1
|
Teng M, Wu TJ, Jing X, Day BW, Pritchard KA, Naylor S, Teng RJ. Temporal Dynamics of Oxidative Stress and Inflammation in Bronchopulmonary Dysplasia. Int J Mol Sci 2024; 25:10145. [PMID: 39337630 PMCID: PMC11431892 DOI: 10.3390/ijms251810145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common lung complication of prematurity. Despite extensive research, our understanding of its pathophysiology remains limited, as reflected by the stable prevalence of BPD. Prematurity is the primary risk factor for BPD, with oxidative stress (OS) and inflammation playing significant roles and being closely linked to premature birth. Understanding the interplay and temporal relationship between OS and inflammation is crucial for developing new treatments for BPD. Animal studies suggest that OS and inflammation can exacerbate each other. Clinical trials focusing solely on antioxidants or anti-inflammatory therapies have been unsuccessful. In contrast, vitamin A and caffeine, with antioxidant and anti-inflammatory properties, have shown some efficacy, reducing BPD by about 10%. However, more than one-third of very preterm infants still suffer from BPD. New therapeutic agents are needed. A novel tripeptide, N-acetyl-lysyltyrosylcysteine amide (KYC), is a reversible myeloperoxidase inhibitor and a systems pharmacology agent. It reduces BPD severity by inhibiting MPO, enhancing antioxidative proteins, and alleviating endoplasmic reticulum stress and cellular senescence in a hyperoxia rat model. KYC represents a promising new approach to BPD treatment.
Collapse
Affiliation(s)
- Michelle Teng
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (M.T.); (T.-J.W.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Tzong-Jin Wu
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (M.T.); (T.-J.W.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Xigang Jing
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (M.T.); (T.-J.W.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Billy W. Day
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Kirkwood A. Pritchard
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
- Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Stephen Naylor
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Ru-Jeng Teng
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (M.T.); (T.-J.W.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| |
Collapse
|
2
|
Endesfelder S. Caffeine: The Story beyond Oxygen-Induced Lung and Brain Injury in Neonatal Animal Models-A Narrative Review. Antioxidants (Basel) 2024; 13:1076. [PMID: 39334735 PMCID: PMC11429035 DOI: 10.3390/antiox13091076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Caffeine is one of the most commonly used drugs in intensive care to stimulate the respiratory control mechanisms of very preterm infants. Respiratory instability, due to the degree of immaturity at birth, results in apnea of prematurity (AOP), hyperoxic, hypoxic, and intermittent hypoxic episodes. Oxidative stress cannot be avoided as a direct reaction and leads to neurological developmental deficits and even a higher prevalence of respiratory diseases in the further development of premature infants. Due to the proven antioxidant effect of caffeine in early use, largely protective effects on clinical outcomes can be observed. This is also impressively observed in experimental studies of caffeine application in oxidative stress-adapted rodent models of damage to the developing brain and lungs. However, caffeine shows undesirable effects outside these oxygen toxicity injury models. This review shows the effects of caffeine in hyperoxic, hypoxic/hypoxic-ischemic, and intermittent hypoxic rodent injury models, but also the negative effects on the rodent organism when caffeine is administered without exogenous oxidative stress. The narrative analysis of caffeine benefits in cerebral and pulmonary preterm infant models supports protective caffeine use but should be given critical consideration when considering caffeine treatment beyond the recommended corrected gestational age.
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
3
|
Dilli D, Taşoğlu İ, Sarı E, Akduman H, Yumuşak N, Tümer NB, Salar S. Therapeutic Role of Astaxanthin and Resveratrol in an Experimental Rat Model of Supraceliac Aortic Ischemia-Reperfusion. Am J Perinatol 2024; 41:1069-1076. [PMID: 35644129 DOI: 10.1055/s-0042-1748324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE The aim of the study is to investigate the therapeutic effects of astaxanthin (AST) and resveratrol (RVT) on multiorgan damage in an animal model of the supraceliac aortic ischemia-reperfusion (I/R). METHODS In this study, 28 rats (n = 7/group), 200 to 250 g in weight, were randomized to four groups (1: Sham, 2: Control + I/R, 3: AST + I/R, and 4: RVT + I/R). Following the abdominal incision, aortic dissection was performed in the sham group without injury. Other groups underwent I/R injury via supraceliac aortic clamping (20 minutes) and reperfusion. The rats were administered olive oil (3 mL/kg) orally for 2 weeks before and 1 week after the laparotomy. Additionally, oral AST (10 mg/kg) or RVT (50 mg/kg) was given to the study groups. All rats were sacrificed on the 3rd week of the experiment after blood samples were taken for analysis. Multiple rat tissues were removed. RESULTS We found that RVT increased total antioxidant status (TAS) and superoxide dismutase (SOD) levels, and decreased total oxidant status (TOS), oxidative stress index (OSI), myeloperoxidase (MPO), and malondialdehyde (MDA) levels, while AST increased the levels of TAS, decreased TNF-α, MDA, TOS, and OSI (p <0.05). Pathological investigations of the rat tissues revealed that both AST and RVT ameliorated tissue damage and apoptosis. CONCLUSION Our study suggests that AST and RVT might show therapeutic effects against oxidative tissue damage and apoptosis in an animal model of aortic I/R. Further studies are required. KEY POINTS · Major congenital heart diseases are at high risk of multiorgan damage.. · Re-establishment of blood flow may result in ischemia-reperfusion (I/R) injury.. · Astaxanthin and resveratrol may have therapeutic effects against I/R injury..
Collapse
Affiliation(s)
- Dilek Dilli
- Department of Neonatology, University of Health Sciences of Turkey, Dr. Sami Ulus Maternity and Children Training and Research Hospital, Ankara, Turkey
| | - İrfan Taşoğlu
- Department of Cardiovascular Surgery, University of Health Sciences of Turkey, Türkiye Yüksek İhtisas Eğitim ve Araştırma Hastanesi, Ankara City Hospital, Ankara, Turkey
| | - Eyüp Sarı
- Department of Management, Gülhane Faculty of Medicine/Ankara Provincial Health Directorate, University of Health Sciences of Turkey, Public Hospitals Services Presidency, Ankara, Turkey
| | - Hasan Akduman
- Department of Neonatology, University of Health Sciences of Turkey, Dr. Sami Ulus Maternity and Children Training and Research Hospital, Ankara, Turkey
| | - Nihat Yumuşak
- Department of Pathology, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey
| | - Naim Boran Tümer
- Department of Cardiovascular Surgery, University of Health Sciences of Turkey, Türkiye Yüksek İhtisas Eğitim ve Araştırma Hastanesi, Ankara City Hospital, Ankara, Turkey
| | - Salih Salar
- Department of Laboratory, Saki Yenilli Experimental Animals Production Laboratory, Ankara, Turkey
| |
Collapse
|
4
|
Endesfelder S, Schmitz T, Bührer C. Bilirubin Exerts Protective Effects on Alveolar Type II Pneumocytes in an In Vitro Model of Oxidative Stress. Int J Mol Sci 2024; 25:5323. [PMID: 38791361 PMCID: PMC11121655 DOI: 10.3390/ijms25105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Newborn infants face a rapid surge of oxygen and a more protracted rise of unconjugated bilirubin after birth. Bilirubin has a strong antioxidant capacity by scavenging free radicals, but it also exerts direct toxicity. This study investigates whether cultured rat alveolar epithelial cells type II (AEC II) react differently to bilirubin under different oxygen concentrations. The toxic threshold concentration of bilirubin was narrowed down by means of a cell viability test. Subsequent analyses of bilirubin effects under 5% oxygen and 80% oxygen compared to 21% oxygen, as well as pretreatment with bilirubin after 4 h and 24 h of incubation, were performed to determine the induction of apoptosis and the gene expression of associated transcripts of cell death, proliferation, and redox-sensitive transcription factors. Oxidative stress led to an increased rate of cell death and induced transcripts of redox-sensitive signaling pathways. At a non-cytotoxic concentration of 400 nm, bilirubin attenuated oxidative stress-induced responses and possibly mediated cellular antioxidant defense by influencing Nrf2/Hif1α- and NFκB-mediated signaling pathways. In conclusion, the study demonstrates that rat AEC II cells are protected from oxidative stress-induced impairment by low-dose bilirubin.
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Neonatology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (T.S.); (C.B.)
| | | | | |
Collapse
|
5
|
Yang K, Liu J, He T, Dong W. Caffeine and neonatal acute kidney injury. Pediatr Nephrol 2024; 39:1355-1367. [PMID: 37665410 DOI: 10.1007/s00467-023-06122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Abstract
Acute kidney injury is one of the most threatening diseases in neonates, with complex pathogenesis and limited treatment options. Caffeine is a commonly used central nervous system stimulant for treating apnea in preterm infants. There is compelling evidence that caffeine may have potential benefits for preventing neonatal acute kidney injury, but comprehensive reports are lacking in this area. Hence, this review aims to provide a summary of clinical data on the potential benefits of caffeine in improving neonatal acute kidney injury. Additionally, it delves into the molecular mechanisms underlying caffeine's effects on acute kidney injury, with a focus on various aspects such as oxidative stress, adenosine receptors, mitochondrial dysfunction, endoplasmic reticulum stress, inflammasome, autophagy, p53, and gut microbiota. The ultimate goal of this review is to provide information for healthcare professionals regarding the link between caffeine and neonatal acute kidney injury and to identify gaps in our current understanding.
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Jinjing Liu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Ting He
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China.
| |
Collapse
|
6
|
Protective Effects of Early Caffeine Administration in Hyperoxia-Induced Neurotoxicity in the Juvenile Rat. Antioxidants (Basel) 2023; 12:antiox12020295. [PMID: 36829854 PMCID: PMC9952771 DOI: 10.3390/antiox12020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
High-risk preterm infants are affected by a higher incidence of cognitive developmental deficits due to the unavoidable risk factor of oxygen toxicity. Caffeine is known to have a protective effect in preventing bronchopulmonary dysplasia associated with improved neurologic outcomes, although very early initiation of therapy is controversial. In this study, we used newborn rats in an oxygen injury model to test the hypothesis that near-birth caffeine administration modulates neuronal maturation and differentiation in the hippocampus of the developing brain. For this purpose, newborn Wistar rats were exposed to 21% or 80% oxygen on the day of birth for 3 or 5 days and treated with vehicle or caffeine (10 mg/kg/48 h). Postnatal exposure to 80% oxygen resulted in a drastic reduction of associated neuronal mediators for radial glia, mitotic/postmitotic neurons, and impaired cell-cycle regulation, predominantly persistent even after recovery to room air until postnatal day 15. Systemic caffeine administration significantly counteracted the effects of oxygen insult on neuronal maturation in the hippocampus. Interestingly, under normoxia, caffeine inhibited the transcription of neuronal mediators of maturing and mature neurons. The early administration of caffeine modulated hyperoxia-induced decreased neurogenesis in the hippocampus and showed neuroprotective properties in the neonatal rat oxygen toxicity model.
Collapse
|
7
|
Wang X, Lv S, Sun J, Zhang M, Zhang L, Sun Y, Zhao Z, Wang D, Zhao X, Zhang J. Caffeine reduces oxidative stress to protect against hyperoxia-induced lung injury via the adenosine A2A receptor/cAMP/PKA/Src/ERK1/2/p38MAPK pathway. Redox Rep 2022; 27:270-278. [DOI: 10.1080/13510002.2022.2143114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xijuan Wang
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| | - Shuai Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jianwei Sun
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| | - Meihui Zhang
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| | - Lei Zhang
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| | - Yan Sun
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| | - Ziyan Zhao
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| | - Dandan Wang
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| | - Xinjing Zhao
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| | - Jiajie Zhang
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| |
Collapse
|
8
|
Alva R, Mirza M, Baiton A, Lazuran L, Samokysh L, Bobinski A, Cowan C, Jaimon A, Obioru D, Al Makhoul T, Stuart JA. Oxygen toxicity: cellular mechanisms in normobaric hyperoxia. Cell Biol Toxicol 2022; 39:111-143. [PMID: 36112262 PMCID: PMC9483325 DOI: 10.1007/s10565-022-09773-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
In clinical settings, oxygen therapy is administered to preterm neonates and to adults with acute and chronic conditions such as COVID-19, pulmonary fibrosis, sepsis, cardiac arrest, carbon monoxide poisoning, and acute heart failure. In non-clinical settings, divers and astronauts may also receive supplemental oxygen. In addition, under current standard cell culture practices, cells are maintained in atmospheric oxygen, which is several times higher than what most cells experience in vivo. In all the above scenarios, the elevated oxygen levels (hyperoxia) can lead to increased production of reactive oxygen species from mitochondria, NADPH oxidases, and other sources. This can cause cell dysfunction or death. Acute hyperoxia injury impairs various cellular functions, manifesting ultimately as physiological deficits. Chronic hyperoxia, particularly in the neonate, can disrupt development, leading to permanent deficiencies. In this review, we discuss the cellular activities and pathways affected by hyperoxia, as well as strategies that have been developed to ameliorate injury.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Maha Mirza
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Adam Baiton
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lucas Lazuran
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lyuda Samokysh
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Ava Bobinski
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Cale Cowan
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Alvin Jaimon
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Dede Obioru
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Tala Al Makhoul
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
9
|
Yuan Y, Yang Y, Lei X, Dong W. Caffeine and bronchopulmonary dysplasia: Clinical benefits and the mechanisms involved. Pediatr Pulmonol 2022; 57:1392-1400. [PMID: 35318830 DOI: 10.1002/ppul.25898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/05/2022] [Accepted: 03/16/2022] [Indexed: 11/06/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic respiratory disease that occurs during the neonatal period and is commonly associated with prematurity. This condition results in a severe economic burden on society and the families involved. Caffeine is used not only for the treatment of apnea in prematurity, but also for the prevention of BPD. There are multiple clinical benefits of caffeine treatment, including improved extubation success, a reduced duration of mechanical ventilation, improved lung function, and a reduction of patent ductus arteriosus requiring treatment. These clinical benefits of caffeine for the treatment of BPD are supported by both clinical trials and evidence from animal models. However, the mechanism by which caffeine protects against BPD remains unclear. Here, we review the clinical value of caffeine in the prevention of BPD and its potential mechanisms of action, including anti-inflammatory, antioxidant, antifibrotic, and antiapoptotic properties, the regulation of angiogenesis, and diuretic effects. Our aim is to provide a new theoretical basis for the clinical treatment of BPD.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Pediatrics, Division of Neonatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang Yang
- Department of Pediatrics, Division of Neonatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoping Lei
- Department of Pediatrics, Division of Neonatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenbin Dong
- Department of Pediatrics, Division of Neonatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
The Conflicting Role of Caffeine Supplementation on Hyperoxia-Induced Injury on the Cerebellar Granular Cell Neurogenesis of Newborn Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5769784. [PMID: 35693697 PMCID: PMC9175096 DOI: 10.1155/2022/5769784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
Preterm birth disrupts cerebellar development, which may be mediated by systemic oxidative stress that damages neuronal developmental stages. Impaired cerebellar neurogenesis affects several downstream targets important for cognition, emotion, and speech. In this study, we demonstrate that oxidative stress induced with high oxygen (80%) for three or five postnatal days (P3/P5) could significantly damage neurogenesis and proliferative capacity of granular cell precursor and Purkinje cells in rat pups. Reversal of cellular neuronal damage after recovery to room air (P15) was augmented by treatment with caffeine. However, downstream transcripts important for migration and differentiation of postmitotic granular cells were irreversibly reduced by hyperoxia, without rescue by caffeine. Protective effects of caffeine in the cerebellum were limited to neuronal survival but failed to restore important transcript signatures.
Collapse
|
11
|
Holzfurtner L, Shahzad T, Dong Y, Rekers L, Selting A, Staude B, Lauer T, Schmidt A, Rivetti S, Zimmer KP, Behnke J, Bellusci S, Ehrhardt H. When inflammation meets lung development-an update on the pathogenesis of bronchopulmonary dysplasia. Mol Cell Pediatr 2022; 9:7. [PMID: 35445327 PMCID: PMC9021337 DOI: 10.1186/s40348-022-00137-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Even more than 50 years after its initial description, bronchopulmonary dysplasia (BPD) remains one of the most important and lifelong sequelae following premature birth. Tremendous efforts have been undertaken since then to reduce this ever-increasing disease burden but a therapeutic breakthrough preventing BPD is still not in sight. The inflammatory response provoked in the immature lung is a key driver of distorted lung development and impacts the formation of alveolar, mesenchymal, and vascular structures during a particularly vulnerable time-period. During the last 5 years, new scientific insights have led to an improved pathomechanistic understanding of BPD origins and disease drivers. Within the framework of current scientific progress, concepts involving disruption of the balance of key inflammatory and lung growth promoting pathways by various stimuli, take center stage. Still today, the number of efficient therapeutics available to prevent BPD is limited to a few, well-established pharmacological interventions including postnatal corticosteroids, early caffeine administration, and vitamin A. Recent advances in the clinical care of infants in the neonatal intensive care unit (NICU) have led to improvements in survival without a consistent reduction in the incidence of BPD. Our update provides latest insights from both preclinical models and clinical cohort studies and describes novel approaches to prevent BPD.
Collapse
Affiliation(s)
- Lena Holzfurtner
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Ying Dong
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Lisa Rekers
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Ariane Selting
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Birte Staude
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Tina Lauer
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Annesuse Schmidt
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Stefano Rivetti
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Aulweg 130, 35392, Giessen, Germany
| | - Klaus-Peter Zimmer
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Judith Behnke
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Aulweg 130, 35392, Giessen, Germany
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany.
| |
Collapse
|
12
|
Gilfillan M, Bhandari V. Moving Bronchopulmonary Dysplasia Research from the Bedside to the Bench. Am J Physiol Lung Cell Mol Physiol 2022; 322:L804-L821. [PMID: 35437999 DOI: 10.1152/ajplung.00452.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although advances in the respiratory management of extremely preterm infants have led to improvements in survival, this progress has not yet extended to a reduction in the incidence of bronchopulmonary dysplasia (BPD). BPD is a complex multifactorial condition that primarily occurs due to disturbances in the regulation of normal pulmonary airspace and vascular development. Preterm birth and exposure to invasive mechanical ventilation also compromises large airway development, leading to significant morbidity and mortality. Although both predisposing and protective genetic and environmental factors have been frequently described in the clinical literature, these findings have had limited impact on the development of effective therapeutic strategies. This gap is likely because the molecular pathways that underlie these observations are yet not fully understood, limiting the ability of researchers to identify novel treatments that can preserve normal lung development and/or enhance cellular repair mechanisms. In this review article, we will outline various well-established clinical observations whilst identifying key knowledge gaps that need to be filled with carefully designed pre-clinical experiments. We will address these issues by discussing controversial topics in the pathophysiology, the pathology and the treatment of BPD, including an evaluation of existing animal models that have been used to answer important questions.
Collapse
Affiliation(s)
- Margaret Gilfillan
- Division of Neonatology, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA
| | - Vineet Bhandari
- Division of Neonatology, The Children's Regional Hospital at Cooper/Cooper Medical School of Rowan University, Camden, NJ
| |
Collapse
|
13
|
Perinatal Hyperoxia and Developmental Consequences on the Lung-Brain Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5784146. [PMID: 35251477 PMCID: PMC8894035 DOI: 10.1155/2022/5784146] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
Approximately 11.1% of all newborns worldwide are born preterm. Improved neonatal intensive care significantly increased survival rates over the last decades but failed to reduce the risk for the development of chronic lung disease (i.e., bronchopulmonary dysplasia (BPD)) and impaired neurodevelopment (i.e., encephalopathy of prematurity (EoP)), two major long-term sequelae of prematurity. Premature infants are exposed to relative hyperoxia, when compared to physiological in-utero conditions and, if needed to additional therapeutic oxygen supplementation. Both are associated with an increased risk for impaired organ development. Since the detrimental effects of hyperoxia on the immature retina are known for many years, lung and brain have come into focus in the last decade. Hyperoxia-induced excessive production of reactive oxygen species leading to oxidative stress and inflammation contribute to pulmonary growth restriction and abnormal neurodevelopment, including myelination deficits. Despite a large body of studies, which unraveled important pathophysiological mechanisms for both organs at risk, the majority focused exclusively either on lung or on brain injury. However, considering that preterm infants suffering from BPD are at higher risk for poor neurodevelopmental outcome, an interaction between both organs seems plausible. This review summarizes recent findings regarding mechanisms of hyperoxia-induced neonatal lung and brain injury. We will discuss common pathophysiological pathways, which potentially link both injured organ systems. Furthermore, promises and needs of currently suggested therapies, including pharmacological and regenerative cell-based treatments for BPD and EoP, will be emphasized. Limited therapeutic approaches highlight the urgent need for a better understanding of the mechanisms underlying detrimental effects of hyperoxia on the lung-brain axis in order to pave the way for the development of novel multimodal therapies, ideally targeting both severe preterm birth-associated complications.
Collapse
|
14
|
Abstract
In evaluating vitamin E (VE) nutritional status of preterm infants, it is essential that any data should be compared with those of healthy term infants, and never with those of adults. Moreover, it should be evaluated in terms of gestational age (GA), not birth weight (BW), because placental transfer of most nutrients from mother to fetus is dependent on GA, not BW. Judging from the limited data during the last 75 years, there was no significant correlation between GA and VE concentrations in circulation or in the red blood cells (RBCs), leukocytes, and buccal mucosal cells. In addition, the oxidizability of polyunsaturated fatty acids (PUFAs) in plasma or RBCs, as targets for protection by VE chain-breaking ability, was lower in preterm infants. However, because of the minimal information available about hepatic VE levels, which is considered a key determinant of whole body VE status, the decision on whether VE status of preterm infants is comparable with that of term infants should be postponed. Clinical trials of VE supplementation in preterm infants were repeatedly undertaken to investigate whether VE reduces severity or inhibits development of several diseases specific to preterm infants, namely retinopathy of prematurity (ROP), bronchopulmonary dysplasia (BPD), and germinal matrix hemorrhage - intraventricular hemorrhage (GMH-IVH). Most of these trials resulted in a misfire, with a few exceptions for IVH prevention. However, almost all these studies were performed from 1980s to early 1990s, in the pre-surfactant era, and the study populations were composed of mid-preterm infants with GAs of approximately 30 weeks (wks). There is considerable difference in 'preterm infants' between the pre- and post-surfactant eras; modern neonatal medicine mainly treats preterm infants of 28 wks GA or less. Therefore, these results are difficult to apply in modern neonatal care. Before considering new trials of VE supplementation, we should fully understand modern neonatal medicine, especially the recent method of oxygen supplementation. Additionally, a deeper understanding of recent progress in pathophysiology and therapies for possible target diseases is necessary to decide whether VE administration is still worth re-challenging in modern neonatal intensive care units (NICUs). In this review, we present recent concepts and therapeutic trends in ROP, BPD, and GMH-IVH for those unfamiliar with neonatal medicine. Numerous studies have reported the possible involvement of reactive oxygen species (ROS)-induced damage in relation to supplemental oxygen use, inflammation, and immature antioxidant defense in the development of both BPD and ROP. Various antioxidants effectively prevented the exacerbation of BPD and ROP in animal models. In the future, VE should be re-attempted as a complementary factor in combination with various therapies for BPD, ROP, and GMH-IVH. Because VE is a natural and safe supplement, we are certain that it will attract attention again in preterm medicine.
Collapse
Affiliation(s)
- Tohru Ogihara
- Division of Neonatology, Department of Pediatrics, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan.
| | - Makoto Mino
- Division of Neonatology, Department of Pediatrics, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| |
Collapse
|
15
|
Qing C, Ziyun L, Xuefei Y, Xinyi Z, Xindong X, Jianhua F. Protective Effects of 18β-Glycyrrhetinic Acid on Neonatal Rats with Hyperoxia Exposure. Inflammation 2022; 45:1224-1238. [PMID: 34989920 DOI: 10.1007/s10753-021-01616-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/05/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a common devastating pulmonary complication in preterm infants. Supplemental oxygen is a lifesaving therapeutic measure used for premature infants with pulmonary insufficiency. However, oxygen toxicity is a significant trigger for BPD. Oxidative stress disrupts lung development, accompanied by increased pro-inflammatory cytokines and chemokines expression and immune cells infiltration in lung tissue. Licorice, a typical traditional herbal medicine, is commonly used in the medicine and food industries. 18β-Glycyrrhetinic acid (18β-GA), a primary active ingredient of licorice, has powerful anti-oxidative and anti-inflammatory effects. This study aimed to determine whether 18β-GA has a protective effect on neonatal rats with hyperoxia exposure. Newborn Sprague-Dawley rats were kept in either 21% (normoxia) or 80% O2 (hyperoxia) continuously from postnatal day (PN) 1 to 14. 18β-GA was injected intragastrically at 50 or 100 mg/kg body weight once a day from PN 1 to 14. We examined the body weight and alveolar development and measured ROS level and the markers of pulmonary inflammation. Mature-IL-1β and NF-κB pathway proteins, and the NLRP3 inflammasome, were assessed; concurrently, caspase-1 activity was measured. Our results indicated that hyperoxia resulted in alveolar simplification and decreased bodyweight of neonatal rats. Hyperoxia increased ROS level and pulmonary inflammation and activated NF-κB and the NLRP3 inflammasome. 18β-GA treatment inhibited the activation of NF-κB and the NLRP3 inflammasome, decreased ROS level and pulmonary inflammation, improved alveolar development, and increased the bodyweight of neonatal rats with hyperoxia exposure. Our study demonstrates that 18β-GA has a protective effect on neonatal rats with hyperoxia exposure.
Collapse
Affiliation(s)
- Cai Qing
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Liu Ziyun
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Yu Xuefei
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Zhao Xinyi
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Xue Xindong
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Fu Jianhua
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
16
|
Ozdemir R, Gokce IK, Tekin S, Cetin Taslidere A, Turgut H, Tanbek K, Gul CC, Deveci MF, Aslan M. The protective effects of apocynin in hyperoxic lung injury in neonatal rats. Pediatr Pulmonol 2022; 57:109-121. [PMID: 34581514 DOI: 10.1002/ppul.25707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/08/2022]
Abstract
AIM Inflammation and oxidate stress are significant factors in the pathogenesis of bronchopulmonary dysplasia (BPD). The aim of this study is to investigate the efficacy of apocynin (APO), an anti-inflammatory, antioxidant, and antiapoptotic drug, in the prophylaxis of neonatal hyperoxic lung injury. METHOD This experimental study included 40 neonatal rats divided into the control, APO, BPD, and BPD + APO groups. The control and APO groups were kept in a normal room environment, while the BPD and BPD + APO groups were kept in a hyperoxic environment. The rats in the APO and BPD + APO groups were administered intraperitoneal APO, while the control and BPD rats were administered ordinary saline. At the end of the trial, lung tissue was evaluated with respect to the degree of histopathological injury, apoptosis, oxidant and antioxidant capacity, and severity of inflammation. RESULT The BPD and BPD + APO groups exhibited higher mean histopathological injury and alveolar macrophage scores compared to the control and APO groups. Both scores were lower in the BPD + APO group in comparison to the BPD group. The BPD + APO group had a significantly lower average of TUNEL positive cells than the BPD group. The lung tissue examination indicated significantly higher levels of mean malondialdehyde (MDA), total oxidant status (TOS), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in the BPD group compared to the control and APO groups. While the TNF-α and IL-1β levels of the BPD + APO group were similar to that of the control group, the MDA and TOS levels were higher compared to the controls and lower compared to the BPD group. The BPD group demonstrated significantly lower levels/activities of mean total antioxidant status, glutathione reductase, superoxide dismutase, glutathione peroxidase in comparison to the control and APO groups. While the mean antioxidant enzyme activity of the BPD + APO group was lower than the control group, it was significantly higher compared to the BPD group. CONCLUSION This is the first study in the literature to reveal through an experimental neonatal hyperoxic lung injury that APO, an anti-inflammatory, antioxidant, and antiapoptotic drug, exhibits protective properties against the development of BPD.
Collapse
Affiliation(s)
- Ramazan Ozdemir
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Ismail Kursat Gokce
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Suat Tekin
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Asli Cetin Taslidere
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Hatice Turgut
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Cemile Ceren Gul
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Fatih Deveci
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Aslan
- Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| |
Collapse
|
17
|
Tian C, Li D, Fu J. Molecular Mechanism of Caffeine in Preventing Bronchopulmonary Dysplasia in Premature Infants. Front Pediatr 2022; 10:902437. [PMID: 35795332 PMCID: PMC9251307 DOI: 10.3389/fped.2022.902437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic respiratory complication commonly seen in premature infants. Following continuous advances in neonatal intensive care diagnosis and treatment technology, an increasing number of premature babies are being treated successfully. Despite these remarkable improvements, there has been no significant decline in the incidence of BPD; in fact, its incidence has increased as more extremely preterm infants survive. Therefore, in view of the impact of BPD on the physical and mental health of children and the increased familial and social burden on these children, early prevention of BPD is emphasized. In recent decades, the clinical application of caffeine in treating primary apnea in premature infants was shown not only to stimulate the respiratory center but also to confer obvious protection to the nervous and respiratory systems. Numerous clinical cross-sectional and longitudinal studies have shown that caffeine plays a significant role in the prevention and treatment of BPD, but there is a lack of overall understanding of its potential molecular mechanisms. In this review, we summarize the possible molecular mechanisms of caffeine in the prevention or treatment of BPD, aiming to better guide its clinical application.
Collapse
Affiliation(s)
- Congliang Tian
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Pediatrics, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Asbah A, Ummussaadah U, Parenden N, Putri ASW, Rosa RA, Rumata NR, Emran TB, Dhama K, Nainu F. Pharmacological Effect of Caffeine on Drosophila melanogaster: A Proof-of-Concept in vivo Study for Nootropic Investigation. ARCHIVES OF RAZI INSTITUTE 2021; 76:1645-1654. [PMID: 35546991 PMCID: PMC9083854 DOI: 10.22092/ari.2021.356628.1884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 06/15/2023]
Abstract
A comprehensive investigation into drug candidates with nootropic activity using a proper and high throughput yet economical model organism is an important issue to consider. This proof-of-concept study was carried out to determine whether Drosophila melanogaster can be used as an in vivo screening platform to assess the nootropic activity of certain candidates for the treatment of neurodegenerative diseases. To test this, caffeine was used as a nootropic compound and a Drosophila mutant line lacking PGRP-LB with hyperactivation of NF-κB leading to early death with neurodegenerative phenotype was used as a model organism. Caffeine was orally administered via food to the PGRP-LB mutant of D. melanogaster at different concentrations (0.4 mM, 0.08 mM, 0.016 mM) prior to phenotypical observations of the survival and locomotor activity, as well as gene expression analysis, to assess the expression level of sod1, sod2, and cat genes. The results pointed out that the lifespan of D. melanogaster treated with 0.016 mM caffeine was dramatically increased; nonetheless, no changes were observed in the locomotor activity. Phenotypical analysis using a T-maze vial test demonstrated a good cognitive improvement in response to caffeine administration. Molecular analysis revealed that caffeine at a concentration of 0,016 mM induced the expression of the endogenous antioxidant genes sod1 and cat, but not sod2, signifying that the increased lifespan may be associated with a marked improvement in cytoplasmic antioxidant function. In general, the findings of the present study are in line with those previously observed in the mammalian model organism. Therefore, it can be concluded that D. melanogaster can be used as a model organism in preliminary investigation and screening of nootropic candidates prior to further testing in its mammalian counterparts.
Collapse
Affiliation(s)
- A Asbah
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - U Ummussaadah
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - N Parenden
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - A S W Putri
- Faculty of Medicine, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - R A Rosa
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - N R Rumata
- Sekolah Tinggi Farmasi Makassar, Makassar, South Sulawesi, Indonesia
| | - T B Emran
- Department of Pharmacy, BGC Trust University, Chittagong-4381, Bangladesh
| | - K Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - F Nainu
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| |
Collapse
|
19
|
Oxygen Toxicity to the Immature Lung-Part I: Pathomechanistic Understanding and Preclinical Perspectives. Int J Mol Sci 2021; 22:ijms222011006. [PMID: 34681665 PMCID: PMC8540649 DOI: 10.3390/ijms222011006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/13/2023] Open
Abstract
In utero, the fetus and its lungs develop in a hypoxic environment, where HIF-1α and VEGFA signaling constitute major determinants of further development. Disruption of this homeostasis after preterm delivery and extrauterine exposure to high fractions of oxygen are among the key events leading to bronchopulmonary dysplasia (BPD). Reactive oxygen species (ROS) production constitutes the initial driver of pulmonary inflammation and cell death, altered gene expression, and vasoconstriction, leading to the distortion of further lung development. From preclinical studies mainly performed on rodents over the past two decades, the deleterious effects of oxygen toxicity and the injurious insults and downstream cascades arising from ROS production are well recognized. This article provides a concise overview of disease drivers and different therapeutic approaches that have been successfully tested within experimental models. Despite current studies, clinical researchers are still faced with an unmet clinical need, and many of these strategies have not proven to be equally effective in clinical trials. In light of this challenge, adapting experimental models to the complexity of the clinical situation and pursuing new directions constitute appropriate actions to overcome this dilemma. Our review intends to stimulate research activities towards the understanding of an important issue of immature lung injury.
Collapse
|
20
|
Bartman CM, Awari DW, Pabelick CM, Prakash YS. Intermittent Hypoxia-Hyperoxia and Oxidative Stress in Developing Human Airway Smooth Muscle. Antioxidants (Basel) 2021; 10:antiox10091400. [PMID: 34573032 PMCID: PMC8467919 DOI: 10.3390/antiox10091400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/24/2023] Open
Abstract
Premature infants are frequently and intermittently administered supplemental oxygen during hypoxic episodes, resulting in cycles of intermittent hypoxia and hyperoxia. The relatively hypoxic in utero environment is important for lung development while hyperoxia during the neonatal period is recognized as detrimental towards the development of diseases such as bronchopulmonary dysplasia and bronchial asthma. Understanding early mechanisms that link hypoxic, hyperoxic, and intermittent hypoxic-hyperoxic exposures to altered airway structure and function are key to developing advanced therapeutic approaches in the clinic. Changes in oxygen availability can be detrimental to cellular function and contribute to oxidative damage. Here, we sought to determine the effect of oxygen on mitochondria in human fetal airway smooth muscle cells exposed to either 5% O2, 21% O2, 40% O2, or cycles of 5% and 40% O2 (intermittent hypoxia-hyperoxia). Reactive oxygen species production, altered mitochondrial morphology, and changes in mitochondrial respiration were assessed in the context of the antioxidant N-acetylcysteine. Our findings show developing airway smooth muscle is differentially responsive to hypoxic, hyperoxic, or intermittent hypoxic-hyperoxic exposure in terms of mitochondrial structure and function. Cycling O2 decreased mitochondrial branching and branch length similar to hypoxia and hyperoxia in the presence of antioxidants. Additionally, hypoxia decreased overall mitochondrial respiration while the addition of antioxidants increased respiration in normoxic and O2-cycling conditions. These studies show the necessity of balancing oxidative damage and antioxidant defense systems in the developing airway.
Collapse
Affiliation(s)
- Colleen M. Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.W.A.); (C.M.P.)
- Correspondence: (C.M.B.); (Y.S.P.)
| | - Daniel Wasim Awari
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.W.A.); (C.M.P.)
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.W.A.); (C.M.P.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.W.A.); (C.M.P.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (C.M.B.); (Y.S.P.)
| |
Collapse
|
21
|
Di Fiore JM, Raffay TM. The relationship between intermittent hypoxemia events and neural outcomes in neonates. Exp Neurol 2021; 342:113753. [PMID: 33984336 DOI: 10.1016/j.expneurol.2021.113753] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/06/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
This brief review examines 1) patterns of intermittent hypoxemia in extremely preterm infants during early postnatal life, 2) the relationship between neonatal intermittent hypoxemia exposure and outcomes in both human and animal models, 3) potential mechanistic pathways, and 4) future alterations in clinical care that may reduce morbidity. Intermittent hypoxemia events are pervasive in extremely preterm infants (<28 weeks gestation at birth) during early postnatal life. An increased frequency of intermittent hypoxemia events has been associated with a range of poor neural outcomes including language and cognitive delays, motor impairment, retinopathy of prematurity, impaired control of breathing, and intraventricular hemorrhage. Neonatal rodent models have shown that exposure to short repetitive cycles of hypoxia induce a pathophysiological cascade. However, not all patterns of intermittent hypoxia are deleterious and some may even improve neurodevelopmental outcomes. Therapeutic interventions include supplemental oxygen, pressure support and pharmacologic drugs but prolonged hyperoxia and pressure exposure have been associated with cardiopulmonary morbidity. Therefore, it becomes imperative to distinguish high risk from neutral and/or even beneficial patterns of intermittent hypoxemia during early postnatal life. Identification of such patterns could improve clinical care with targeted interventions for high-risk patterns and minimal or no exposure to treatment modalities for low-risk patterns.
Collapse
Affiliation(s)
- Juliann M Di Fiore
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, OH, United States of America; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Thomas M Raffay
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, OH, United States of America; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
22
|
Pharmacodynamic Effects of Standard versus High Caffeine Doses in the Developing Brain of Neonatal Rats Exposed to Intermittent Hypoxia. Int J Mol Sci 2021; 22:ijms22073473. [PMID: 33801707 PMCID: PMC8037517 DOI: 10.3390/ijms22073473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Caffeine citrate, at standard doses, is effective for reducing the incidence of apnea of prematurity (AOP) and may confer neuroprotection and decrease neonatal morbidities in extremely low gestational age neonates (ELGANs) requiring oxygen therapy. We tested the hypothesis that high-dose caffeine (HiC) has no adverse effects on the neonatal brain. (2) Methods: Newborn rat pups were randomized to room air (RA), hyperoxia (Hx) or neonatal intermittent hypoxia (IH), from birth (P0) to P14 during which they received intraperitoneal injections of LoC (20 mg/kg on P0; 5 mg/kg/day on P1-P14), HiC (80 mg/kg; 20 mg/kg), or equivalent volume saline. Blood gases, histopathology, myelin and neuronal integrity, and adenosine receptor reactivity were assessed. (3) Results: Caffeine treatment in Hx influenced blood gases more than treatment in neonatal IH. Exposure to neonatal IH resulted in hemorrhage and higher brain width, particularly in layer 2 of the cerebral cortex. Both caffeine doses increased brain width in RA, but layer 2 was increased only with HiC. HiC decreased oxidative stress more effectively than LoC, and both doses reduced apoptosis biomarkers. In RA, both caffeine doses improved myelination, but the effect was abolished in Hx and neonatal IH. Similarly, both doses inhibited adenosine 1A receptor in all oxygen environments, but adenosine 2A receptor was inhibited only in RA and Hx. (4) Conclusions: Caffeine, even at high doses, when administered in normoxia, can confer neuroprotection, evidenced by reductions in oxidative stress, hypermyelination, and increased Golgi bodies. However, varying oxygen environments, such as Hx or neonatal IH, may alter and modify pharmacodynamic actions of caffeine and may even override the benefits caffeine.
Collapse
|
23
|
Interleukin-24 as a Pulmonary Target Cytokine in Bronchopulmonary Dysplasia. Cell Biochem Biophys 2021; 79:311-320. [PMID: 33683657 DOI: 10.1007/s12013-021-00968-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
The proliferation of fetal alveolar type II cells (FATIICs) was impaired in bronchopulmonary dysplasia (BPD), which is modulated by hyperoxia and inflammatory response. Interleukin 24 (IL-24), a cytokine produced by certain cell types, plays an essential role in inflammation and host protection against infection. However, the ability of FATIICs to produce IL-24 remains unclear, and the role of IL-24 in BPD progression is yet to be determined. With reverse transcription quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay, the authors evaluated whether FATIICs produce IL-24 in physiological conditions. The authors quantified IL-24 expression in the lungs of newborn rat pups exposed to hyperoxia (70% oxygen) and in FATIICs isolated on embryonic day 19 that were exposed to 95% oxygen or lipopolysaccharide (LPS). The role of IL-24 in FATIICs, cell proliferation, cell apoptosis, and cell cycle were further evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and flow cytometric analysis. Also, they assessed caspase-3 and SOCS3 mRNA in IL-24 siRNA-treated cells by using RT-qPCR. During culture, IL-24 mRNA and protein levels in FATIICs gradually decreased with FATIIC differentiation. IL-24 expression increased significantly in rat lungs exposed to hyperoxia and FATIICs exposed to oxygen or LPS. Recombinant IL-24 enhanced cell proliferation by decreasing the proportion of apoptotic cells and increasing the proportion of cells in the S phase. The IL-24 siRNA-treated cells expressed more caspase-3 mRNA. Furthermore, suppressor of cytokine signaling 3 (SOCS3) mRNA was significantly decreased in rats and FATIICs exposed to oxygen, whereas it dramatically increased in FATIICs exposed to LPS. The IL-24 siRNA-treated cells expressed more SOCS3 mRNA. These studies suggest IL-24 is a pulmonary target cytokine in BPD, and may possibly regulate SOCS3 in oxidative stress and inflammation of the lung.
Collapse
|
24
|
Giusto K, Wanczyk H, Jensen T, Finck C. Hyperoxia-induced bronchopulmonary dysplasia: better models for better therapies. Dis Model Mech 2021; 14:dmm047753. [PMID: 33729989 PMCID: PMC7927658 DOI: 10.1242/dmm.047753] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease caused by exposure to high levels of oxygen (hyperoxia) and is the most common complication that affects preterm newborns. At present, there is no cure for BPD. Infants can recover from BPD; however, they will suffer from significant morbidity into adulthood in the form of neurodevelopmental impairment, asthma and emphysematous changes of the lung. The development of hyperoxia-induced lung injury models in small and large animals to test potential treatments for BPD has shown some success, yet a lack of standardization in approaches and methods makes clinical translation difficult. In vitro models have also been developed to investigate the molecular pathways altered during BPD and to address the pitfalls associated with animal models. Preclinical studies have investigated the efficacy of stem cell-based therapies to improve lung morphology after damage. However, variability regarding the type of animal model and duration of hyperoxia to elicit damage exists in the literature. These models should be further developed and standardized, to cover the degree and duration of hyperoxia, type of animal model, and lung injury endpoint, to improve their translational relevance. The purpose of this Review is to highlight concerns associated with current animal models of hyperoxia-induced BPD and to show the potential of in vitro models to complement in vivo studies in the significant improvement to our understanding of BPD pathogenesis and treatment. The status of current stem cell therapies for treatment of BPD is also discussed. We offer suggestions to optimize models and therapeutic modalities for treatment of hyperoxia-induced lung damage in order to advance the standardization of procedures for clinical translation.
Collapse
Affiliation(s)
- Kiersten Giusto
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Todd Jensen
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
- Department of Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
25
|
Abstract
Bronchopulmonary dysplasia (BPD) is among the most severe complications of very premature birth. Clinical and laboratory studies indicate that lung immaturity, inflammatory lung injury, and disordered lung repair are the primary mechanisms responsible for the development of BPD. Caffeine, initiated within the first 10 days after birth, is one of few drug therapies shown to significantly decrease the risk of BPD in very low birth weight infants. This benefit is likely derived, at least in part, from reduced exposure to positive airway pressure and supplemental oxygen with caffeine therapy. Additional cardiorespiratory benefits of caffeine that may contribute to the lower risk of BPD include less frequent treatment for a PDA, improved pulmonary mechanics, and direct effects on pulmonary inflammation, alveolarization, and angiogenesis. Routine administration of caffeine is indicated in the vast majority of very low birth weight infants. However, current preventative strategies including widespread use of caffeine do not avert BPD in all cases. As such, there is continued need for novel methods to further reduce the risk of BPD in very low birth weight infants.
Collapse
Affiliation(s)
- Erik A Jensen
- Division of Neonatology and Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
26
|
Abstract
Caffeine as tested in the CAP trial is safe and effective for preterm infants with birthweights less than 1250 g. Evidence for its use beyond the indications and timing used in this trial is of low quality and conflicting. Some studies suggest that earlier use of caffeine increases the risk of mortality while others suggest it has important benefits. It appears that infants with apnea of prematurity and those receiving assisted ventilation are the most likely to benefit from caffeine. Based on currently available evidence, routine early prescription of caffeine does not appear to be indicated. Infants continue to have potentially damaging episodes of hypoxia secondary to apnea beyond 34 weeks' postmenstrual age. It is unclear whether prolonged use of caffeine improves outcomes in these infants. Randomized trials to resolve these uncertainties are required. They need to be large, at least the size of the CAP trial, and include neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Peter G Davis
- Department of Newborn Research, The Royal Women's Hospital, The University of Melbourne, 20 Flemington Rd, Parkville, VIC, 3052, Australia.
| |
Collapse
|
27
|
Unique Role of Caffeine Compared to Other Methylxanthines (Theobromine, Theophylline, Pentoxifylline, Propentofylline) in Regulation of AD Relevant Genes in Neuroblastoma SH-SY5Y Wild Type Cells. Int J Mol Sci 2020; 21:ijms21239015. [PMID: 33260941 PMCID: PMC7730563 DOI: 10.3390/ijms21239015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Methylxanthines are a group of substances derived from the purine base xanthine with a methyl group at the nitrogen on position 3 and different residues at the nitrogen on position 1 and 7. They are widely consumed in nutrition and used as pharmaceuticals. Here we investigate the transcriptional regulation of 83 genes linked to Alzheimer’s disease in the presence of five methylxanthines, including the most prominent naturally occurring methylxanthines—caffeine, theophylline and theobromine—and the synthetic methylxanthines pentoxifylline and propentofylline. Methylxanthine-regulated genes were found in pathways involved in processes including oxidative stress, lipid homeostasis, signal transduction, transcriptional regulation, as well as pathways involved in neuronal function. Interestingly, multivariate analysis revealed different or inverse effects on gene regulation for caffeine compared to the other methylxanthines, which was further substantiated by multiple comparison analysis, pointing out a distinct role for caffeine in gene regulation. Our results not only underline the beneficial effects of methylxanthines in the regulation of genes in neuroblastoma wild-type cells linked to neurodegenerative diseases in general, but also demonstrate that individual methylxanthines like caffeine mediate unique or inverse expression patterns. This suggests that the replacement of single methylxanthines by others could result in unexpected effects, which could not be anticipated by the comparison to other substances in this substance class.
Collapse
|
28
|
Effects of Phosphoethanolamine Supplementation on Mitochondrial Activity and Lipogenesis in a Caffeine Ingestion Caenorhabditis elegans Model. Nutrients 2020; 12:nu12113348. [PMID: 33143181 PMCID: PMC7694071 DOI: 10.3390/nu12113348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Caffeine intake is strongly linked to lipid metabolism. We previously reported the age-dependent physiological effects of caffeine intake in a Caenorhabditis elegans model. Since nutritional status can actively influence metabolism and overall health, in this study, we evaluated the effect of caffeine intake on lipid metabolism in adult-stage C. elegans. We found that, in C. elegans, fat storage and the level of phosphoethanolamine (PE) were significantly reduced with caffeine intake. In addition, mitochondrial activity decreased and mitochondrial morphology was disrupted, and the expression of oxidative stress response genes, hsp-6, gst-4, and daf-16, was induced by caffeine intake. Furthermore, the level of an energy metabolism sensor, phospho-AMP-activated protein kinase, was increased, whereas the expression of the sterol regulatory element binding protein gene and its target stearoyl-CoA desaturase genes, fat-5, -6, and -7, was decreased with caffeine intake. These findings suggest that caffeine intake causes mitochondrial dysfunction and reduces lipogenesis. Interestingly, these changes induced by caffeine intake were partially alleviated by PE supplementation, suggesting that the reduction in mitochondrial activity and lipogenesis is in part because of the low PE level, and proper dietary supplementation can improve organelle integrity.
Collapse
|
29
|
Chen CM, Hwang J, Chou HC, Chen C. Anti-Tn Monoclonal Antibody Attenuates Hyperoxia-Induced Lung Injury by Inhibiting Oxidative Stress and Inflammation in Neonatal Mice. Front Pharmacol 2020; 11:568502. [PMID: 33013407 PMCID: PMC7506044 DOI: 10.3389/fphar.2020.568502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Maternal immunization with Tn vaccine increases serum anti-Tn antibody titers and attenuates hyperoxia-induced lung injury in neonatal rats. This study determined whether anti-Tn monoclonal antibody can protect against hyperoxia-induced lung injury in neonatal mice. Newborn BALB/c mice were exposed to room air (RA) or normobaric hyperoxia (85% O2) for 1 week, creating four study groups as follows: RA + phosphate-buffered saline (PBS), RA + anti-Tn monoclonal antibody, O2 + PBS, and O2 + anti-Tn monoclonal antibody. The anti-Tn monoclonal antibody at 25 μg/g body weight in 50 μl PBS was intraperitoneally injected on postnatal days 2, 4, and 6. Hyperoxia reduced body weight and survival rate, increased mean linear intercept (MLI) and lung tumor necrosis factor-α, and decreased vascular endothelial growth factor (VEGF) expression and vascular density on postnatal day 7. Anti-Tn monoclonal antibody increased neonatal serum anti-Tn antibody titers, reduced MLI and cytokine, and increased VEGF expression and vascular density to normoxic levels. The attenuation of lung injury was accompanied by a reduction in lung oxidative stress and nuclear factor-κB activity. Anti-Tn monoclonal antibody improves alveolarization and angiogenesis in hyperoxia-injured newborn mice lungs through the suppression of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Chung-Ming Chen
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jaulang Hwang
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chinde Chen
- Department of Research and Development, Taivital Biopharmaceutical Co. LTD, Taoyuan, Taiwan
| |
Collapse
|
30
|
Prevention of Oxygen-Induced Inflammatory Lung Injury by Caffeine in Neonatal Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3840124. [PMID: 32831996 PMCID: PMC7429812 DOI: 10.1155/2020/3840124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/26/2022]
Abstract
Background Preterm birth implies an array of respiratory diseases including apnea of prematurity and bronchopulmonary dysplasia (BPD). Caffeine has been introduced to treat apneas but also appears to reduce rates of BPD. Oxygen is essential when treating preterm infants with respiratory problems but high oxygen exposure aggravates BPD. This experimental study is aimed at investigating the action of caffeine on inflammatory response and cell death in pulmonary tissue in a hyperoxia-based model of BPD in the newborn rat. Material/Methods. Lung injury was induced by hyperoxic exposure with 80% oxygen for three (P3) or five (P5) postnatal days with or without recovery in ambient air until postnatal day 15 (P15). Newborn Wistar rats were treated with PBS or caffeine (10 mg/kg) every two days beginning at the day of birth. The effects of caffeine on hyperoxic-induced pulmonary inflammatory response were examined at P3 and P5 immediately after oxygen exposure or after recovery in ambient air (P15) by immunohistological staining and analysis of lung homogenates by ELISA and qPCR. Results Treatment with caffeine significantly attenuated changes in hyperoxia-induced cell death and apoptosis-associated factors. There was a significant decrease in proinflammatory mediators and redox-sensitive transcription factor NFκB in the hyperoxia-exposed lung tissue of the caffeine-treated group compared to the nontreated group. Moreover, treatment with caffeine under hyperoxia modulated the transcription of the adenosine receptor (Adora)1. Caffeine induced pulmonary chemokine and cytokine transcription followed by immune cell infiltration of alveolar macrophages as well as increased adenosine receptor (Adora1, 2a, and 2b) expression. Conclusions The present study investigating the impact of caffeine on the inflammatory response, pulmonary cell degeneration and modulation of adenosine receptor expression, provides further evidence that caffeine acts as an antioxidative and anti-inflammatory drug for experimental oxygen-mediated lung injury. Experimental studies may broaden the understanding of therapeutic use of caffeine in modulating detrimental mechanisms involved in BPD development.
Collapse
|
31
|
Falsaperla R, Lombardo F, Filosco F, Romano C, Saporito MAN, Puglisi F, Piro E, Ruggieri M, Pavone P. Oxidative Stress in Preterm Infants: Overview of Current Evidence and Future Prospects. Pharmaceuticals (Basel) 2020; 13:E145. [PMID: 32645921 PMCID: PMC7408528 DOI: 10.3390/ph13070145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Preterm birth (PTB), defined as parturition prior to 37 weeks of gestation, is the leading cause of morbidity and mortality in the neonatal population. The incidence and severity of complications of prematurity increase with decreasing gestational age and birthweight. The aim of this review study is to select the most current evidence on the role of oxidative stress in the onset of preterm complication prevention strategies and treatment options with pre-clinical and clinical trials. We also provide a literature review of primary and secondary studies on the role of oxidative stress in preterm infants and its eventual treatment in prematurity diseases. We conducted a systematic literature search of the Medline (Pubmed), Scholar, and ClinicalTrials.gov databases, retroactively, over a 7-year period. From an initial 777 articles identified, 25 articles were identified that met the inclusion and exclusion criteria. Of these, there were 11 literature reviews: one prospective cohort study, one experimental study, three case-control studies, three pre-clinical trials, and six clinical trials. Several biomarkers were identified as particularly promising, such as the products of the peroxidation of polyunsaturated fatty acids, those of the oxidation of phenylalanine, and the hydroxyl radicals that can attack the DNA chain. Among the most promising drugs, there are those for the prevention of neurological damage, such as melatonin, retinoid lactoferrin, and vitamin E. The microbiome also has an important role in oxidative stress. In conclusion, the most recent studies show that a strong relationship between oxidative stress and prematurity exists and that, unfortunately, there is still little therapeutic evidence reported in the literature.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care, AUO San Marco-Policlinico, University of Catania, 95123 Catania, Italy; (R.F.); (M.A.N.S.); (F.P.)
| | - Filadelfo Lombardo
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania street Santa Sofia 78, 95123 Catania, Italy; (F.L.); (F.F.)
| | - Federica Filosco
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania street Santa Sofia 78, 95123 Catania, Italy; (F.L.); (F.F.)
| | - Catia Romano
- Child and Adolescent Neuropsychiatry, Department Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Marco Andrea Nicola Saporito
- Neonatal Intensive Care, AUO San Marco-Policlinico, University of Catania, 95123 Catania, Italy; (R.F.); (M.A.N.S.); (F.P.)
| | - Federica Puglisi
- Neonatal Intensive Care, AUO San Marco-Policlinico, University of Catania, 95123 Catania, Italy; (R.F.); (M.A.N.S.); (F.P.)
| | - Ettore Piro
- University Hospital “P. Giaccone”, Department of Sciences for Health Promotion, Maternal Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, Neonatal Intensive Care Unit, 90121 Palermo, Italy;
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine Section of Pediatrics and Child Neuropsychiatry, AUO San Marco-Policlinco, University of Catania, 95123 Catania, Italy;
| | - Piero Pavone
- Department of Clinical and Experimental Medicine Section of Pediatrics and Child Neuropsychiatry, AUO San Marco-Policlinco, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
32
|
Chen S, Wu Q, Zhong D, Li C, Du L. Caffeine prevents hyperoxia-induced lung injury in neonatal mice through NLRP3 inflammasome and NF-κB pathway. Respir Res 2020; 21:140. [PMID: 32513156 PMCID: PMC7278162 DOI: 10.1186/s12931-020-01403-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/21/2020] [Indexed: 02/01/2023] Open
Abstract
Background Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants and hyperoxia exposure is a major cause. In hyperoxic lung injury animal model, alveolar simplification and pro-inflammatory cells infiltration are the main pathophysiologic changes. Caffeine is a drug used to treat apnea in premature infants. Early use of caffeine can decrease the rate and the severity of BPD while the mechanisms are still unclear. The purpose of this study was to evaluate the effects of caffeine on inflammation and lung development in neonatal mice with hyperoxic lung injury and to explore the possible mechanism. Methods Following 14 d of 75% oxygen exposure in newborn mouse, the BPD model was established. Caffeine at a dose of 1 g/L was added in drinking water to nursing mouse. We measured the concentration of caffeine in serum and oxidative stress in lung by commercially available kits. Adenosine 2A receptor (A2AR) expression and lung inflammation were measured by Immunohistochemistry and western blotting. Apoptosis and surfactant protein-C (SFTPC) levels were measured by immunofluorescence. The inflammasome and NF-κB pathway proteins were assessed by western blotting. Results We found that the caffeine concentration in plasma at present dose significantly decreased the expression of A2AR protein in mice lung. Caffeine treatment significantly reduced oxidative stress, improved weight gain, promoted alveolar development, attenuated inflammatory infiltration and lung injury in hyperoxia-induced lung injury mice. Moreover, caffeine decreased the cell apoptosis in lung tissues, especially the Type II alveolar epithelial cell. The expression of NLRP3 inflammasome protein and NF-κB pathway were significantly inhibited by caffeine treatment. Conclusion Caffeine treatment can protect hyperoxia-induced mice lung from oxidative injury by inhibiting NLRP3 inflammasome and NF-κB pathway.
Collapse
Affiliation(s)
- Shangqin Chen
- Department of Pediatrics, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China.,Department of Neonatology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiuping Wu
- Department of Pediatrics, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China.,Department of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dingjuan Zhong
- Molecular Center for Ophthalmic Optics, Hunan Provincial People's Hospital, Changsha, China.,Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Changchong Li
- Department of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lizhong Du
- Department of Pediatrics, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China. .,Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No.3333 Binsheng Road, Hangzhou, 310052, Zhejiang, China.
| |
Collapse
|
33
|
Zwilling M, Theiss C, Matschke V. Caffeine and NAD + Improve Motor Neural Integrity of Dissociated Wobbler Cells In Vitro. Antioxidants (Basel) 2020; 9:antiox9060460. [PMID: 32471290 PMCID: PMC7346375 DOI: 10.3390/antiox9060460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a common degenerative disease of the central nervous system concerning a progressive loss of upper and lower motor neurons. While 5%–10% of patients are diagnosed with the inherited form of the disease, the vast majority of patients suffer from the less characterized sporadic form of ALS (sALS). As the wobbler mouse and the ALS show striking similarities in view of phenotypical attributes, the mouse is rated as an animal model for the disease. Recent investigations show the importance of nicotinamide adenine dinucleotide (NAD+) and its producing enzyme nicotinic acid mononucleotide transferase 2 (Nmnat2) for neurodegeneration as well as for the preservation of health of the neuronal cells. Furthermore, it is newly determined that these molecules show significant downregulations in the spinal cord of wobbler mice in the stable phase of disease development. Here, we were able to prove a positive benefit on affected motor neurons from an additional NAD+ supply as well as an increase in the Nmnat2 level through caffeine treatment in cells in vitro. In addition, first assumptions about the importance of endogenous and exogenous factors that have an influence on the wellbeing of motor nerve cells in the model of ALS can be considered.
Collapse
|
34
|
Van der Veeken L, Grönlund S, Gerdtsson E, Holmqvist B, Deprest J, Ley D, Bruschettini M. Long-term neurological effects of neonatal caffeine treatment in a rabbit model of preterm birth. Pediatr Res 2020; 87:1011-1018. [PMID: 31812154 DOI: 10.1038/s41390-019-0718-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Neonatal caffeine treatment might affect brain development. Long-term studies show conflicting results on brain-related outcomes. Herein we aimed to investigate the long-term effects of neonatal caffeine administration in a rabbit model of preterm birth. METHODS Preterm (born day 29) and term (day 32) pups were raised by wet nurses and allocated to treatment with saline or caffeine for 7 or 17 days. At pre-puberty, neurobehavioral tests were performed and brains were harvested for immunostaining of neurons, synapses, myelin, and astrocytes. RESULTS Survival was lower in preterm saline pups than in controls, whereas caffeine-treated preterm pups did not differ from term control pups. Preterm saline pups covered less distance compared to controls and were more likely to stay in the peripheral zone of the open field. Corresponding differences were not seen in preterm caffeine pups. Preterm animals had lower neuron density compared to controls, which was not influenced by caffeine treatment. Synaptic density, astrocytes, and myelin were not different between groups. CONCLUSION Caffeine appeared to be safe. All preterm rabbits had lower neuron density but anxious behavior seen in preterm saline rabbits was not seen in caffeine-treated preterm pups.
Collapse
Affiliation(s)
- Lennart Van der Veeken
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Leuven, Belgium
| | - Susanne Grönlund
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skane University Hospital, Lund, Sweden
| | | | | | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Leuven, Belgium.,Institute for Women's Health, University College London, London, UK
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skane University Hospital, Lund, Sweden
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skane University Hospital, Lund, Sweden.
| |
Collapse
|
35
|
Jiang JS, Chou HC, Chen CM. Cathelicidin attenuates hyperoxia-induced lung injury by inhibiting oxidative stress in newborn rats. Free Radic Biol Med 2020; 150:23-29. [PMID: 32057991 DOI: 10.1016/j.freeradbiomed.2020.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE High concentrations of oxygen administered to newborn infants with respiratory failure increases oxidant stress and leads to lung injury, characterized by decreased alveolar and capillary development. Cathelicidin belongs to an important group of human antimicrobial peptides that exhibit antioxidant activity; its overexpression reduces hyperoxia-induced oxidative stress. This study evaluated the therapeutic effects of cathelicidin in hyperoxia-induced lung injury in newborn rats. METHODS AND MATERIALS Sprague Dawley rat pups were reared in either room air (RA) or hyperoxia (85% O2) and then randomly treated with low-dose (4 mg/kg) and high-dose (8 mg/kg) cathelicidin in 0.05 mL of normal saline (NS) administered intraperitoneally on postnatal days 1-6. The following six groups were obtained: RA + NS, RA + low-dose cathelicidin, RA + high-dose cathelicidin, O2 + NS, O2 + low-dose cathelicidin, and O2 + high-dose cathelicidin. Lungs were harvested for Western blot and histological analyses on postnatal day 7. RESULTS Compared with the RA-reared rats, the hyperoxia-reared rats exhibited significantly lower body weights, higher mean linear intercept (MLI), lung injury score, interleukin-6, and oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) expression but lower superoxide dismutase 1 (SOD1) and vascular endothelial growth factor (VEGF) protein expression and vascular density. Cathelicidin treatment attenuated hyperoxia-induced lung injury as demonstrated by lower MLI and injury score and higher VEGF expression and vascular density. CONCLUSIONS Cathelicidin attenuated hyperoxia-induced lung injury and caused a decrease in 8-OHdG and SOD1 protein expression, most likely by inhibiting oxidative stress in the lung.
Collapse
Affiliation(s)
- Jiunn-Song Jiang
- Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
36
|
Zhang X, Chu X, Weng B, Gong X, Cai C. An Innovative Model of Bronchopulmonary Dysplasia in Premature Infants. Front Pediatr 2020; 8:271. [PMID: 32537448 PMCID: PMC7267036 DOI: 10.3389/fped.2020.00271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/29/2020] [Indexed: 02/02/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is one of the common chronic lung diseases (CLD) of premature infants, which causes unpredictable consequences to the family and society. Therefore, the pathogenesis and prevention methods of BPD are the focus of current research, and the establishment of an effective and appropriate animal model of BPD in premature infants is the key to the research. In this study, premature rats were exposed to hyperoxia environment. Compared with the air group, the body weight and alveolar radiation count of the hyperoxia group decreased significantly, but there was no significant difference in body length. HE staining was used to observe the pathological changes of BPD in the lung tissue. The above results proved that under the hyperoxia condition, the BPD animal model of premature infants was successfully established, which provided a new choice for the future research of BPD.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyun Chu
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Weng
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Cai
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
McAllister MJ, Waldman HS, Rentería LI, Gonzalez AE, Butawan MB, Bloomer RJ. Acute coffee ingestion with and without medium-chain triglycerides decreases blood oxidative stress markers and increases ketone levels. Can J Physiol Pharmacol 2019; 98:194-200. [PMID: 31689118 DOI: 10.1139/cjpp-2019-0458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ingestion of ketone supplements, caffeine, and medium-chain triglycerides (MCTs) may all be effective strategies to increase blood levels of the ketone body beta-hydroxybutyrate (D-BHB). However, acute ingestion of a bolus of lipids may increase oxidative stress (OS). The purpose of the study was to investigate the impact of adding varying amounts of MCTs to coffee on blood levels of D-BHB and markers of OS. Ten college-aged men ingested coffee with 0, 28, and 42 g of MCT in a randomized order. Blood samples were collected pre- as well as 2 and 4 h postprandial and analyzed for D-BHB, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), glucose, triglycerides (TAG), insulin, and OS markers: advanced oxidation protein products (AOPP), glutathione (GSH), malondialdehyde (MDA), and hydrogen peroxide (H2O2). All three treatments resulted in a significant increase in D-BHB, HDL-c, and TC as well as a significant decrease in TAG, MDA, H2O2, and insulin. The 42 g treatment was associated with significantly higher levels of AOPP and MDA. Acute ingestion of coffee results in favorable changes to markers of cardiometabolic health that were not impacted by the addition of 28 g of MCT. However, 42 g of MCT caused significantly greater OS.
Collapse
Affiliation(s)
- Matthew J McAllister
- Metabolic and Applied Physiology Laboratory, Department of Health and Human Performance, Texas State University, San Marcos, TX 78666, USA
| | - Hunter S Waldman
- Department of Kinesiology, University of North Alabama, Florence, AL 35632, USA
| | - Liliana I Rentería
- Metabolic and Applied Physiology Laboratory, Department of Health and Human Performance, Texas State University, San Marcos, TX 78666, USA
| | - Andrew E Gonzalez
- Metabolic and Applied Physiology Laboratory, Department of Health and Human Performance, Texas State University, San Marcos, TX 78666, USA
| | - Matthew B Butawan
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| | - Richard J Bloomer
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
38
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|