopathic pulmonary fibrosis (IPF) has not been fully elucidated. To offer additional insight, we evaluated the change in the cytokine profile in exhaled breath condensate (EBC) following a six-month treatment with pirfenidone in patients with IPF. EBC concentrations of interleukin (IL)-6, IL-8, IL-15, TNF-α and VEGF-A were assessed with ELISA and compared at baseline and after six months of pirfenidone treatment. Twenty-nine patients with IPF and 13 controls were evaluated at baseline. With the exception of IL-8 concentration, which was lower in patients with IPF when compared to controls (p = 0.005), the cytokine levels did not differ between the groups. Despite the use of a high sensitivity assay, IL-8 reached detectable values only in 24% of IPF patients. EBC analysis after six months of treatment with pirfenidone did not reveal any differences in the cytokine levels. The change in EBC vascular endothelial growth factor A (VEGF-A) correlated with the change in the 6 min walk distance (r = 0.54, p = 0.045). We conclude that a six-month treatment with pirfenidone did not significantly change the EBC cytokine profile. Our findings support the potential usefulness of VEGF-A as a marker in IPF. The low EBC IL-8 level in patients with IPF is a novel finding which needs confirmation in larger studies.
Collapse
|
44
|
Juglanin alleviates bleomycin-induced lung injury by suppressing inflammation and fibrosis via targeting sting signaling. Biomed Pharmacother 2020; 127:110119. [DOI: 10.1016/j.biopha.2020.110119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
|
45
|
Ramirez-Rios S, Michallet S, Peris L, Barette C, Rabat C, Feng Y, Fauvarque MO, Andrieux A, Sadoul K, Lafanechère L. A New Quantitative Cell-Based Assay Reveals Unexpected Microtubule Stabilizing Activity of Certain Kinase Inhibitors, Clinically Approved or in the Process of Approval. Front Pharmacol 2020; 11:543. [PMID: 32425788 PMCID: PMC7204994 DOI: 10.3389/fphar.2020.00543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
Agents able to modify microtubule dynamics are important anticancer drugs. The absence of microtubules resulting from drug-induced depolymerization is easy to detect. However the detection of a stabilized microtubule network needs specific assays since there is not a significant visual difference between normal and stabilized microtubule networks. Here, we describe a quantitative cell-based assay, suitable for automation, which allows the detection of stabilized microtubules without the need of microscopic examination. The rationale of this assay is based on the drug-induced resistance of the microtubule network to the depolymerizing agent combretastatin A4 and the subsequent detection of the residual microtubules by immunoluminescence. Using this assay to screen a kinase inhibitor library allowed the selection of seven known kinase inhibitors: selonsertib, masatinib, intedanib, PF0477736, SNS-314 mesylate, MPI0479605, and ponatinib. The yet undescribed ability of these inhibitors to stabilize cellular microtubules was confirmed using additional markers of stable microtubules and time-lapse video-microscopy to track individual microtubules in living cells. None of the compounds interacted, however, directly with tubulin. By employing other inhibitors of the same kinases, which have structurally unrelated scaffolds, we determined if the microtubule stabilizing effect was due to the inhibition of the targeted kinase, or to an off-target effect. Many of these inhibitors are clinically approved or currently assayed in phase 2 or phase 3 clinical trials. Their microtubule-stabilizing effect may account for their therapeutic effect as well as for some of their adverse side effects. These results indicate also a possible repurposing of some of these drugs.
Collapse
Affiliation(s)
- Sacnicte Ramirez-Rios
- Institute for Advanced Biosciences, Team Regulation and Pharmacology of the Cytoskeleton, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Sophie Michallet
- Institute for Advanced Biosciences, Team Regulation and Pharmacology of the Cytoskeleton, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Leticia Peris
- Grenoble Institute of Neurosciences, INSERM U1216, Université Grenoble Alpes, CEA, Grenoble, France
| | - Caroline Barette
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGE, Genetics and Chemogenomics, Grenoble, France
| | - Clotilde Rabat
- Institute for Advanced Biosciences, Team Regulation and Pharmacology of the Cytoskeleton, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Yangbo Feng
- Reaction Biology Corporation, Malvern, PA, United States
| | - Marie-Odile Fauvarque
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGE, Genetics and Chemogenomics, Grenoble, France
| | - Annie Andrieux
- Grenoble Institute of Neurosciences, INSERM U1216, Université Grenoble Alpes, CEA, Grenoble, France
| | - Karin Sadoul
- Institute for Advanced Biosciences, Team Regulation and Pharmacology of the Cytoskeleton, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, Team Regulation and Pharmacology of the Cytoskeleton, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
46
|
Yu DH, Ruan XL, Huang JY, Liu XP, Ma HL, Chen C, Hu WD, Li S. Analysis of the Interaction Network of Hub miRNAs-Hub Genes, Being Involved in Idiopathic Pulmonary Fibers and Its Emerging Role in Non-small Cell Lung Cancer. Front Genet 2020; 11:302. [PMID: 32300359 PMCID: PMC7142269 DOI: 10.3389/fgene.2020.00302] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic interstitial lung disease with lesions confined to the lungs. To identify meaningful microRNA (miRNA) and gene modules related to the IPF progression, GSE32537 (RNA-sequencing data) and GSE32538 (miRNA-sequencing data) were downloaded and processed, and then weighted gene co-expression network analysis (WGCNA) was applied to construct gene co-expression networks and miRNA co-expression networks. GSE10667, GSE70866, and GSE27430 were used to make a reasonable validation for the results and evaluate the clinical significance of the genes and the miRNAs. Six hub genes (COL3A1, COL1A2, OGN, COL15A1, ASPN, and MXRA5) and seven hub miRNAs (hsa-let-7b-5p, hsa-miR-26a-5p, hsa-miR-25-3p, hsa-miR-29c-3p, hsa-let-7c-5p, hsa-miR-29b-3p, and hsa-miR-26b-5p) were clarified and validated. Meanwhile, iteration network of hub miRNAs-hub genes was constructed, and the emerging role of the network being involved in non-small cell lung cancer (NSCLC) was also analyzed by several webtools. The expression levels of hub genes were different between normal lung tissues and NSCLC tissues. Six genes (COL3A1, COL1A2, OGN, COL15A1, ASPN, and MXRA5) and three miRNAs (hsa-miR-29c-3p, hsa-let-7c-5p, and hsa-miR-29b-3p) were related to the survival time of lung adenocarcinoma (LUAD). The interaction network of hub miRNAs-hub genes might provide common mechanisms involving in IPF and NSCLC. More importantly, useful clues were provided for clinical treatment of both diseases based on novel molecular advances.
Collapse
Affiliation(s)
- Dong Hu Yu
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiao-Lan Ruan
- Department of Hematology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Jing-Yu Huang
- Department of Thoracic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiao-Ping Liu
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hao-Li Ma
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center, Wuhan University, Wuhan, China
| | - Chen Chen
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center, Wuhan University, Wuhan, China
| | - Wei-Dong Hu
- Department of Thoracic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Sheng Li
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center, Wuhan University, Wuhan, China
| |
Collapse
|
47
|
Savary G, Dewaeles E, Diazzi S, Buscot M, Nottet N, Fassy J, Courcot E, Henaoui IS, Lemaire J, Martis N, Van der Hauwaert C, Pons N, Magnone V, Leroy S, Hofman V, Plantier L, Lebrigand K, Paquet A, Lino Cardenas CL, Vassaux G, Hofman P, Günther A, Crestani B, Wallaert B, Rezzonico R, Brousseau T, Glowacki F, Bellusci S, Perrais M, Broly F, Barbry P, Marquette CH, Cauffiez C, Mari B, Pottier N. The Long Noncoding RNA DNM3OS Is a Reservoir of FibromiRs with Major Functions in Lung Fibroblast Response to TGF-β and Pulmonary Fibrosis. Am J Respir Crit Care Med 2020; 200:184-198. [PMID: 30964696 DOI: 10.1164/rccm.201807-1237oc] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rationale: Given the paucity of effective treatments for idiopathic pulmonary fibrosis (IPF), new insights into the deleterious mechanisms controlling lung fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. TGF-β (transforming growth factor-β) is the main profibrotic factor, but its inhibition is associated with severe side effects because of its pleiotropic role. Objectives: To determine if downstream noncoding effectors of TGF-β in fibroblasts may represent new effective therapeutic targets whose modulation may be well tolerated. Methods: We investigated the whole noncoding fraction of TGF-β-stimulated lung fibroblast transcriptome to identify new genomic determinants of lung fibroblast differentiation into myofibroblasts. Differential expression of the long noncoding RNA (lncRNA) DNM3OS (dynamin 3 opposite strand) and its associated microRNAs (miRNAs) was validated in a murine model of pulmonary fibrosis and in IPF tissue samples. Distinct and complementary antisense oligonucleotide-based strategies aiming at interfering with DNM3OS were used to elucidate the role of DNM3OS and its associated miRNAs in IPF pathogenesis. Measurements and Main Results: We identified DNM3OS as a fibroblast-specific critical downstream effector of TGF-β-induced lung myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to three distinct profibrotic mature miRNAs (i.e., miR-199a-5p/3p and miR-214-3p), which influence SMAD and non-SMAD components of TGF-β signaling in a multifaceted way. In vivo, we showed that interfering with DNM3OS function not only prevents lung fibrosis but also improves established pulmonary fibrosis. Conclusions: Pharmacological approaches aiming at interfering with the lncRNA DNM3OS may represent new effective therapeutic strategies in IPF.
Collapse
Affiliation(s)
- Grégoire Savary
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France.,2 EA 4483-IMPECS and
| | | | - Serena Diazzi
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Matthieu Buscot
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France.,3 Département de Pneumologie, CHU-Nice
| | - Nicolas Nottet
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Julien Fassy
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | | | - Imène-Sarah Henaoui
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | | | - Nihal Martis
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France.,3 Département de Pneumologie, CHU-Nice
| | | | - Nicolas Pons
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Virginie Magnone
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Sylvie Leroy
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France.,3 Département de Pneumologie, CHU-Nice
| | - Véronique Hofman
- 4 Laboratory of Clinical and Experimental Pathology and Hospital-Integrated Biobank (BB-0033-00025), CHU Nice, and.,5 CNRS, INSERM, Institute for Research on Cancer and Aging, FHU-OncoAge, Université Côte d'Azur, Nice, France
| | - Laurent Plantier
- 6 Centre d'Étude des Pathologies Respiratoires-CEPR, INSERM, UMR1100, Labex Mabimprove, Université François Rabelais, Tours, France
| | - Kevin Lebrigand
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Agnès Paquet
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | | | - Georges Vassaux
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Paul Hofman
- 4 Laboratory of Clinical and Experimental Pathology and Hospital-Integrated Biobank (BB-0033-00025), CHU Nice, and.,5 CNRS, INSERM, Institute for Research on Cancer and Aging, FHU-OncoAge, Université Côte d'Azur, Nice, France
| | - Andreas Günther
- 7 Center for Interstitial and Rare Diseases and Cardiopulmonary Institute and.,8 European IPF Registry and Biobank and
| | - Bruno Crestani
- 8 European IPF Registry and Biobank and.,9 Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, INSERM U1152, Université Paris Diderot, LABEX Inflamex, DHU FIRE, Paris, France; and
| | | | - Roger Rezzonico
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Thierry Brousseau
- 11 Service de Biochimie Automatisée, Protéines et Biologie Prédictive
| | | | - Saverio Bellusci
- 13 Excellence Cluster Cardio-Pulmonary System, German Center for Lung Research, Justus-Liebig-University Gießen, Giessen, Germany
| | | | - Franck Broly
- 2 EA 4483-IMPECS and.,15 Service de Toxicologie et Génopathies, CHU Lille, Lille, France
| | - Pascal Barbry
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | | | | | - Bernard Mari
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Nicolas Pottier
- 2 EA 4483-IMPECS and.,15 Service de Toxicologie et Génopathies, CHU Lille, Lille, France
| |
Collapse
|
48
|
Abstract
The tumor microenvironment (TME) is a complex ecosystem, including blood vessels,
immune cells, fibroblasts, extracellular matrix, cytokines, hormones, and so on.
The TME differs from the normal tissue environment (NTE) in many aspects, such
as tissue architecture, chronic inflammation, level of oxygen and pH,
nutritional state of the cells, as well as tissue firmness. The NTE can inhibit
the growth of cancer at the early tumorigenesis phase, whereas the TME promotes
the growth of cancer in general, although it may have some anticancer effects.
In particular, the TME plays a crucial role in the generation and maintenance of
cancer stem cells, which lie at the root of cancer growth. Therefore,
normalization of the TME to the NTE may inhibit cancer growth or improve cancer
therapeutic efficiency. This review focuses on the recent emerging approaches
for this normalization and the action mechanisms.
Collapse
Affiliation(s)
- Jie Zheng
- 1 Southeast University, Nanjing, China
| | - Peng Gao
- 2 Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
49
|
Kishore K, Singh A, Verma A, Singh A. Nintedanib for the treatment of idiopathic pulmonary fibrosis: An Indian perspective. THE JOURNAL OF ASSOCIATION OF CHEST PHYSICIANS 2020. [DOI: 10.4103/jacp.jacp_35_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
50
|
Du MY, Duan JX, Zhang CY, Yang HH, Guan XX, Zhong WJ, Liu YZ, Li ZM, Cheng YR, Zhou Y, Guan CX. Psoralen attenuates bleomycin-induced pulmonary fibrosis in mice through inhibiting myofibroblast activation and collagen deposition. Cell Biol Int 2020; 44:98-107. [PMID: 31329322 DOI: 10.1002/cbin.11205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/16/2019] [Indexed: 01/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) and chronic inflammation with limited therapeutic options. Psoralen, a major active component extracted from Psoralea corylifolia L. seed, has several biological effects. However, the role of psoralen in IPF is still unclear. Here, we hypothesized that psoralen played an essential role in IPF in the inhibition of fibroblast proliferation and inflammatory response. A murine model of IPF was established by injecting bleomycin (BLM) intratracheally, and psoralen was administered for 14 days from the 7th to 21st day after BLM injection. Our results demonstrated that psoralen treatment reduced body weight loss and improved the survival rate of mice with IPF. Histological and immunofluorescent examination showed that psoralen alleviated BLM-induced lung parenchymal inflammatory and fibrotic alteration. Furthermore, psoralen inhibited proliferation and collagen synthesis of mouse fibroblasts and partially reversed BLM-induced expression of α-smooth muscle actin at both the tissue and cell level. Moreover, psoralen decreased the expression of transforming growth factor-β1, interleukin-1β, and tumor necrosis factor-α in the lungs of BLM-stimulated mice. Our results reveale for the first time that psoralen exerts therapeutic effects against IPF in a BLM-induced murine model.
Collapse
Affiliation(s)
- Ming-Yuan Du
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.,Department of Vascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, China
| | - Jia-Xi Duan
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chen-Yu Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Hui-Hui Yang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Xin-Xin Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Wen-Jing Zhong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Yan-Zhe Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Zi-Ming Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Yu-Rui Cheng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| |
Collapse
|