1
|
Zhao Q, Li W, Li W, Yang H, Wang X, Ding Z, Liu Z, Wang Z. Porphyromonas gingivalis-induced autophagy exacerbates abnormal lung homeostasis: An in vivo and in vitro study. Arch Oral Biol 2025; 169:106122. [PMID: 39486274 DOI: 10.1016/j.archoralbio.2024.106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of periodontal Porphyromonas gingivalis (P. gingivalis) infection on lung homeostasis and to explore the underlying mechanism. DESIGNS In in vivo experiments, twelve mice were divided into two groups. The P. gingivalis infection group received P. gingivalis around the maxillary second molar, and the control group was left untreated. After 12 weeks, the histopathological changes of the lung tissue and the autophagy and apoptosis in the lung tissue cells were detected. In in vitro experiments, alveolar epithelial cell A549 was co cultured with P. gingivalis and treated with autophagy inhibitor chloroquine (CQ). Western blot was then used to detect autophagic markers LC3 and P62, and mRFP-GFP-LC3 was used to observe autophagic flux. Cell viability and apoptosis were also detected. RESULTS For the in vivo experiments, pathological changes were observed in the lung tissue of the P. gingivalis infection group at 12 weeks, along with higher levels of autophagy and apoptosis in the lung tissue cells. For the in vitro experiments, infection of alveolar epithelial cells with P. gingivalis inhibited cell viability and promoted cell autophagy and apoptosis. Interestingly, we found that inhibiting P. gingivalis-activated autophagy significantly improved cell apoptosis and viability damage induced by P. gingivalis. CONCLUSION Periodontal P. gingivalis infection can cause pathological changes and abnormal homeostasis in lung tissue, and the up-regulation of autophagy induced by P. gingivalis may play a synergistic role in this process.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wenyue Li
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongjia Yang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhaoyue Ding
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhiqiang Liu
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Zhao Q, Wang X, Liu W, Tian H, Yang H, Wang Z, Liu Z. Porphyromonas gingivalis inducing autophagy-related biological dysfunction in alveolar epithelial cells: an in vitro study. BMC Oral Health 2024; 24:1478. [PMID: 39639253 PMCID: PMC11619664 DOI: 10.1186/s12903-024-05253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a respiratory disease with high morbidity and mortality. Notably, the pathogenesis and progression of COPD are related to lung infection, inflammatory response, and biological dysfunction in alveolar epithelial cells. Studies also found that periodontitis is an independent risk factor for COPD. The inhalation of periodontal pathogens into the respiratory system is the most common method for periodontal pathogens to promote the development of COPD. Porphyromonas gingivalis (P. gingivalis), the keystone pathogen in periodontitis, has been found to migrate to the lungs, triggering inflammatory reactions and causing decreased lung function. However, the impact of P. gingivalis infection on the biological function of alveolar epithelial cells remains unclear. Therefore, this study aimed to investigate the effects of P. gingivalis infection on the biological functions of alveolar epithelial cells. METHODS Mouse alveolar epithelial cells (MLE-12) were co-cultured with P. gingivalis and treated with autophagy inhibitor chloroquine (CQ) or LC3 siRNA in vitro. MTT assay and EdU staining were used to detect cell viability, and the TUNEL assay kit and Annexin V-FITC/PI method were used to detect cell apoptosis. Western blot was used to detect autophagic markers LC3 and P62, and mRFP-GFP-LC3 was used to observe autophagic flux. RESULTS P. gingivalis inhibited the viability of alveolar epithelial cells in a dose- and time-dependent manner. P. gingivalis also promoted autophagy and apoptosis of alveolar epithelial cells in a dose-dependent manner. Interestingly, we found that inhibiting autophagy using CQ or silencing LC3 with siRNA significantly reduced cell apoptosis and viability damage induced by P. gingivalis. Thus, these data indicated the synergistic effect of autophagy in P. gingivalis-induced biological dysfunction of alveolar epithelial cells. CONCLUSION P. gingivalis infection can cause biological dysfunction of alveolar epithelial cells, manifested as decreased cell viability, increased autophagy and apoptosis. Notably, the up-regulation of autophagy induced by P. gingivalis plays a synergistic role in this dysfunction.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Xueyuan Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Wenyan Liu
- Department of Stomatology, Beijing Lu He Hospital, Capital Medical University, Beijing, China
| | - Huan Tian
- Department of Special Clinic Center, Changsha Stomatological Hospital, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Hongjia Yang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China.
| | - Zhiqiang Liu
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
3
|
Liu D, Weng S, Fu C, Guo R, Chen M, Shi B, Weng J. Autophagy in Acute Lung Injury. Cell Biochem Biophys 2024:10.1007/s12013-024-01604-2. [PMID: 39527232 DOI: 10.1007/s12013-024-01604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Acute lung injury (ALI) is a critical condition marked by rapid-onset respiratory failure due to extensive inflammation and increased pulmonary vascular permeability, often progressing to acute respiratory distress syndrome (ARDS) with high mortality. Autophagy, a cellular degradation process essential for removing damaged organelles and proteins, plays a crucial role in regulating lung injury and repair. This review examines the protective role of autophagy in maintaining cellular function and reducing inflammation and oxidative stress in ALI. It underscores the necessity of precise regulation to fully harness the therapeutic potential of autophagy in this context. We summarize the mechanisms by which autophagy influences lung injury and repair, discuss the interplay between autophagy and apoptosis, and examine potential therapeutic strategies, including autophagy inducers, targeted autophagy signaling pathways, antioxidants, anti-inflammatory drugs, gene editing, and stem cell therapy. Understanding the role of autophagy in ALI could lead to novel interventions for improving patient outcomes and reducing mortality rates associated with this severe condition.
Collapse
Affiliation(s)
- Danjuan Liu
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Shuoyun Weng
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Chunjin Fu
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Rongjie Guo
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Min Chen
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Bingbing Shi
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Junting Weng
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China.
| |
Collapse
|
4
|
Zhang J, Yan W, Dong Y, Luo X, Miao H, Maimaijuma T, Xu X, Jiang H, Huang Z, Qi L, Liang G. Early identification and diagnosis, pathophysiology, and treatment of sepsis-related acute lung injury: a narrative review. J Thorac Dis 2024; 16:5457-5476. [PMID: 39268131 PMCID: PMC11388254 DOI: 10.21037/jtd-24-1191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Background and Objective Sepsis is a life-threatening organ dysfunction, and the most common and vulnerable organ is the lungs, with sepsis-related acute respiratory distress syndrome (ARDS) increasing mortality. In recent years, an increasing number of studies have improved our understanding of sepsis-related ARDS in terms of epidemiology, risk factors, pathophysiology, prognosis, and other aspects, as well as our ability to prevent, detect, and treat sepsis-related ARDS. However, sepsis-related lung injury remains an important issue and clinical burden. Therefore, a literature review was conducted on sepsis-related lung injury in order to further guide clinical practice in reducing the acute and chronic consequences of this condition. Methods This study conducted a search of the MEDLINE and PubMed databases, among others for literature published from 1991 to 2023 using the following keywords: definition of sepsis, acute lung injury, sepsis-related acute lung injury, epidemiology, risk factors, early diagnosis of sepsis-related acute lung injury, sepsis, ARDS, pathology and physiology, inflammatory imbalance caused by sepsis, congenital immune response, and treatment. Key Content and Findings This review explored the risk factors of sepsis, sepsis-related ARDS, early screening and diagnosis, pathophysiology, and treatment and found that in view of the high mortality rate of ARDS associated with sepsis. In response to the high mortality rate of sepsis-related ARDS, some progress has been made, such as rapid identification of sepsis and effective antibiotic treatment, early fluid resuscitation, lung-protective ventilation, etc. Conclusions Sepsis remains a common and challenging critical illness to cure. In response to the high mortality rate of sepsis-related ARDS, progress has been made in rapid sepsis identification, effective antibiotic treatment, early fluid resuscitation, and lung-protective ventilation. However, further research is needed regarding long-term effects such as lung recruitment, prone ventilation, and the application of neuromuscular blocking agents and extracorporeal membrane oxygenation.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Wenxiao Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yansong Dong
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xinye Luo
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Hua Miao
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Emergency Medicine, Rudong County People's Hospital, Nantong, China
| | - Talaibaike Maimaijuma
- Department of Emergency Medicine, Kizilsu Kirghiz Autonomous Prefecture People's Hospital, Kezhou, China
- Department of Emergency Medicine, Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, China
| | - Xianggui Xu
- Department of Emergency Medicine, Kizilsu Kirghiz Autonomous Prefecture People's Hospital, Kezhou, China
- Department of Emergency Medicine, Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, China
| | - Haiyan Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zhongwei Huang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Guiwen Liang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
5
|
Zuo Y, Dang R, Peng H, Hu P, Yang Y. LL37-mtDNA regulates viability, apoptosis, inflammation, and autophagy in lipopolysaccharide-treated RLE-6TN cells by targeting Hsp90aa1. Open Life Sci 2024; 19:20220943. [PMID: 39220589 PMCID: PMC11365468 DOI: 10.1515/biol-2022-0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Sepsis-induced acute lung injury is associated with lung epithelial cell injury. This study analyzed the role of the antimicrobial peptide LL37 with mitochondrial DNA (LL37-mtDNA) and its potential mechanism of action in lipopolysaccharide (LPS)-treated rat type II alveolar epithelial cells (RLE-6TN cells). RLE-6TN cells were treated with LPS alone or with LL37-mtDNA, followed by transcriptome sequencing. Differentially expressed and pivotal genes were screened using bioinformatics tools. The effects of LL37-mtDNA on cell viability, inflammation, apoptosis, reactive oxygen species (ROS) production, and autophagy-related hallmark expression were evaluated in LPS-treated RLE-6TN cells. Additionally, the effects of Hsp90aa1 silencing following LL37-mtDNA treatment were investigated in vitro. LL37-mtDNA further suppressed cell viability, augmented apoptosis, promoted the release of inflammatory cytokines, increased ROS production, and elevated LC3B expression in LPS-treated RLE-6TN cells. Using transcriptome sequencing and bioinformatics, ten candidate genes were identified, of which three core genes were verified to be upregulated in the LPS + LL37-mtDNA group. Additionally, Hsp90aa1 downregulation attenuated the effects of LL37-mtDNA on LPS-treated RLE-6TN cells. Hsp90aa1 silencing possibly acted as a crucial target to counteract the effects of LL37-mtDNA on viability, apoptosis, inflammation, and autophagy activation in LPS-treated RLE-6TN cells.
Collapse
Affiliation(s)
- Yunlong Zuo
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318, Renmin Middle Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Run Dang
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318, Renmin Middle Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Hongyan Peng
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318, Renmin Middle Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Peidan Hu
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318, Renmin Middle Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Yiyu Yang
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318, Renmin Middle Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
6
|
Liu B, Wang Y, Ma L, Chen G, Yang Z, Zhu M. CCL22 Induces the Polarization of Immature Dendritic Cells into Tolerogenic Dendritic Cells in Radiation-Induced Lung Injury through the CCR4-Dectin2-PLC-γ2-NFATC2-Nr4a2-PD-L1 Signaling Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:268-282. [PMID: 38856585 DOI: 10.4049/jimmunol.2300718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
Recruitment of immune cells to the injury site plays a pivotal role in the pathology of radiation-associated diseases. In this study, we investigated the impact of the chemokine CCL22 released from alveolar type II epithelial (AT2) cells after irradiation on the recruitment and functional changes of dendritic cells (DCs) in the development of radiation-induced lung injury (RILI). By examining changes in CCL22 protein levels in lung tissue of C57BL/6N mice with RILI, we discovered that ionizing radiation increased CCL22 expression in irradiated alveolar AT2 cells, as did MLE-12 cells after irradiation. A transwell migration assay revealed that CCL22 promoted the migration of CCR4-positive DCs to the injury site, which explained the migration of pulmonary CCR4-positive DCs in RILI mice in vivo. Coculture experiments demonstrated that, consistent with the response of regulatory T cells in the lung tissue of RILI mice, exogenous CCL22-induced DCs promoted regulatory T cell proliferation. Mechanistically, we demonstrated that Dectin2 and Nr4a2 are key targets in the CCL22 signaling pathway, which was confirmed in pulmonary DCs of RILI mice. As a result, CCL22 upregulated the expression of PD-L1, IL-6, and IL-10 in DCs. Consequently, we identified a mechanism in which CCL22 induced DC tolerance through the CCR4-Dectin2-PLC-γ2-NFATC2-Nr4a2-PD-L1 pathway. Collectively, these findings demonstrated that ionizing radiation stimulates the expression of CCL22 in AT2 cells to recruit DCs to the injury site and further polarizes them into a tolerant subgroup of CCL22 DCs to regulate lung immunity, ultimately providing potential therapeutic targets for DC-mediated RILI.
Collapse
Affiliation(s)
- Benbo Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yilong Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Liping Ma
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Guo Chen
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhihua Yang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
7
|
Lei X, Liu X, Yu J, Li K, Xia L, Su S, Lin P, Zhang D, Li Y. 3-methyladenine ameliorates acute lung injury by inhibiting oxidative damage and apoptosis. Heliyon 2024; 10:e33996. [PMID: 39055838 PMCID: PMC11269838 DOI: 10.1016/j.heliyon.2024.e33996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Background Acute lung injury (ALI) is a condition characterized by inflammation and oxidative damage. 3-methyladenine (3-MA) has great potential for regulating apoptosis, but its regulatory role in ALI is unknown. Methods Lipopolysaccharide (LPS)-treated mice and tert-butyl hydroperoxide (TBHP)-treated bronchial epithelial cells were used to simulate in vivo and in vitro ALI models, respectively. In vivo, lung injury was assessed by histopathological analysis and lung injury scoring. The total cell count, protein content, and inflammatory factors in bronchoalveolar lavage fluid (BALF) were examined. The level of apoptosis in lung tissue was assessed through TUNEL staining. In the vitro ALI model, cell viability and levels of reactive oxygen species and apoptosis were assessed. Results 3-MA pretreatment ameliorated lung injury, including intra-alveolar hemorrhage and inflammatory cell accumulation, both in vitro and in vivo. 3-MA pretreatment also decreased inflammatory factor levels in the BALF. 3-MA pretreatment alleviated oxidative damage, decreased reactive oxygen species levels, and attenuated morphological changes. TUNEL and Annexin V-FITC/PI staining revealed that pretreatment with 3-MA reduced the level of apoptosis. 3-MA pretreatment significantly decreased the expression of caspase-3 and Bax but increased the expression of Bcl-2 in ALI. Mechanistically, 3-MA pretreatment also affected the PKCα/NOX4 and Nrf2 pathways, which decreased the level of apoptosis in ALI. Conclusions 3-MA pretreatment inhibited inflammation and oxidative damage in ALI and inhibited apoptosis to mitigate ALI in part by inhibiting the PKCα/NOX4 pathway and activating the Nrf2 pathway. Based on these results, 3-MA might be a viable medication to treat with ALI.
Collapse
Affiliation(s)
- Xiong Lei
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiling Liu
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia Yu
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Li
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Lijing Xia
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shanshan Su
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pengcheng Lin
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Zhang
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuping Li
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Loubet F, Robert C, Leclaire C, Theillière C, Saint-Béat C, Lenga Ma Bonda W, Zhai R, Minet-Quinard R, Belville C, Blanchon L, Sapin V, Garnier M, Jabaudon M. Effects of sevoflurane on lung alveolar epithelial wound healing and survival in a sterile in vitro model of acute respiratory distress syndrome. Exp Cell Res 2024; 438:114030. [PMID: 38583855 DOI: 10.1016/j.yexcr.2024.114030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a serious lung condition that often leads to hospitalization in intensive care units and a high mortality rate. Sevoflurane is a volatile anesthetic with growing interest for sedation in ventilated patients with ARDS. It has been shown to have potential lung-protective effects, such as reduced inflammation and lung edema, or improved arterial oxygenation. In this study, we investigated the effects of sevoflurane on lung injury in cultured human carcinoma-derived lung alveolar epithelial (A549) cells. We found that sevoflurane was associated with improved wound healing after exposure to inflammatory cytokines, with preserved cell proliferation but no effect on cell migration properties. Sevoflurane exposure was also associated with enhanced cell viability and active autophagy in A549 cells exposed to cytokines. These findings suggest that sevoflurane may have beneficial effects on lung epithelial injury by promoting alveolar epithelial wound healing and by influencing the survival and proliferation of A549 epithelial cells in vitro. Further research is needed to confirm these findings and to investigate the key cellular mechanisms explaining sevoflurane's potential effects on lung epithelial injury.
Collapse
Affiliation(s)
- Florian Loubet
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Cédric Robert
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Charlotte Leclaire
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Camille Theillière
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Cécile Saint-Béat
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | | | - Ruoyang Zhai
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Régine Minet-Quinard
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Corinne Belville
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Loic Blanchon
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Vincent Sapin
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Marc Garnier
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Matthieu Jabaudon
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France.
| |
Collapse
|
9
|
Guo W, Luo J, Zhao S, Li L, Xing W, Gao R. The critical role of RAGE in severe influenza infection: A target for control of inflammatory response in the disease. Clin Immunol 2024; 262:110178. [PMID: 38460892 DOI: 10.1016/j.clim.2024.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 03/11/2024]
Abstract
Controlling the excessive inflammatory response is one of the key ways to reduce the severity and mortality of severe influenza virus infections. RAGE is involved in inflammatory responses and acute lung injuries. Here, we investigated the role of RAGE and its potential application as a target for severe influenza treatment through serological correlation analysis for influenza patients, and treatment with the RAGE inhibitor FPS-ZM1 on A549 cells or mice with influenza A (H1N1) infection. The results showed high levels of RAGE were correlated with immunopathological injury and severity of influenza, and FPS-ZM1 treatment increased the viability of A549 cells with influenza A infection and decreased morbidity and mortality of influenza A virus infection in mice. The RAGE/NF-κb inflammatory signaling pathway is a major targeting pathway for FPS-ZM1 treatment in severe influenza. These findings provide further insights into the immune injury of severe influenza and a potential targeting candidate for the disease treatment.
Collapse
Affiliation(s)
- Wenhui Guo
- NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Junhao Luo
- NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Song Zhao
- NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Li Li
- NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wenge Xing
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Rongbao Gao
- NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
10
|
Wang Y, Wang L, Ma S, Cheng L, Yu G. Repair and regeneration of the alveolar epithelium in lung injury. FASEB J 2024; 38:e23612. [PMID: 38648494 DOI: 10.1096/fj.202400088r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/01/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Considerable progress has been made in understanding the function of alveolar epithelial cells in a quiescent state and regeneration mechanism after lung injury. Lung injury occurs commonly from severe viral and bacterial infections, inhalation lung injury, and indirect injury sepsis. A series of pathological mechanisms caused by excessive injury, such as apoptosis, autophagy, senescence, and ferroptosis, have been studied. Recovery from lung injury requires the integrity of the alveolar epithelial cell barrier and the realization of gas exchange function. Regeneration mechanisms include the participation of epithelial progenitor cells and various niche cells involving several signaling pathways and proteins. While alveoli are damaged, alveolar type II (AT2) cells proliferate and differentiate into alveolar type I (AT1) cells to repair the damaged alveolar epithelial layer. Alveolar epithelial cells are surrounded by various cells, such as fibroblasts, endothelial cells, and various immune cells, which affect the proliferation and differentiation of AT2 cells through paracrine during alveolar regeneration. Besides, airway epithelial cells also contribute to the repair and regeneration process of alveolar epithelium. In this review, we mainly discuss the participation of epithelial progenitor cells and various niche cells involving several signaling pathways and transcription factors.
Collapse
Affiliation(s)
- Yaxuan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, China
| | - Shuaichen Ma
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, China
| | - Lianhui Cheng
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, China
| |
Collapse
|
11
|
Gouchoe DA, Vijayakumar A, Aly AH, Cui EY, Essandoh M, Gumina RJ, Black SM, Whitson BA. The role of CD38 in ischemia reperfusion injury in cardiopulmonary bypass and thoracic transplantation: a narrative review. J Thorac Dis 2023; 15:5736-5749. [PMID: 37969313 PMCID: PMC10636473 DOI: 10.21037/jtd-23-725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/25/2023] [Indexed: 11/17/2023]
Abstract
Background and Objective Ischemia reperfusion injury (IRI) is often the underlying cause of endothelium breakdown and damage in cardiac or transplantation operations, which can lead to disastrous post-operative consequences. Recent studies of cluster of differentiation 38 (CD38) have identified its critical role in IRI. Our objective is to provide a comprehensive overview of CD38-mediated axis, pathways, and potential CD38 translational therapies for reducing inflammation associated with cardiopulmonary bypass (CPB) or thoracic transplantation and IRI. Methods We conducted a review of the literature by performing a search of the PubMed database on 2 April 2023. To find relevant publications on CD38, we utilized the MeSH terms: "CD38" AND "Ischemia" OR "CD38" AND "Transplant" OR "CD38" AND "Heart" from 1990-2023. Additional papers were included if they were felt to be relevant but were not captured in the MeSH terms. We found 160 papers that met this criterion, and following screening, exclusion and consensus a total of 36 papers were included. Key Content and Findings CD38 is most notably a nicotine adenine dinucleotide (NAD)+ glycohydrolase (NADase), and a generator of Ca2+ signaling secondary messengers. Ultimately, the release of these secondary messengers leads to the activation of important mediators of cellular death. In the heart and during thoracic transplantation, this pathway is intimately involved in a wide variety of injuries; namely the endothelium. In the heart, activation generally results in vasoconstriction, poor myocardial perfusion, and ultimately poor cardiac function. CD38 activation also prevents the accumulation of atherosclerotic disease. During transplantation, intracellular activation leads to infiltration of recipient innate immune cells, tissue edema, and ultimately primary graft dysfunction (PGD). Specifically, in heart transplantation, extracellular activation could be protective and improve allograft survival. Conclusions The knowledge gap in understanding the molecular basis of IRI has prevented further development of novel therapies and treatments. The possible interaction of CD38 with CD39 in the endothelium, and the modulation of the CD38 axis may be a pathway to improve cardiovascular outcomes, heart and lung donor organ quality, and overall longevity.
Collapse
Affiliation(s)
- Doug A. Gouchoe
- COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- 88 Surgical Operations Squadron, Wright-Patterson Medical Center, Wright Patterson AFB, OH, USA
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ammu Vijayakumar
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmed H. Aly
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ervin Y. Cui
- COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michael Essandoh
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Richard J. Gumina
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Davis Heart and Lung Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sylvester M. Black
- COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Division of Transplantation, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bryan A. Whitson
- COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Davis Heart and Lung Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
12
|
Ge R, Wang F, Peng Z. Advances in Biomarkers for Diagnosis and Treatment of ARDS. Diagnostics (Basel) 2023; 13:3296. [PMID: 37958192 PMCID: PMC10649435 DOI: 10.3390/diagnostics13213296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 11/15/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common and fatal disease, characterized by lung inflammation, edema, poor oxygenation, and the need for mechanical ventilation, or even extracorporeal membrane oxygenation if the patient is unresponsive to routine treatment. In this review, we aim to explore advances in biomarkers for the diagnosis and treatment of ARDS. In viewing the distinct characteristics of each biomarker, we classified the biomarkers into the following six categories: inflammatory, alveolar epithelial injury, endothelial injury, coagulation/fibrinolysis, extracellular matrix turnover, and oxidative stress biomarkers. In addition, we discussed the potential role of machine learning in identifying and utilizing these biomarkers and reviewed its clinical application. Despite the tremendous progress in biomarker research, there remain nonnegligible gaps between biomarker discovery and clinical utility. The challenges and future directions in ARDS research concern investigators as well as clinicians, underscoring the essentiality of continued investigation to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Ruiqi Ge
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China;
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Fengyun Wang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China;
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China;
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| |
Collapse
|