1
|
Tang D, Wang C, Liu H, Wu J, Tan L, Liu S, Lv H, Wang C, Wang F, Liu J. Integrated Multi-Omics Analysis Reveals Mountain-Cultivated Ginseng Ameliorates Cold-Stimulated Steroid-Resistant Asthma by Regulating Interactions among Microbiota, Genes, and Metabolites. Int J Mol Sci 2024; 25:9110. [PMID: 39201796 PMCID: PMC11354367 DOI: 10.3390/ijms25169110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Steroid-resistant asthma (SRA), resisting glucocorticoids such as dexamethasone (DEX), is a bottleneck in the treatment of asthma. It is characterized by a predominantly neutrophilic inflammatory subtype and is prone to developing into severe refractory asthma and fatal asthma. Currently, there is a lack of universally effective treatments for SRA. Moreover, since cold stimulation does increase the risk of asthma development and exacerbate asthma symptoms, the treatment of cold-stimulated SRA (CSRA) will face greater challenges. To find effective new methods to ameliorate CSRA, this study established a CSRA mouse model of allergic airway inflammation mimicking human asthma for the first time and evaluated the alleviating effects of 80% ethanol extract of mountain-cultivated ginseng (MCG) based on multi-omics analysis. The results indicate that cold stimulation indeed exacerbated the SRA-related symptoms in mice; the DEX individual treatment did not show a satisfactory effect; while the combination treatment of DEX and MCG could dose-dependently significantly enhance the lung function; reduce neutrophil aggregation; decrease the levels of LPS, IFN-γ, IL-1β, CXCL8, and IL-17; increase the level of IL-10; alleviate the inflammatory infiltration; and decrease the mucus secretion and the expression of MUC5AC. Moreover, the combination of DEX and high-dose (200 mg/kg) MCG could significantly increase the levels of tight junction proteins (TJs), regulate the disordered intestinal flora, increase the content of short-chain fatty acids (SCFAs), and regulate the abnormal gene profile and metabolic profile. Multi-omics integrated analysis showed that 7 gut microbes, 34 genes, 6 metabolites, and the involved 15 metabolic/signaling pathways were closely related to the pharmacological effects of combination therapy. In conclusion, integrated multi-omics profiling highlighted the benefits of MCG for CSRA mice by modulating the interactions of microbiota, genes, and metabolites. MCG shows great potential as a functional food in the adjuvant treatment of CSRA.
Collapse
Affiliation(s)
- Daohao Tang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (D.T.); (H.L.); (J.W.); (L.T.); (H.L.); (C.W.)
| | - Chao Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Hanlin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (D.T.); (H.L.); (J.W.); (L.T.); (H.L.); (C.W.)
| | - Junzhe Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (D.T.); (H.L.); (J.W.); (L.T.); (H.L.); (C.W.)
| | - Luying Tan
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (D.T.); (H.L.); (J.W.); (L.T.); (H.L.); (C.W.)
| | - Sihan Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China;
| | - Haoming Lv
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (D.T.); (H.L.); (J.W.); (L.T.); (H.L.); (C.W.)
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (D.T.); (H.L.); (J.W.); (L.T.); (H.L.); (C.W.)
| | - Fang Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (D.T.); (H.L.); (J.W.); (L.T.); (H.L.); (C.W.)
| |
Collapse
|
2
|
Liao G, Yan Q, Zhang M, Zhang X, Yang J, Huang H, Liu X, Jiang Y, Gong J, Zhan S, Li D, Huang X. Integrative analysis of network pharmacology and proteomics reveal the protective effect of Xiaoqinglong Decotion on neutrophilic asthma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118102. [PMID: 38561057 DOI: 10.1016/j.jep.2024.118102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoqinglong Decotion (XQLD) is a commonly used Chinese herbal formula in clinical practice, especially for allergic diseases such as asthma. However, its intrinsic mechanism for the treatment of neutrophilic asthma (NA) remains unclear. AIM OF THE STUDY The aim of this study was to evaluate the efficacy and potential mechanisms of XQLD on NA using network pharmacology and in vivo experiments. MATERIALS AND METHODS First, the active compounds, potential targets and mechanisms of XQLD against NA were initially elucidated by network pharmacology. Then, OVA/CFA-induced NA mice were treated with XQLD to assess its efficacy. Proteins were then analyzed and quantified using a Tandem Mass Tags approach for differentially expressed proteins (DEPs) to further reveal the mechanisms of NA treatment by XQLD. Finally, the hub genes, critical DEPs and potential pathways were validated. RESULTS 176 active compounds and 180 targets against NA were identified in XQLD. Protein-protein interaction (PPI) network revealed CXCL10, CX3CR1, TLR7, NCF1 and FABP4 as hub genes. In vivo experiments showed that XQLD attenuated inflammatory infiltrates, airway mucus secretion and remodeling in the lungs of NA mice. Moreover, XQLD significantly alleviated airway neutrophil inflammation in NA mice by decreasing the expression of IL-8, MPO and NE. XQLD also reduced the levels of CXCL10, CX3CR1, TLR7, NCF1 and FABP4, which are closely associated with neutrophil inflammation. Proteomics analysis identified 28 overlapping DEPs in the control, NA and XQLD groups, and we found that XQLD inhibited ferroptosis signal pathway (elevated GPX4 and decreased ASCL3) as well as the expression of ARG1, MMP12 and SPP1, while activating the Rap1 signaling pathway. CONCLUSION This study revealed that inhibition of ARG1, MMP12 and SPP1 expression as well as ferroptosis pathways, and activation of the Rap1 signaling pathway contribute to the therapeutic effect of XQLD on NA.
Collapse
Affiliation(s)
- Gang Liao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Qian Yan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Miaofen Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Xinxin Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Jing Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Huiting Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Jing Gong
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Shaofeng Zhan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Detang Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiufang Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Zuo X, Guo X, Zhao D, Gu Y, Zou Z, Shen Y, He C, Xu C, Rong Y, Wang F. An antibacterial, multifunctional nanogel for efficient treatment of neutrophilic asthma. J Control Release 2024; 372:31-42. [PMID: 38866241 DOI: 10.1016/j.jconrel.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/08/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Asthma is a chronic and heterogeneous disease affecting the lungs and respiratory tract. In particular, the neutrophil subtype of asthma was described as persistent, more severe, and corticosteroid-resistant. Growing evidence suggested that nontypeable Haemophilus influenzae (NTHi) infection contributes to the development of neutrophilic asthma, exacerbating clinical symptoms and increasing the associated medical burden. In this work, arginine-grafted chitosan (CS-Arg) was ionically cross-linked with tris(2-carboxyethyl) phosphine (TCEP), and a highly-efficient antimicrobial agent, poly-ε-L-Lysine (ε-PLL), was incorporated to prepare ε-PLL/CS-Arg/TCEP (ECAT) composite nanogels. The results showed that ECAT nanogels exhibited highly effective inhibition against the proliferation of NTHi, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). In addition, ECAT nanogels could effectively inhibit the formation of mucins aggregates in vitro, suggesting that the nanogel might have the potential to destroy mucin in respiratory disease. Furthermore, in the ovalbumin (OVA)/NTHi-induced Balb/c mice model of neutrophilic asthma, the number of neutrophils in the alveolar lavage fluid and the percentage of inflammatory cells in the blood were effectively reduced by exposure to tower nebulized administration of ECAT nanogels, and reversing airway hyperresponsiveness (AHR) and reducing inflammation in neutrophilic asthma mice. In conclusion, the construction of ECAT nanogels was a feasible anti-infective and anti-inflammatory therapeutic strategy, which demonstrated strong potential in the clinical treatment of neutrophilic asthma.
Collapse
Affiliation(s)
- Xu Zuo
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiaoping Guo
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Dan Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yinuo Gu
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zheng Zou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuanyuan Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Caina Xu
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.; Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China..
| | - Yan Rong
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Fang Wang
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China..
| |
Collapse
|
4
|
Ariolli A, Canè M, Di Fede M, Tavarini S, Taddei AR, Buno KP, Delany I, Rossi Paccani S, Pezzicoli A. Modeling airway persistent infection of Moraxella catarrhalis and nontypeable Haemophilus influenzae by using human in vitro models. Front Cell Infect Microbiol 2024; 14:1397940. [PMID: 38751999 PMCID: PMC11094313 DOI: 10.3389/fcimb.2024.1397940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) are two common respiratory tract pathogens often associated with acute exacerbations in Chronic Obstructive Pulmonary Disease (COPD) as well as with otitis media (OM) in children. Although there is evidence that these pathogens can adopt persistence mechanisms such as biofilm formation, the precise means through which they contribute to disease severity and chronicity remains incompletely understood, posing challenges for their effective eradication. The identification of potential vaccine candidates frequently entails the characterization of the host-pathogen interplay in vitro even though this approach is limited by the fact that conventional models do not permit long term bacterial infections. In the present work, by using air-liquid-interface (ALI) human airway in vitro models, we aimed to recreate COPD-related persistent bacterial infections. In particular, we explored an alternative use of the ALI system consisting in the assembly of an inverted epithelium grown on the basal part of a transwell membrane with the aim to enable the functionality of natural defense mechanisms such as mucociliary clearance and cellular extrusion that are usually hampered during conventional ALI infection experiments. The inversion of the epithelium did not affect tissue differentiation and considerably delayed NTHi or Mcat infection progression, allowing one to monitor host-pathogen interactions for up to three weeks. Notably, the use of these models, coupled with confocal and transmission electron microscopy, revealed unique features associated with NTHi and Mcat infection, highlighting persistence strategies including the formation of intracellular bacterial communities (IBCs) and surface-associated biofilm-like structures. Overall, this study demonstrates the possibility to perform long term host-pathogen investigations in vitro with the aim to define persistence mechanisms adopted by respiratory pathogens and individuate potential new vaccine targets.
Collapse
Affiliation(s)
- Andrea Ariolli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Martina Canè
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Martina Di Fede
- GlaxoSmithKline Vaccines s.r.l., Preclinical R&D, Siena, Italy
| | - Simona Tavarini
- GlaxoSmithKline Vaccines s.r.l., Preclinical R&D, Siena, Italy
| | - Anna Rita Taddei
- Great Equipment Center-Section of Electron Microscopy, University of Tuscia, Viterbo, Italy
| | - Kevin Pete Buno
- GlaxoSmithKline Vaccines s.r.l., Preclinical R&D, Siena, Italy
| | - Isabel Delany
- GlaxoSmithKline Vaccines s.r.l., Preclinical R&D, Siena, Italy
| | | | | |
Collapse
|
5
|
Yuan F, Yang Y, Liu L, Zhou P, Zhu Y, Chai Y, Chen K, Tang W, Huang Q, Zhang C. Research progress on the mechanism of astragaloside IV in the treatment of asthma. Heliyon 2023; 9:e22149. [PMID: 38045181 PMCID: PMC10692808 DOI: 10.1016/j.heliyon.2023.e22149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Asthma is a common chronic respiratory disease, and its treatment is a core problem and challenge in clinical practice. Glucocorticoids (GCs) are the first-line therapy for the treatment of asthma. Local and systemic adverse reactions caused by GCs create obstacles to the treatment of asthma. Therefore, the research target is to find a new, safe, and effective therapeutic medicine at present. Natural products are an important source for treating asthma with low cost and low toxicity. Astragaloside IV (AS-IV) is an active ingredient of traditional Chinese medicine Astragalus mongholicus Bunge. Previous studies have indicated that AS-IV plays a therapeutic role in the treatment of asthma by inhibiting airway inflammation and remodeling the airway, and by regulating immunity and neuroendocrine function (Fig. 1) . It has a variety of biological characteristics such as multi-target intervention, high safety, and good curative effect. This article reviews the specific mechanism of AS-IV for the treatment of asthma to provide references for subsequent research.
Collapse
Affiliation(s)
- Fanyi Yuan
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Liu
- Department of Pharmacy, Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu, China
| | - Pengcheng Zhou
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilu Chai
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Keling Chen
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Tang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Huang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Cai J, Tao H, Liu H, Hu Y, Han S, Pu W, Li L, Li G, Li C, Zhang J. Intrinsically bioactive and biomimetic nanoparticle-derived therapies alleviate asthma by regulating multiple pathological cells. Bioact Mater 2023; 28:12-26. [PMID: 37214258 PMCID: PMC10193170 DOI: 10.1016/j.bioactmat.2023.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Asthma is a serious global public health concern. Airway neutrophilic inflammation is closely related to severe asthma, for which effective and safe therapies remain to be developed. Here we report nanotherapies capable of simultaneously regulating multiple target cells relevant to the pathogenesis of neutrophilic asthma. A nanotherapy LaCD NP based on a cyclic oligosaccharide-derived bioactive material was engineered. LaCD NP effectively accumulated in the injured lungs of asthmatic mice and mainly distributed in neutrophils, macrophages, and airway epithelial cells after intravenous or inhalation delivery, thereby ameliorating asthmatic symptoms and attenuating pulmonary neutrophilic inflammation as well as reducing airway hyperresponsiveness, remodeling, and mucus production. Surface engineering via neutrophil cell membrane further enhanced targeting and therapeutic effects of LaCD NP. Mechanistically, LaCD NP can inhibit the recruitment and activation of neutrophils, especially reducing the neutrophil extracellular traps formation and NLRP3 inflammasome activation in neutrophils. Also, LaCD NP can suppress macrophage-mediated pro-inflammatory responses and prevent airway epithelial cell death and smooth muscle cell proliferation, by mitigating neutrophilic inflammation and its direct effects on relevant cells. Importantly, LaCD NP showed good safety performance. Consequently, LaCD-derived multi-bioactive nanotherapies are promising for effective treatment of neutrophilic asthma and other neutrophil-associated diseases.
Collapse
Affiliation(s)
- Jiajun Cai
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Hui Tao
- Department of Pharmacology, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Huan Liu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yi Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Songling Han
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Lanlan Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Gang Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| |
Collapse
|
7
|
Zhang Y, Wang H, Zhang Y, Zhao P, Li Y. Aerosolization inhalation of non-typeable Haemophilus influenzae outer membrane vesicles contributing to neutrophilic asthma. Front Microbiol 2023; 14:1226633. [PMID: 37564280 PMCID: PMC10411346 DOI: 10.3389/fmicb.2023.1226633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Background Neutrophilic asthma is poorly responsive to corticosteroids, and the mechanism underlying its pathogenesis remains unclear. Non-typeable Haemophilus influenzae (NTHi) is the most common bacterium found in induced sputum from patients with neutrophilic asthma. NTHi can release outer membrane vesicles (OMVs), which transfer biomolecules to host cells and the external environment. However, the role and mechanisms of NTHi OMVs in the pathogenesis of neutrophilic asthma remain unclear. Methods We conducted assays to investigate whether NTHi OMVs can induce neutrophilic asthma when inhaled. We isolated and purified NTHi OMVs and administered them via a nebulizer to ovalbumin (OVA)-sensitized mice. We collected and sequenced serum, blood, bronchoalveolar lavage fluid, and lung tissue from each group and gathered lung function data. Results Inhaled NTHi OMVs-induced neutrophilic asthma in OVA-sensitized mice. High-throughput sequencing revealed that NTHi OMV inhalation in OVA-sensitized mice significantly enriched inflammatory and immune-related signaling pathways. We found increased transcription and secretion of interleukin (IL)-1β and IL-17, which may contribute to neutrophilic asthma. Furthermore, we discovered that airway epithelium is the first receptor cell of NTHi OMVs and releases IL-1β. These findings suggest that NTHi OMVs could be a potential target for neutrophilic asthma therapy.
Collapse
Affiliation(s)
| | | | | | | | - Yanan Li
- Department of Pediatric Respiratory, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Liu L, Zhou L, Wang LL, Zheng PD, Zhang FQ, Mao ZY, Zhang HJ, Liu HG. Programmed Cell Death in Asthma: Apoptosis, Autophagy, Pyroptosis, Ferroptosis, and Necroptosis. J Inflamm Res 2023; 16:2727-2754. [PMID: 37415620 PMCID: PMC10321329 DOI: 10.2147/jir.s417801] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Bronchial asthma is a complex heterogeneous airway disease, which has emerged as a global health issue. A comprehensive understanding of the different molecular mechanisms of bronchial asthma may be an efficient means to improve its clinical efficacy in the future. Increasing research evidence indicates that some types of programmed cell death (PCD), including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis, contributed to asthma pathogenesis, and may become new targets for future asthma treatment. This review briefly discusses the molecular mechanism and signaling pathway of these forms of PCD focuses on summarizing their roles in the pathogenesis and treatment strategies of asthma and offers some efficient means to improve clinical efficacy of therapeutics for asthma in the near future.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling-Ling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Peng-Dou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Feng-Qin Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhen-Yu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huo-Jun Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Hui-Guo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
9
|
Adrish M, Akuthota P. Approach to non-type 2 asthma. Respir Med 2023:107327. [PMID: 37307904 DOI: 10.1016/j.rmed.2023.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/21/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Affiliation(s)
- Muhammad Adrish
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Praveen Akuthota
- Division of Pulmonary, Critical Care, Sleep Medicine & Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Bar K, Litera-Bar M, Sozańska B. Bacterial Microbiota of Asthmatic Children and Preschool Wheezers' Airways-What Do We Know? Microorganisms 2023; 11:1154. [PMID: 37317128 DOI: 10.3390/microorganisms11051154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Abstract
Asthma is the most chronic pulmonary disease in pediatric population, and its etiopathology still remains unclear. Both viruses and bacteria are suspected factors of disease development and are responsible for its exacerbation. Since the launch of The Human Microbiome Project, there has been an explosion of research on microbiota and its connection with various diseases. In our review, we have collected recent data about both upper- and lower-airway bacterial microbiota of asthmatic children. We have also included studies regarding preschool wheezers, since asthma diagnosis in children under 5 years of age remains challenging due to the lack of an objective tool. This paper indicates the need for further studies of microbiome and asthma, as in today's knowledge, there is no particular bacterium that discriminates the asthmatics from the healthy peers and can be used as a potential biological factor in the disease prevalence and treatment.
Collapse
Affiliation(s)
- Kamil Bar
- 1st Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Maja Litera-Bar
- University Clinical Hospital in Wroclaw, 50-556 Wroclaw, Poland
| | - Barbara Sozańska
- 1st Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| |
Collapse
|
11
|
Brown MA, Morgan SB, Donachie GE, Horton KL, Pavord ID, Arancibia-Cárcamo CV, Hinks TSC. Epithelial immune activation and intracellular invasion by non-typeable Haemophilus influenzae. Front Cell Infect Microbiol 2023; 13:1141798. [PMID: 37180449 PMCID: PMC10167379 DOI: 10.3389/fcimb.2023.1141798] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Type-2 low asthma affects 30-50% of people with severe asthma and includes a phenotype characterized by sputum neutrophilia and resistance to corticosteroids. Airways inflammation in type-2 low asthma or COPD is potentially driven by persistent bacterial colonization of the lower airways by bacteria such as non-encapsulated Haemophilus influenzae (NTHi). Although pathogenic in the lower airways, NTHi is a commensal of the upper airways. It is not known to what extent these strains can invade airway epithelial cells, persist intracellularly and activate epithelial cell production of proinflammatory cytokines, and how this differs between the upper and lower airways. We studied NTHi infection of primary human bronchial epithelial cells (PBECs), primary nasal epithelial cells (NECs) and epithelial cell lines from upper and lower airways. NTHi strains differed in propensity for intracellular and paracellular invasion. We found NTHi was internalized within PBECs at 6 h, but live intracellular infection did not persist at 24 h. Confocal microscopy and flow cytometry showed NTHi infected secretory, ciliated and basal PBECs. Infection of PBECs led to induction of CXCL8, interleukin (IL)-1β, IL-6 and TNF. The magnitude of cytokine induction was independent of the degree of intracellular invasion, either by differing strains or by cytochalasin D inhibition of endocytosis, with the exception of the inflammasome-induced mediator IL-1β. NTHi-induced activation of TLR2/4, NOD1/2 and NLR inflammasome pathways was significantly stronger in NECs than in PBECs. These data suggest that NTHi is internalized transiently by airway epithelial cells and has capacity to drive inflammation in airway epithelial cells.
Collapse
Affiliation(s)
- Mary A. Brown
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Sophie B. Morgan
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Gillian E. Donachie
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Katie L. Horton
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Ian D. Pavord
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Carolina V. Arancibia-Cárcamo
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Lin J, Wang Y, Lin C, Li R, Wang G. High Prevalence of Group III-Like Mutations Among BLPACR and First Report of Haemophilus influenzae ST95 Isolated from Blood in China. Infect Drug Resist 2023; 16:999-1008. [PMID: 36824068 PMCID: PMC9942606 DOI: 10.2147/idr.s400207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Purpose We aimed to evaluate antibiotic resistance and molecular epidemiological characteristics of non-invasive Haemophilus influenzae (H. influenzae) from pneumonia patients and analyze the whole genome of one invasive H. influenzae isolated from blood in pediatric patients. Methods Antibiotic susceptibility was tested using the turbidimetric method. β-lactamase-producing and serotyping genes were evaluated via multiplex polymerase chain reaction (PCR), and ftsI was amplified using high-fidelity PCR. Lastly, whole genome sequencing (WGS) was conducted using Illumina HiSeq and PacBio sequencing technology. Results We observed that the ampicillin (AMP) and amoxicillin/clavulanate (AMC) resistance rates of non-invasive H. influenzae were as high as 99.06% (after adjustment) and 49.53%, respectively. The β-lactamase gene of 106 AMP-resistant strains was blaTEM-1 . Group III-like mutation accounted for 71.15% of β-lactamase-positive, AMC-resistant (BLPACR) strain mutants. The novel Asn-526→His mutation was present in one β-lactamase-negative AMP-susceptible (BLNAS) strain. Non-invasive H. influenzae strains all belonged to non-typeable H. influenzae (NTHi). In contrast, the invasive H. influenzae 108 isolated from blood in China belonged to H. influenzae type b (Hib). It belonged to sequence typing ST95 and exhibited sensitivity to all 11 antibiotics. Three prophages were identified, and the capb loci of the H. influenzae strain 108 revealed regions I-III exist in duplicate; however, complete deletion of IS1016 was only present in one of the copies. Conclusion Non-invasive H. influenzae NTHi with β-lactamase-positive was highly prevalent. Notably, group III-like mutations had increased prevalence among BLPACR strains. H. influenzae belonging to Hib and ST95 was first reported to cause sepsis in China.
Collapse
Affiliation(s)
- Jiansheng Lin
- School of Public Health of Fujian Medical University, Fuzhou, People’s Republic of China,Microbiology Laboratory, Quanzhou Women’s and Children’s Hospital, Quanzhou, People’s Republic of China
| | - Yinna Wang
- Microbiology Laboratory, Quanzhou Women’s and Children’s Hospital, Quanzhou, People’s Republic of China
| | - Chunli Lin
- Microbiology Laboratory, Quanzhou Women’s and Children’s Hospital, Quanzhou, People’s Republic of China
| | - Ran Li
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Correspondence: Ran Li, Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Licheng District, Quanzhou, Fujian Province, 350122, People’s Republic of China, Tel +86 595 22791140, Email
| | - Gaoxiong Wang
- School of Public Health of Fujian Medical University, Fuzhou, People’s Republic of China,Research Administration Office, Quanzhou Women’s and Children’s Hospital, Quanzhou, People’s Republic of China,Gaoxiong Wang, Research Administration Office, Quanzhou Women’s and Children’s Hospital, 700 Fengze Street, Fengze District, Quanzhou, Fujian Province, 350122, People’s Republic of China, Tel +86 595 22131685, Email
| |
Collapse
|
13
|
Hizawa N. The understanding of asthma pathogenesis in the era of precision medicine. Allergol Int 2023; 72:3-10. [PMID: 36195530 DOI: 10.1016/j.alit.2022.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023] Open
Abstract
Asthma is a syndrome with extremely diverse clinical phenotypes in which the onset, severity, and response to treatment are defined by the complex interplay of many genetic and environmental factors. Environmental factors epigenetically affect gene expression, and the disease is driven by a multidimensional dynamic network involving RNA and protein molecules derived from gene expression, as well as various metabolic products. In other words, specific pathophysiological mechanisms or endotypes are dynamic networks that arise in response to individual genotypes and the various environmental factors to which individuals have been exposed since before birth, such as diet, infection, air pollution, smoking, antibiotic use, and the bacterial flora of the intestinal tract, skin, and lungs. A key feature of asthma genome scans is their potential to reveal the molecular pathways that lead to pathogenesis. Endotypes that drive the disease have a significant impact on the phenotypes of asthma patients, including their drug responsiveness. Understanding endotypes will lead to not only the implementation of therapies that are tailored to the specific molecular network(s) underlying the patient's condition, but also to the development of therapeutic strategies that target individual endotypes, as well as to precision health, which will enable the prediction of disease onset with high accuracy from an early stage and the implementation of preventive strategies based on endotypes. Understanding of endotypes will pave the way for the practice of precision medicine in asthma care, moving away from 'one-size-fits-all' medicine and population-based prevention approaches that do not take individuals' susceptibility into account.
Collapse
Affiliation(s)
- Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
14
|
Ackland J, Barber C, Heinson A, Azim A, Cleary DW, Christodoulides M, Kurukulaaratchy RJ, Howarth P, Wilkinson TMA, Staples KJ. Nontypeable Haemophilus influenzae infection of pulmonary macrophages drives neutrophilic inflammation in severe asthma. Allergy 2022; 77:2961-2973. [PMID: 35570583 PMCID: PMC9796932 DOI: 10.1111/all.15375] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Nontypeable Haemophilus influenzae (NTHi) is a respiratory tract pathobiont that chronically colonizes the airways of asthma patients and is associated with severe, neutrophilic disease phenotypes. The mechanism of NTHi airway persistence is not well understood, but accumulating evidence suggests NTHi can persist within host airway immune cells such as macrophages. We hypothesized that NTHi infection of pulmonary macrophages drives neutrophilic inflammation in severe asthma. METHODS Bronchoalveolar lavage (BAL) samples from 25 severe asthma patients were assessed by fluorescence in situ hybridisation to quantify NTHi presence. Weighted gene correlation network analysis (WGCNA) was performed on RNASeq data from NTHi-infected monocyte-derived macrophages to identify transcriptomic networks associated with NTHi infection. RESULTS NTHi was detected in 56% of BAL samples (NTHi+) and was associated with longer asthma duration (34 vs 22.5 years, p = .0436) and higher sputum neutrophil proportion (67% vs 25%, p = .0462). WGCNA identified a transcriptomic network of immune-related macrophage genes significantly associated with NTHi infection, including upregulation of T17 inflammatory mediators and neutrophil chemoattractants IL1B, IL8, IL23 and CCL20 (all p < .05). Macrophage network genes SGPP2 (p = .0221), IL1B (p = .0014) and GBP1 (p = .0477) were more highly expressed in NTHi+ BAL and moderately correlated with asthma duration (IL1B; rho = 0.41, p = .041) and lower prebronchodilator FEV1/FVC% (GBP1; rho = -0.43, p = .046 and IL1B; rho = -0.42, p = .055). CONCLUSIONS NTHi persistence with pulmonary macrophages may contribute to chronic airway inflammation and T17 responses in severe asthma, which can lead to decreased lung function and reduced steroid responsiveness. Identifying therapeutic strategies to reduce the burden of NTHi in asthma could improve patient outcomes.
Collapse
Affiliation(s)
- Jodie Ackland
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK
| | - Clair Barber
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Ashley Heinson
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK
| | - Adnan Azim
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - David W. Cleary
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Myron Christodoulides
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK
| | - Ramesh J. Kurukulaaratchy
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Peter Howarth
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Tom M. A. Wilkinson
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK,Wessex Investigational Sciences HubUniversity of Southampton Faculty of Medicine, Southampton General HospitalSouthamptonUK
| | - Karl J. Staples
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK,Wessex Investigational Sciences HubUniversity of Southampton Faculty of Medicine, Southampton General HospitalSouthamptonUK
| | | |
Collapse
|
15
|
Coya JM, Fraile-Ágreda V, de Tapia L, García-Fojeda B, Sáenz A, Bengoechea JA, Kronqvist N, Johansson J, Casals C. Cooperative action of SP-A and its trimeric recombinant fragment with polymyxins against Gram-negative respiratory bacteria. Front Immunol 2022; 13:927017. [PMID: 36159837 PMCID: PMC9493720 DOI: 10.3389/fimmu.2022.927017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
The exploration of therapies combining antimicrobial lung proteins and conventional antibiotics is important due to the growing problem of multidrug-resistant bacteria. The aim of this study was to investigate whether human SP-A and a recombinant trimeric fragment (rfhSP-A) have cooperative antimicrobial activity with antibiotics against pathogenic Gram-negative bacteria. We found that SP-A bound the cationic peptide polymyxin B (PMB) with an apparent dissociation constant (K D) of 0.32 ± 0.04 µM. SP-A showed synergistic microbicidal activity with polymyxin B and E, but not with other antibiotics, against three SP-A-resistant pathogenic bacteria: Klebsiella pneumoniae, non-typable Haemophilus influenzae (NTHi), and Pseudomonas aeruginosa. SP-A was not able to bind to K. pneumoniae, NTHi, or to mutant strains thereof expressing long-chain lipopolysaccharides (or lipooligosaccharides) and/or polysaccharide capsules. In the presence of PMB, SP-A induced the formation of SP-A/PMB aggregates that enhance PMB-induced bacterial membrane permeabilization. Furthermore, SP-A bound to a molecular derivative of PMB lacking the acyl chain (PMBN) with a K D of 0.26 ± 0.02 μM, forming SP-A/PMBN aggregates. PMBN has no bactericidal activity but can bind to the outer membrane of Gram-negative bacteria. Surprisingly, SP-A and PMBN showed synergistic bactericidal activity against Gram-negative bacteria. Unlike native supratrimeric SP-A, the trimeric rfhSP-A fragment had small but significant direct bactericidal activity against K. pneumoniae, NTHi, and P. aeruginosa. rfhSP-A did not bind to PMB under physiological conditions but acted additively with PMB and other antibiotics against these pathogenic bacteria. In summary, our results significantly improve our understanding of the antimicrobial actions of SP-A and its synergistic action with PMB. A peptide based on SP-A may aid the therapeutic use of PMB, a relatively cytotoxic antibiotic that is currently being reintroduced into clinics due to the global problem of antibiotic resistance.
Collapse
Affiliation(s)
- Juan Manuel Coya
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Víctor Fraile-Ágreda
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Lidia de Tapia
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Belén García-Fojeda
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Alejandra Sáenz
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - José A. Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Nina Kronqvist
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Huddinge, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Huddinge, Sweden
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
16
|
de Tapia L, García-Fojeda B, Kronqvist N, Johansson J, Casals C. The collectin SP-A and its trimeric recombinant fragment protect alveolar epithelial cells from the cytotoxic and proinflammatory effects of human cathelicidin in vitro. Front Immunol 2022; 13:994328. [PMID: 36105805 PMCID: PMC9464622 DOI: 10.3389/fimmu.2022.994328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 01/19/2023] Open
Abstract
Human cathelicidin (LL-37) is a defense peptide with antimicrobial activity against various pathogens. However, LL-37 can also trigger tissue injury by binding to host cell membranes. The cytotoxic effects of LL-37 may be especially relevant in chronic respiratory diseases characterized by increased LL-37. The aim of this study was to investigate whether the human collectin SP-A and a trimeric recombinant fragment thereof (rfhSP-A) can regulate the activities of LL-37. To this end, we studied the interaction of LL-37 with SP-A and rfhSP-A by intrinsic fluorescence, dynamic light scattering, and circular dichroism, as well as the effects of these proteins on the antimicrobial and cytotoxic activities of LL-37. Both SP-A and rfhSP-A bound LL-37 with high affinity at physiological ionic strength (KD = 0.45 ± 0.01 nM for SP-A and 1.22 ± 0.7 nM for rfhSP-A). Such interactions result in the reduction of LL-37-induced cell permeability and IL-8 release in human pneumocytes, mediated by P2X7 channels. Binding of LL-37 to SP-A did not modify the properties of SP-A or the antibacterial activity of LL-37 against respiratory pathogens (Klebsiella pneumoniae, Pseudomonas aeruginosa, and nontypeable Haemophilus influenzae). SP-A/LL-37 complexes showed a greater ability to aggregate LPS vesicles than LL-37, which reduces endotoxin bioactivity. These results reveal the protective role of native SP-A in controlling LL-37 activities and suggest a potential therapeutic effect of rfhSP-A in reducing the cytotoxic and inflammatory actions of LL-37, without affecting its microbicidal activity against Gram-negative pathogens.
Collapse
Affiliation(s)
- Lidia de Tapia
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Belén García-Fojeda
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Nina Kronqvist
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Huddinge, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Huddinge, Sweden
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
17
|
Carr TF, Peters MC. Novel potential treatable traits in asthma: Where is the research taking us? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:27-36. [PMID: 37780590 PMCID: PMC10509971 DOI: 10.1016/j.jacig.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 10/03/2023]
Abstract
Asthma is a complex, heterogeneous disease in which the underlying mechanisms are not fully understood. Patients are often grouped into phenotypes (based on clinical, biologic, and physiologic characteristics) and endotypes (based on distinct genetic or molecular mechanisms). Recently, patients with asthma have been broadly split into 2 phenotypes based on their levels of type 2 inflammation: type 2 and non-type 2 asthma. However, this approach is likely oversimplified, and our understanding of the non-type 2 mechanisms in asthma remains extremely limited. A better understanding of asthma phenotypes and endotypes may assist in development of drugs for new therapeutic targets in asthma. One approach is to identify "treatable traits," which are specific patient characteristics related to phenotypes and endotypes that can be targeted by therapies. This review will focus on emerging treatable traits in asthma and aim to describe novel patient subgroups and endotypes that may represent the next step in the search for new therapeutic approaches.
Collapse
Affiliation(s)
- Tara F. Carr
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Michael C. Peters
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, Calif
| |
Collapse
|
18
|
Tsiavia T, Henny J, Goldberg M, Zins M, Roche N, Orsi L, Nadif R. Blood inflammatory phenotypes were associated with distinct clinical expressions of asthma in adults from a large population-based cohort. EBioMedicine 2022; 76:103875. [PMID: 35152149 PMCID: PMC8844864 DOI: 10.1016/j.ebiom.2022.103875] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Asthma is an inflammatory heterogeneous disease. Asthma inflammatory phenotypes based on blood eosinophil and neutrophil counts have never been identified and characterized in population-based studies. METHODS Adults with current asthma and available blood eosinophil and neutrophil counts from the French population-based CONSTANCES cohort were included. Current asthma was defined by reports of asthma attacks, symptoms or treatments in the last 12 months. Inflammatory phenotypes were based on low (L) and high (H) blood (B) eosinophil (E) (LBE/HBE: ⩾0·25 × 109/L, respectively) and neutrophil (N) (LBN/HBN: ⩾5 × 109/L, respectively) cut-offs. Associations between inflammatory phenotypes and the clinical expressions of asthma were studied using logistic models adjusted for age, sex, smoking status, body mass index, education level, French deprivation index and treatment. Other cut-offs were applied. Stratified analyses according to age or sex were performed. FINDINGS Among 15,019 adults with asthma (56% women, 59%≥40 years), the LBE/LBN (reference), LBE/HBN, HBE/LBN and HBE/HBN phenotypes accounted for 57%, 6%, 33% and 4% respectively. The LBE/HBN phenotype was associated with being awaken by an attack of coughing, chronic bronchitis, and dyspnoea (adjusted(a)OR ranging from 1·21 to 1·42). The HBE/LBN and HBE/HBN phenotypes were associated with asthma attacks (aOR=1·31[1·20-1·42], 1·25[1·02-1·53]) and asthma symptom score (p for trend<0·0001, p for trend=0·001, respectively). The HBE/LBN phenotype was also associated with being awaken with chest tightness (aOR=1·30[1·20-1·40]). Results were unchanged whatever the cut-offs used. No statistically significant heterogeneity was observed according to age or sex. INTERPRETATION Differences in the clinical expressions of asthma were found between the phenotypes, reproducible whatever the cut-offs used, and similar to those observed in case-control and clinical studies. Such phenotypes are of interest to improve asthma management and study its environmental risk factors. FUNDING The CONSTANCES cohort receives grants from ANR (ANR-11-INBS-0002), the Caisse nationale d'assurance maladie-CNAM and the Ministry of research. CONSTANCES also receives funding from MSD, AstraZeneca, Lundbeck and L'Oréal, managed by INSERM-Transfert. T.Tsiavia is supported by a PhD grant from the Fondation pour le Recherche Médicale (ECO202006011654).
Collapse
Affiliation(s)
- Tajidine Tsiavia
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Int´grative, CESP, 94807, Villejuif, France.
| | - Joseph Henny
- Université Paris-Saclay, UVSQ, Inserm, Cohortes Epidémiologiques en population, 94807, Villejuif, France
| | - Marcel Goldberg
- Université Paris-Saclay, UVSQ, Inserm, Cohortes Epidémiologiques en population, 94807, Villejuif, France; Faculté de Médecine, Univ. de Paris, Paris, France
| | - Marie Zins
- Université Paris-Saclay, UVSQ, Inserm, Cohortes Epidémiologiques en population, 94807, Villejuif, France; Faculté de Médecine, Univ. de Paris, Paris, France
| | - Nicolas Roche
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Int´grative, CESP, 94807, Villejuif, France; Respiratory Medicine, Pneumologie et Soins Intensifs Respiratoires, APHP Centre, Cochin Hospital, Université de Paris (Descartes), Institut Cochin (UMR 1016), Paris, France
| | - Laurent Orsi
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Int´grative, CESP, 94807, Villejuif, France
| | - Rachel Nadif
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Int´grative, CESP, 94807, Villejuif, France
| |
Collapse
|
19
|
Weeks JR, Staples KJ, Spalluto CM, Watson A, Wilkinson TMA. The Role of Non-Typeable Haemophilus influenzae Biofilms in Chronic Obstructive Pulmonary Disease. Front Cell Infect Microbiol 2021; 11:720742. [PMID: 34422683 PMCID: PMC8373199 DOI: 10.3389/fcimb.2021.720742] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is an ubiquitous commensal-turned-pathogen that colonises the respiratory mucosa in airways diseases including Chronic Obstructive Pulmonary Disease (COPD). COPD is a progressive inflammatory syndrome of the lungs, encompassing chronic bronchitis that is characterised by mucus hypersecretion and impaired mucociliary clearance and creates a static, protective, humid, and nutrient-rich environment, with dysregulated mucosal immunity; a favourable environment for NTHi colonisation. Several recent large COPD cohort studies have reported NTHi as a significant and recurrent aetiological pathogen in acute exacerbations of COPD. NTHi proliferation has been associated with increased hospitalisation, disease severity, morbidity and significant lung microbiome shifts. However, some cohorts with patients at different severities of COPD do not report that NTHi is a significant aetiological pathogen in their COPD patients, indicating other obligate pathogens including Moraxella catarrhalis, Streptococcus pneumoniae and Pseudomonas aeruginosa as the cause. NTHi is an ubiquitous organism across healthy non-smokers, healthy smokers and COPD patients from childhood to adulthood, but it currently remains unclear why NTHi becomes pathogenic in only some cohorts of COPD patients, and what behaviours, interactions and adaptations are driving this susceptibility. There is emerging evidence that biofilm-phase NTHi may play a significant role in COPD. NTHi displays many hallmarks of the biofilm lifestyle and expresses key biofilm formation-promoting genes. These include the autoinducer-mediated quorum sensing system, epithelial- and mucus-binding adhesins and expression of a protective, self-produced polymeric substance matrix. These NTHi biofilms exhibit extreme tolerance to antimicrobial treatments and the immune system as well as expressing synergistic interspecific interactions with other lung pathogens including S. pneumoniae and M. catarrhalis. Whilst the majority of our understanding surrounding NTHi as a biofilm arises from otitis media or in-vitro bacterial monoculture models, the role of NTHi biofilms in the COPD lung is now being studied. This review explores the evidence for the existence of NTHi biofilms and their impact in the COPD lung. Understanding the nature of chronic and recurrent NTHi infections in acute exacerbations of COPD could have important implications for clinical treatment and identification of novel bactericidal targets.
Collapse
Affiliation(s)
- Jake R Weeks
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Karl J Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, United Kingdom
| | - C Mirella Spalluto
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, United Kingdom.,Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
20
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|
21
|
Quoc QL, Choi Y, Thi Bich TC, Yang EM, Shin YS, Park HS. S100A9 in adult asthmatic patients: a biomarker for neutrophilic asthma. Exp Mol Med 2021; 53:1170-1179. [PMID: 34285336 PMCID: PMC8333352 DOI: 10.1038/s12276-021-00652-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
The biomarkers and therapeutic targets of neutrophilic asthma (NA) are poorly understood. Although S100 calcium-binding protein A9 (S100A9) has been shown to correlate with neutrophil activation, its role in asthma pathogenesis has not been clarified. This study investigated the mechanism by which S100A9 is involved in neutrophil activation, neutrophil extracellular trap (NET)-induced airway inflammation, and macrophage polarization in NA. The S100A9 levels (by ELISA) in sera/culture supernatant of peripheral blood neutrophils (PBNs) and M0 macrophages from asthmatic patients were measured and compared to those of healthy controls (HCs). The function of S100A9 was evaluated using airway epithelial cells (AECs) and PBNs/M0 macrophages from asthmatic patients, as well as a mouse asthma model. The serum levels of S100A9 were higher in NA patients than in non-NA patients, and there was a positive correlation between serum S100A9 levels and sputum neutrophil counts (r = 0.340, P = 0.005). Asthmatic patients with higher S100A9 levels had lower PC20 methacholine values and a higher prevalence of severe asthma (SA) (P < .050). PBNs/M0 macrophages from SA released more S100A9 than those from non-SA patients. PBNs from asthmatic patients induced S100A9 production by AECs, which further activated AECs via the extracellular signal-regulated kinase (ERK) pathway, stimulated NET formation, and induced M1 macrophage polarization. Higher S100A9 levels in sera, bronchoalveolar lavage fluid, and lung tissues were observed in the mouse model of NA but not in the other mouse models. These results suggest that S100A9 is a potential serum biomarker and therapeutic target for NA.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Tra Cao Thi Bich
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
22
|
Zuo L, Wijegunawardana D. Redox Role of ROS and Inflammation in Pulmonary Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:187-204. [PMID: 34019270 DOI: 10.1007/978-3-030-68748-9_11] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS), either derived from exogenous sources or overproduced endogenously, can disrupt the body's antioxidant defenses leading to compromised redox homeostasis. The lungs are highly susceptible to ROS-mediated damage. Oxidative stress (OS) caused by this redox imbalance leads to the pathogenesis of multiple pulmonary diseases such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). OS causes damage to important cellular components in terms of lipid peroxidation, protein oxidation, and DNA histone modification. Inflammation further enhances ROS production inducing changes in transcriptional factors which mediate cellular stress response pathways. This deviation from normal cell function contributes to the detrimental pathological characteristics often seen in pulmonary diseases. Although antioxidant therapies are feasible approaches in alleviating OS-related lung impairment, a comprehensive understanding of the updated role of ROS in pulmonary inflammation is vital for the development of optimal treatments. In this chapter, we review the major pulmonary diseases-including COPD, asthma, ARDS, COVID-19, and lung cancer-as well as their association with ROS.
Collapse
Affiliation(s)
- Li Zuo
- College of Arts and Sciences, Molecular Physiology and Biophysics Lab, University of Maine, Presque Isle Campus, Presque Isle, ME, USA. .,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.
| | | |
Collapse
|
23
|
Atto B, Kunde D, Gell DA, Tristram S. Oropharyngeal Carriage of hpl-Containing Haemophilus haemolyticus Predicts Lower Prevalence and Density of NTHi Colonisation in Healthy Adults. Pathogens 2021; 10:pathogens10050577. [PMID: 34068621 PMCID: PMC8151607 DOI: 10.3390/pathogens10050577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a major respiratory pathogen that initiates infection by colonising the upper airways. Strategies that interfere with this interaction may therefore have a clinically significant impact on the ability of NTHi to cause disease. We have previously shown that strains of the commensal bacterium Haemophilus haemolyticus (Hh) that produce a novel haem-binding protein, haemophilin, can prevent NTHi growth and interactions with host cells in vitro. We hypothesized that natural pharyngeal carriage of Hh strains with the hpl open reading frame (Hh-hpl+) would be associated with a lower prevalence and/or density of NTHi colonisation in healthy individuals. Oropharyngeal swabs were collected from 257 healthy adults in Australia between 2018 and 2019. Real-time PCR was used to quantitatively compare the oropharyngeal carriage load of NTHi and Hh populations with the Hh-hpl+ or Hh-hpl− genotype. The likelihood of acquiring/maintaining NTHi colonisation status over a two- to six-month period was assessed in individuals that carried either Hh-hpl− (n = 25) or Hh-hpl+ (n = 25). Compared to carriage of Hh-hpl− strains, adult (18–65 years) and elderly (>65 years) participants that were colonised with Hh-hpl+ were 2.43 or 2.67 times less likely to carry NTHi in their oropharynx, respectively. Colonisation with high densities of Hh-hpl+ correlated with a low NTHi carriage load and a 2.63 times lower likelihood of acquiring/maintaining NTHi colonisation status between visits. Together with supporting in vitro studies, these results encourage further investigation into the potential use of Hh-hpl+ as a respiratory probiotic candidate for the prevention of NTHi infection.
Collapse
Affiliation(s)
- Brianna Atto
- School of Health Sciences, University of Tasmania, Newnham Drive, Launceston, TAS 7248, Australia;
- Correspondence: (B.A.); (S.T.)
| | - Dale Kunde
- School of Health Sciences, University of Tasmania, Newnham Drive, Launceston, TAS 7248, Australia;
| | - David A. Gell
- School of Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia;
| | - Stephen Tristram
- School of Health Sciences, University of Tasmania, Newnham Drive, Launceston, TAS 7248, Australia;
- Correspondence: (B.A.); (S.T.)
| |
Collapse
|
24
|
Elkoshi Z. The Binary Classification of Protein Kinases. J Inflamm Res 2021; 14:929-947. [PMID: 33776467 PMCID: PMC7988341 DOI: 10.2147/jir.s303750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
In an earlier publication a binary model for chronic diseases classification has been proposed. According to the model, chronic diseases were classified as “high Treg” or “low Treg” diseases, depending on whether the immune response is anti- or pro-inflammatory and assuming that regulatory T cells are major determinants of the response. It turned out that most cancers are “high Treg” diseases, while autoimmune diseases are “low Treg”. This paper proposes a molecular cause for this binary response. The mechanism proposed depends on the effect of protein kinases on the immune system. Thus, protein kinases are classified as anti- or pro-inflammatory kinases depending on whether they drive “high Treg” or “low Treg” diseases. Observations reported in the earlier publication can be described in terms of anti-inflammatory kinase (AIK) or pro-inflammatory kinase (PIK) activity. Analysis of literature data reveals that the two classes of kinases display distinctive properties relating to their interactions with pathogens and environmental factors. Pathogens that promote Treg activity (“high Treg” pathogens) activate AIKs, while pathogens that suppress Treg activity (“low Treg” pathogens) activate PIKs. Diseases driven by AIKs are associated with “high Treg” pathogens while those diseases driven by PIKs are associated with “low Treg” pathogens. By promoting the activity of AIKs, alcohol consumption increases the risk of “high Treg” cancers but decreases the risk of some “low Treg” autoimmune diseases. JAK1 gain-of-function mutations are observed at high frequencies in autoimmune diseases while JAK1 loss-of-function mutations are observed at high frequencies in cancers with high tumor-infiltrating Tregs. It should also be noted that the corresponding two classes of protein kinase inhibitors are mutually exclusive in terms of their approved therapeutic indications. There is no protein kinase inhibitor that is approved for the treatment of both autoimmune diseases and “high Treg” cancers. Although there are exceptions to the conclusions presented above, these conclusions are supported by the great bulk of published data. It therefore seems that the binary division of protein kinases is a useful tool for elucidating (at the molecular level) many distinctive properties of cancers and autoimmune diseases.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
25
|
Dong H, Wang T, Wang M, Yan Y, Zhang X, Gu W, Ji W, Huang L, Chen Z. The role of inducible costimulatory molecular ligand (ICOSL) in children with neutrophilic asthma. Transl Pediatr 2020; 9:469-479. [PMID: 32953544 PMCID: PMC7475312 DOI: 10.21037/tp-20-172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND It has been shown that certain severe and refractory asthma cases are caused by neutrophil and not eosinophil infiltration. Inducible costimulatory molecular ligand (ICOSL) expression is closely associated with tumor and autoimmune diseases, yet a limited amount of data has been published regarding the significance of ICOSL in children with neutrophilic asthma. The present study aimed to explore the clinical significance of abnormal expression of ICOSL in peripheral blood and bronchoalveolar lavage fluid (BALF) samples of children with neutrophilic asthma. METHODS Selected children from the Children's Hospital of Soochow University who met the diagnostic criteria of asthma and excluded patients with a pathogen-positive etiology. Children who were admitted to the hospital for foreign body inhalation in the same period acted as the control group. Children with more than 50% of neutrophils in BALF samples were assigned to the neutrophilic asthma group (NA group), and the remaining subjects composed the asthma group (A group). The expression levels of ICOSL, IL-4, IL-17, IFN-γ, neutrophil elastase (NE), and matrix metalloproteinase-9 (MMP-9) were detected in plasma and BALF samples by enzyme-linked immunosorbent assays, in order to analyze the differences in the levels of cytokines and clinical characteristics between children with neutrophilic asthma and non-neutrophilic asthma. Moreover, the potential mechanism of ICOSL in neutrophilic asthma was explored. RESULTS 32 children were enrolled: 12 children in the NA group and 20 children in the A group. The mean hospitalization time of the NA group was longer than that of the A group (P<0.05). The concentration levels of ICOSL, IL-17, NE, and MMP-9 in plasma and BALF samples in the NA group were higher than those in the A group, while the levels of IFN-γ exhibited opposite. A significant correlation was found between ICOSL and IL-17 levels in plasma (r=0.753, P=0.012) and BALF (r=0.774, P=0.009) samples in the NA group. CONCLUSIONS Children with neutrophilic asthma were more severely affected, experiencing a considerably more difficult clinical treatment and longer hospitalization time. ICOSL may regulate the secretion of IL-17 by Th17 and increase the levels of NE and MMP-9, which are involved in the development of immune inflammation in neutrophils.
Collapse
Affiliation(s)
- Heting Dong
- Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Ting Wang
- Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Meijuan Wang
- Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Yongdong Yan
- Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Xinxing Zhang
- Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Wenjing Gu
- Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Wei Ji
- Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Li Huang
- Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Zhengrong Chen
- Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|